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ABSTRACT
The combination of an artificial immune system (AIS) with
a genetic algorithm (GA) is proposed as an alternative to
tackle constrained optimization problems. The AIS is in-
spired in the clonal selection principle and is embedded into
a standard GA search engine in order to help move the pop-
ulation into the feasible region. The procedure is applied
to well known test-problems from the evolutionary compu-
tation literature and compared to other alternative tech-
niques.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
[Heuristic methods]; J.2 [Physical Sciences and Engi-
neering]: Engineering

General Terms
Algorithms

Keywords
constrained optimization, genetic algorithm, artificial im-
mune systems

1. INTRODUCTION
Evolutionary algorithms (EAs) can be readily applied to

unconstrained optimization problems by adopting a fitness
function closely related to the desired objective function.
However, when the solution must satisfy a set of constraints,
the EA must be equiped with an additional constraint han-
dling procedure. To fix ideas and without loss of generality,
only minimization problems will be considered here.

The techniques for handling constraints within EAs can
be direct (feasible or interior), when only feasible elements
are considered, or indirect (exterior), when both feasible and
infeasible elements are used during the search process.
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Direct techniques comprise: a) special closed genetic op-
erators[29], b) special decoders[21], c) repair techniques[25,
27], and d) “death penalty”.

Direct techniques are problem dependent (with the ex-
ception of the “death penalty”) and actually of extremely
reduced practical applicability.

Indirect techniques include: a) the use of Lagrange mul-
tipliers[1, 2], b) the use of fitness as well as constraint viola-
tion values in a multi-objective optimization setting[31, 7],
c) the use of special selection techniques[28], d) “lethaliza-
tion”: any infeasible offspring is just assigned a given, very
low, fitness value[32], and e) penalty techniques.

Due to its simple intuitive basis and generality, penalty
techniques, in spite of their shortcomings, are the most pop-
ular ones. The fitness function value of an unfeasible solu-
tion is increased by a penalty term which usually grows with
the number of violated constraints and also with the amount
of violation. One can have additive as well as multiplicative
penalty functions. Usually, the performance of the technique
depends strongly on one or more penalty parameters that
must be set by the user for a given problem.

Two-parameter penalty (Le Riche et al.[20]), multi-para-
meter penalty (Homaifar et al.[23]), dynamically varying pa-
rameter penalty (Joines & Houck[18]), and adaptive penalty
techniques (Bean & Hadj-Alouane[5], Coit et al.[30], Bar-
bosa & Lemonge[3, 4]) are available in the literature.

Another technique which will be used here for numerical
comparisons is that due to Runarsson & Yao[28] where a
good balance between the objective and the penalty function
values is sought by means of a stochastic ranking.

For other constraint handling methods in evolutionary
computation see [29, 26, 17, 22, 19, 12, 16, 33], references
therein, and the still growing literature.

However, of particular interest here is the application of
ideas from artificial immune systems[10] in constrained op-
timization problems.

2. CONSTRAINEDOPTIMIZATIONPROB-
LEMS

A standard constrained optimization problem in Rn can
be thought of as the minimization of a given objective func-
tion f(x), where x ∈ Rn is the vector of design/decision
variables, subject to inequality constraints gp(x) ≥ 0, p =



1, 2, . . . , p̄ as well as equality constraints hq(x) = 0, q =
1, 2, . . . , q̄. Additionally, the variables are usually subject to
bounds xL

i ≤ xi ≤ xU
i which are trivially enforced in a GA

and need not be considered here. Very often the design vari-
ables are further constrained to belong to a given finite set
of pre-defined discrete values. This happens, for instance, in
design optimization problems when parts must be selected
from commercially available types with given properties. As
a result, a mixed discrete-continuous constrained optimiza-
tion problem arises. If further difficulties are present in the
objective function, such as lack of smoothness, a GA be-
comes atractive. For such optimization problems arising
from multidisciplinary design tasks, the constraints are in
fact a complex implicit function of the design variables, and
the check for feasibility requires an expensive computational
simulation. Constraint handling techniques which do not
need the explicit form of the constraints and do not require
additional objective function evaluations are thus most valu-
able.

3. PREVIOUS WORK USING AIS
Very few papers can be found where AIS are used to solve

constrained optimization problems. Those of particular in-
terest here will be briefly considered in the following.

About ten years ago Hajela and co-workers[13, 14, 15,
34, 35] proposed the idea of using another GA embedded
into the original one aiming at increasing the similarity (or
reducing the distance) between infeasible elements (playing
the role of antibodies) and feasible ones (antigens). The in-
ner GA uses as fitness function a genotypical (Hamming)
distance in order to evolve better (hopefully feasible) anti-
bodies. In this way there is no need for additional expensive
evaluations of the original fitness function of the problem
which only happen during the search performed by the ex-
ternal GA. The internal GA uses a relatively inexpensive
fitness based on Hamming distance calculations.

More recently, Coello and Cruz-Cortés[6] proposed an ex-
tension of Hajela’s algorithm, together with a parallel ver-
sion, and tested them in a larger problem set.

A different approach was followed by Cruz-Cortés et al.[8]
where an existing AIS (CLONALG) (see [9, 11]) already
used for pattern recognition problems and multimodal op-
timization is modified in order to deal with constrained op-
timization problems. Binary as well as real representations
were considered. The results for the real coded version of
CLONALG were disappointing, leading the authors to mod-
ify the mutation operator originally used, and also to remove
the self-adaptation mechanism suggested in [11].

The procedure proposed here follows the idea of Hajela
and co-workers in that an AIS is called to help the GA in
increasing the number of feasible individuals in the popula-
tion. However, instead of embedding another GA into the
main search cycle, a simple technique, inspired in the clonal
selection principle, is used inside the GA cycle.

4. THE PROPOSED TECHNIQUE
The proposed hybrid AIS-GA for constrained optimiza-

tion consists in an outer (GA) search loop where the current
population is checked for constraint violation and then di-
vided into feasible (antigens) and infeasible individuals (an-
tibodies). If there are no feasible individuals, the best infea-
sible one (that with the lowest constraint violation) is moved

to the antigen population. In the following, the AIS is in-
troduced as an inner loop where antibodies are first cloned
and then mutated. Next, the distances (affinities) between
antibodies and antigens are computed. Those with higher
affinity (smaller sum of distances) are selected thus defin-
ing the new antibodies (closer to the feasible region). This
(AIS) cycle is repeated a number of times. The resulting
antibody population is then passed to the GA where con-
straint violations are computed as well as fitness function
values for the feasible individuals. The selection operation
is then performed in order to apply recombination and mu-
tation operators to the selected parents producing a new
population and finishing the external (GA) loop.

The selection procedure in the GA consists in binary tour-
naments where each individual is selected once and its op-
ponent is randomly draw, with replacement, from the pop-
ulation. The rules of the tournament are: (i) any feasible
individual is preferred to any infeasible one, (ii) between two
feasible individuals, the one with the higher fitness value is
chosen, and (iii) between two infeasible individuals, the one
with the smaller constraint violation is chosen.

It should be noted that here the affinity is computed from
the sum of phenotypical distances between individuals, em-
ploying a standard euclidean vector norm.

A pseudo-code for the proposed hybrid is given in Fig-
ure 1.

Figure 1: Pseudo-code for the Hybrid GA

Algorithm Hybrid AIS-GA

Begin

for i=0 to numberOfGenerationsGA do

computeViolation();

dividePopulation();

antibodies <- infeasiblePop();

antigens<- TopFeasible();

for j=0 to numberOfIterationsAIS do

cloneAntibodies();

mutateAntibodies();

computeDistanceAntibodiesAntigens();

antibodies <- selectBetterAntibodies();

end-do;

computeViolationAntibodies();

computeFitnessFeasiblePop();

tournamentSelection();

crossover();

mutation();

end-do;

End

5. NUMERICAL EXPERIMENTS
In order to investigate the performance of the proposed

hybrid procedure for constraint handling, a well know suite
of function optimization problems from the literature are
solved. The first 11 test functions are described in [26], and
all them can be found in [28]. Thirty independent runs were
performed with using a population of size 20 evolving for
17500 generations leading to 350000 function evaluations.
Each real variable was encoded using 25 bits. The standard
two-point crossover operator was applied with probability



pc = 0.8. Mutation was applied bit-wise to the offspring
with rate pm = 0.04. Each equality constraint was converted
into one inequality constraint bounding the absolute value of
the degree of violation by 0.0001 (that is, |h(x)| ≤ 0.0001).

The results obtained with the proposed hybrid AIS-GA
with binary encoding are shown in Table 1.

The results obtained by the hybrid GA in Coello & Cortés
[6], which also uses a binary encoding, are displayed in Ta-
ble 2 for comparison.

The results obtained with binary encoding by the modified
CLONALG technique developed by Cruz-Cortés et al[8] are
displayed in Table 3

In order to give a better comparison of the proposed tech-
nique with respect to other available approaches from the
literature, the results from the binary coded GAs due to
Wright & Farmani[33], and those from the adaptive penalty
technique (APM) obtained by Lemonge & Barbosa[24] are
presented in Tables 4 and 5, respectively.

Finally, the best results from the literature, those obtained
by the stochastic ranking procedure using real encoding due
to Runarsson & Yao[28], are shown in Table 6.

In all Tables, INF means that the algorithm converged to
an infeasible solution.

Table 1: Performance of the proposed hybrid AIS-
GA.

gi Optimum Best Mean Worst
g1 −15 −14.9944 −14.9793 −14.9687
g2 0.803619 0.772831 0.764654 0.756478
g3 1 0.9989538 0.9978105 0.9933335
g4 −30655.5 −30665.53 −30665.35 −30665.25
g5 5126.4981 INF INF INF
g6 −6961.8 −6961.804 −6961.804 −6961.804
g7 24.306 25.373074 25.888315 26.896858
g8 −0.095825 −0.095825 −0.095825 −0.095825
g9 680.63 680.6817 680.7827 681.0401
g10 7049.33 7320.2637 7571.3228 8081.6685
g11 0.75 0.750035 0.878316 0.9992529
g12 −1 −1 −1 −1
g13 0.053950 INF INF INF

Table 2: Results obtained by the hybrid GA due to
Coello & Cortés.

gi Optimum Best Mean Worst
g1 −15 −14.7841 −14.5266 −13.8417
g2 0.803619 – – –
g3 1 1.0046 1.0031 0.9987
g4 −30655.5 −30665.51 −30654.98 −30517.44
g5 5126.4981 – – –
g6 −6961.8 −6961.761 −6961.273 −6960.607
g7 24.306 – – –
g8 −0.095825 – – –
g9 680.63 680.9599 681.6192 683.7651
g10 7049.33 – – –
g11 0.75 – – –
g12 −1 – – –
g13 0.053950 – – –

Observing the results from the techniques which employ
AIS ideas (Tables 1, 2, and 3) it is clear that the AIS-GA
hybrid proposed here has better values for the best, mean,

Table 3: Performance of the modified CLONALG
approach by Cruz-Cortés et al (binary case). Cases
marked with * indicate that the algorithm converged
to a feasible solution in 75% of the runs.

gi Optimum Best Mean Worst
g1* −15 −14.8686 −14.6603 −12.7895
g2 0.803619 0.775589 0.749575 0.683894
g3* 1.0 0.99891 0.97078 0.92849
g4 −30665.5 −30650.01 −30460.85 −30366.99
g5 5126.498 INF INF INF
g6 −6961.814 −6921.487 −6248.931 −6182.994
g7 24.306 24.80870 30.8661 35.4455
g8 0.095825 0.095825 0.093398 0.09313
g9 680.630 684.12886 704.87263 753.22103
g10 7049.25 INF INF INF
g11 0.75 0.750295 0.865079 1.567670
g12 1.0 0.999996 0.907750 0.725285
g13 0.053950 INF INF INF

and worst results in functions g1, g3, g4, g6, g8, g9, and g10.
For functions g2 and g7, the modified CLONALG procedure
produced a better value for the best run but a worse result
for both the average and the worst run values. For func-
tion g11 the relative performance concerning best and mean
values was inverted. However, for function g10 the modified
CLONALG procedure was not able to produce a feasible so-
lution. It is interesting to note that no algorithm employing
AIS ideas was able to solve for both functions g5 and g13.
Overall, the best performance was delivered by the AIS-GA
hybrid proposed here.

An additional comparison against other available binary
coded procedures in the literature can be made by observ-
ing the results in Tables 4 and 5. Although the adaptive
penalty technique by Lemonge & Barbosa[24] gives better
results for function g1 and g11, and is also able to solve for
function g5, where the AIS-GA hybrid failed to produce a
feasible solution, for the other functions the AIS-GA hybrid
proposed here produced better results.

However, the best results in the literature are still those
produced by the stochastic ranking procedure shown in Ta-
ble 6

Table 4: Results obtained by Wright & Farmani.
gi Optimum Best Mean Worst
g1 −15 −14.9996 −14.84 −12.9519
g2 0.803619 0.79434 0.76739 0.7205
g3 1 0.99937 0.99812 0.99027
g4 −30655.5 −30624.1 −30547.915 −30261.6
g5 5126.4981 5126.64487 – –
g6 −6961.8 −6948.85 −6484.06 −6347.8
g7 24.306 24.672 31.52044 37.98319
g8 −0.095825 −0.09588 −0.089135 −0.0267
g9 680.63 681.5615 688.05 712.869
g10 7049.33 7298.136 8776.7699 10572.66
g11 0.75 0.75 0.8151 0.9884
g12 −1 – – –
g13 0.053950 – – –



Table 5: Results obtained by the Adaptive Penalty
Method due to Lemonge & Barbosa.

gi Optimum Best Mean Worst
g1 −15 −15 −15 −15
g2 0.803619 0.772464 0.703197 0.600298
g3 1 0.999391 0.975728 0.939176
g4 −30655.5 −30665.24 −30663.40 −30660.76
g5 5126.4981 5126.571 5389.364 6040.595
g6 −6961.8 −6961.796 −6961.789 −6961.779
g7 24.306 24.8637 29.8646 42.0162
g8 −0.095825 −0.095825 −0.092616 −0.072502
g9 680.63 680.7590 681.4076 682.1562
g10 7049.33 7086.404 8161.997 10002.9
g11 0.75 0.75 0.750335 0.757974
g12 −1 – – –
g13 0.053950 – – –

Table 6: Results from the stochastic ranking proce-
dure of Runarsson & Yao.

gi Optimum Best Mean Worst
g1 −15 −15 −15 −15
g2 0.803619 0.803515 0.7858 0.726288
g3 1.0 1.0 1.0 1.0
g4 −30665.539 −30665.539 −30665.539 −30665.539
g5 5126.498 5126.497 5128.881 5142.472
g6 −6961.814 −6961.814 −6875.940 −6350.262
g7 24.306 24.307 24.374 24.642
g8 0.095825 0.095825 0.095825 0.095825
g9 680.63 680.630 680.656 680.763
g10 7049.33 7054.316 7559.192 8835.655
g11 0.75 0.75 0.75 0.75
g12 −1.0 −1.0 −1.0 −1.0
g13 0.05395 0.053957 0.067543 0.216915

6. CONCLUSIONS
A hybrid artificial immune system aided genetic algorithm

was proposed and tested in a well known set of constrained
optimization problems of the evolutionary computation lit-
erature. Comparison with some alternative approaches were
performed.

Overall, the best performance among AIS inspired proce-
dures was delivered by the AIS-GA hybrid proposed here.
When compared to other binary coded techniques the AIS-
GA also produced better results except for functions g1 and
g5.

However, the best results in the literature are still those
produced by the stochastic ranking procedure, although one
should note that part of its success is probably due to the
real encoding and operators adopted which are more ade-
quate to continuous function optimization than the binary
encodings and operators used here.

It is interesting to note that no algorithm employing AIS
ideas was able to solve for two functions in the set (g5 and
g13), and this should be further investigated.

It is clear that AIS-aided constraint handling techniques
in general need further research, which also applies to the
promising AIS-GA hybrid proposed here
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