
Artificial Immune System for Discovering 
Heuristics in Othello

Milad Lagevardi 
San Diego State University 

5500 Campanile Dr. 
San Diego, CA 92182 

01-619-594-2014 

milad@lagevardi.com 

Joseph Lewis 
San Diego State University 

5500 Campanile Dr. 
San Diego, CA 92182 

01-619-594-2014 

lewis@cs.sdsu.edu
 
ABSTRACT 
The natural immune system found in mammals offers interesting 
insights for models with features such as decentralized control, 
pattern recognition and learning. The work presented here 
experiments with the effectiveness of using the natural immune 
system model as a method for discovering heuristics in the game 
of Othello. The features of the AIS that offer a novel approach to 
decision making in this context are compared to the classic 
heuristics of "lookahead", where an algorithm considers all moves 
in the game to find the best move. The game of Othello is used 
since it offers a compelling search space and simple rules. Claims 
as to the appropriateness of using the natural immune system 
paradigm for discovering heuristics in Othello, and what the 
results may imply for other games both like and unlike Othello, 
will be discussed. 

Track: Artificial Immune System 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– coherence and coordination, intelligent agents, multi-agent 
systems.  

General Terms 
Design, Experimentation, Measurement. 

Keywords 
Artificial immune systems, Othello, heuristic discovery 

1. INTRODUCTION 
Artificial intelligence has come a long way in offering novel 
approaches to problem solving during a time when traditional 
techniques seem to be approaching a plateau. One new approach 
which came about in response to the challenges of traditional 
techniques is from Rodney Brooks [2]. Brooks introduced the 
notion of Agent-Based systems or Multi-Agent systems. These 
systems are comprised of many locally acting agents which are 
responsible for their own individual components and processes. 

These agents are able to focus on attaining their own goals, while 
at the same time collectively contributing to a global goal of 
which they   possess   very   little   information.   Another  
interesting  and 

important AI design is a complex adaptive system, where the 
individual actions of many locally acting agents results in a global 
behavior, such as in the natural immune system in mammals. The 
natural immune system consists of many cells whose purpose is to 
seek out invaders and alert one another to take action to rid the 
body of them. Using the natural immune system as a model for 
computational innovations led to the creation of Artificial 
Immune Systems, or AIS.  

The field of AIS is still in its early stages compared to other 
biologically inspired models such as evolutionary algorithms and 
neural networks. With an increasing body of knowledge and 
research into the field, AIS is slowly being applied to domains 
outside the more popular computer security applications. The AIS 
framework offers compelling features such as autonomy and 
multilayered design and learning mechanisms, which offer 
building blocks to future innovative designs and methods. We are 
interested in a new application of this paradigm: the discovery of 
heuristics for move choice in Othello. 

2. BIOLOGY OF THE IMMUNE SYSTEM 
The natural immune system is composed of many interacting 
parts that contribute to the overall goal of removing foreign 
invaders, or antigens. If an antigen is able to bypass the physical 
defenses (skin, hair, mucus) and bio-chemical defenses (saliva, 
enzymes, stomach acids), it is met with two last lines of defense 
known as the innate immune response and the adaptive immune 
response. The two main contributors in these responses are cells 
known as T-cells and B-cells. 

T-cells have two main purposes, to help regulate immune 
responses or to directly attack antigens. The T-cell can regulate 
the immune response by stimulating B-cells or activating more T-
cells. On the other hand, B-cells play an important role during the 
adaptive immune response. Although some antigens are removed 
by the first two defenses, some progress and require a more 
aggressive eradication scheme.  

A B-cell will release an antibody into the bloodstream that can 
seek out and attach itself to an antigen, marking it for destruction 
by a T-cell. Both T-cells and B-cells attach to antigens using 
receptors stationed on their surfaces. It is not necessary for the 
receptors to be of the same size on both the antigen and the B-Cell 
or T-Cell, rather, the degree of match between the two is what is 
most important. When a B-cell attaches itself to an antigen, the 
relationship is similar to a lock and a key. Some keys are a perfect 
match for the lock, while others serve as skeleton keys, matching 
many locks to varying degrees. The degree to which a B-cell 
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receptor is similar to, or the complement of, an antigen receptor is 
referred to as the affinity. The higher the affinity, the greater the 
match. The more valuable the B-Cell is, namely the number of 
times it has attached to various antigens, the more likely it is to 
remain apart of the immune system as a memory cell, which are 
long-lived cells that accumulate to battle future invaders.  The 
adaptive immune response gets its name from its ability to create 
clones and initiate mutation. After attaching to an antigen, a B-
cell will begin to make copies of itself in hopes of producing 
another B-cell with a higher affinity to the given antigen. This is 
done using a process known as somatic hypermutation, where the 
B-cell will rapidly clone itself, while each clone undergoes a 
certain level of mutation. The amount of mutation is related to the 
affinity of the B-cell to the antigen. The greater the affinity, the 
less mutation that will occur. Those B-cells that have a higher 
affinity than the original B-cell will become memory cells, used 
to fight off future invaders.   

Artificial Immune Systems, as defined in [3], "are adaptive 
systems, inspired by theoretical immunology and observed 
immune functions, principles and models, which are applied to 
problem solving." Using this definition as a basis for the AIS used 
in this paper, it is important to clarify what an AIS is and is not. 
Simply creating a model where members are given the names of 
immune components such as T-cell and B-cell is not sufficient 
criteria to be called an AIS. Rather, to be labeled an AIS, the 
model must at a minimum contain immune components such as 
cells, be designed using theoretical/experimental immunology, 
and lastly be intended for problem solving [3]. The representation 
that is used might contain components such as B-Cells, T-Cells, 
bone marrow or the thymus, using their respective functions from 
the immune model to contribute to the goal of the system. Some 
mechanism for affinity must be present that offers a way to 
compare, or match, two components of the system. Lastly, the 
design needs to embody an immune inspired algorithm such as 
negative, positive or clonal selection.  

3. HOW TO PLAY OTHELLO 
It is important to take a moment and describe the game that is 
used for these experiments. Othello is credited to Goro Hasegawa 
who wrote the book entitled, "How to win at Othello" in 1971 [4]. 
The board consists of an 8 x 8 grid and is played with two 
players, one represented with white pieces and one with black. 
The initial game board begins with two white and two black 
pieces in the middle of the grid. Alternating turns, a player must 
place their piece on the board in such a way as that one or more of 
the opponents pieces lie in between this and another one of their 
own pieces. The opponent's pieces can be considered "trapped" or 
"sandwiched" in. Once this occurs, all of the opponent's pieces 
that are captured turn to the color of the player capturing the 
pieces. If they are black, the pieces will turn white and vice versa. 
After this the players alternate turns and the game continues. If a 
player is unable to make a move, the opponent is allowed to move 
again until a move for the other player becomes available. There 
are three ways to end the game: The board becomes full, all 
pieces on the board are of one color, or neither player can make a 
move. If any of these three are met, then the pieces are counted 
and the player with the most pieces on the board wins. 

4. ARTIFICIAL IMMUNE SYSTEM 
The AIS designed in this study relies primarily on the natural 
immune system’s model of clonal selection. Once a B-cell has 
coupled with an antigen, it proliferates by making clones of itself, 
with each clone being able to produce only one antibody 
(monospecificity). Some of these clones will undergo a rapid 
mutation in hopes of reattaching to the antigen with a higher 
affinity. Those cells with a high affinity to the antigen are then 
selected to be memory cells, helping to fight off future antigens of 
similar makeup. With the AIS, the game board will serve as the 
antigen where the entire eight by eight grid is the antigen's 
receptor. The B-Cells in the AIS are three by three squares with a 
given configuration of black, white and empty squares along with 
a direction and affinity associated with them. Figure 1 shows an 
example of what a possible B-Cell could look like. Figure 2 
illustrates the relationship between the antigen board and the B-
Cell receptors. 

 
Figure 1: Three of many possible configurations of B-Cells 
with an associated direction based on Black's turn to move. 

 

 
Figure 2: The Othello board serves as the antigen, while 
three by three squares with a given configuration are the B-
Cell receptors. The B-Cell receptors will attempt to match 
different portions of the antigen board. 

 

The direction value of the B-Cell corresponds to the direction in 
which this particular B-Cell believes a possible good move might 
be located. The directions can be north, south, east, west, north-
east, north-west, south-east and south-west. Given the 
configuration of the B-Cells, three by three squares on the antigen 
board will be the areas of the antigen receptor the B-Cells will try 
to match. Figure 3 shows three of many locations that a B-Cell 
could be dropped onto the board for affinity calculation and 
clonal selection. 
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Figure 3: Three of many possible locations where B-Cells 
may be dropped onto the antigen board. 

The natural immune system comes with a predefined repertoire of 
innate cells and in time builds a much more for specific repertoire 
of memory cells through interactions with antigens. This AIS will 
follow the same procedure and begin with innate B-Cells that 
have a configuration and direction. These cells will in turn give 
rise to possible memory cells. After memory cells have been 
created, a percentage of the memory cell repertoire will be 
included in the initial drop of B-Cells on the antigen board to be 
evaluated. There are 81 such cells that make up the entire initial 
repertoire. 

After the AIS is initialized and the initial repertoire made active, a 
particular number of B-Cells from the initial repertoire and 
memory cell repertoire will be dropped onto the antigen board in 
random locations. There are 36 possible locations for the B-Cells 
to fall given an eight by eight board separated into three by three 
squares with overlap allowed. Once a B-Cell has been dropped on 
the board, the direction of the B-Cell will be followed to see if a 
valid move can be placed. This process can also be described as 
the B-Cell dropping and sliding across the antigen board in the 
direction it is associated with. If a valid move is found during the 
slide, the move is made using a copy of the board in order to 
capture the number of pieces flipped as a result of the move. This 
number is then multiplied by the number of times this particular 
B-Cell has been successful, which will in turn be the affinity of 
that B-Cell with respect to the antigen board. If there are more 
moves found during the slide of the B-Cell, the process is 
repeated and the move and affinity score that yielded the highest 
results are captured. Note that B-Cells can have only one 
direction associated with them.  

After a particular number of initial B-Cells are dropped onto the 
antigen board and their affinities have been calculated, they are 
reinserted into the population of B-Cells and the highest ranking 
B-Cells will be chosen for clonal selection. These B-Cells will 
first be cloned at a rate proportional to their affinities, with the 
highest affinity B-Cells being cloned at a higher rate and vice 
versa. After initial cloning takes place, the B-Cells will undergo 
mutation at a rate proportional to their affinities, with a chance of 
their directions also being mutated, although with a much smaller 
probability. The higher the affinity of a B-Cell, the lower the 
chances of mutation. These newly cloned B-Cells will be 
randomly dropped onto the board and have their affinities 
calculated. The process of clonal selection will continue for a 
certain number of generations, with the highest ranking B-Cells at 
the end being chosen as memory cells. 

When talking about the mutation of a B-Cell, this paper is 
referring to the rearrangement of the pieces on the three by three 
grid. The mutation function will choose one of the nine squares 
on the three by three grid to be mutated at random. It will never 
be the case that a B-Cell will mutate into a configuration it 
already has, assuring that some type of change is made with every 
mutation. 

5. EXPERIMENTS 
In order to be able to measure how well the AIS performs, it is 
necessary to have something reasonable to compare it to. In all of 
the experiments, the AIS was tested against an AI program that 
uses the square based evaluation approach to decide on moves in 
Othello. Part of the reason why such an AI program was chosen 
as the opponent is because it is usually the minimum heuristic 
required of an AI program that is able to beat its creator. This AI 
program uses no form of look ahead such as Minimax, thus it will 
never speculate on what could happen in the future, it simply 
looks at the current board and decides what the next best move is. 
If the AIS can offer even the slightest challenge to this AI, then 
perhaps some claim as to the effectiveness of the AIS model 
applied to decision making in Othello and possibly game play in 
general can be made. Figure 4 shows the values given to the 
squares as a part of the square based heuristic used by the 
opponent AI program. Corner pieces are given the most weight, 
while those squares either next to a side piece or corner pieces are 
given the lowest score. The AI program will hereafter be referred 
to simply as the AI. 

 
Figure 4: The values for board spaces given to the square 
based heuristic of the opponent AI. 

Eight parameters were extracted that might have the greatest 
impact on the behavior of the system. The first official experiment 
was run with different values of these parameters in hopes of 
learning what effects they had on the system. The eight chosen 
parameters included: Generations, Drop Number, Low Cloning 
Number, Medium Cloning Number, High Cloning Number, Low 
Mutation Chance, Medium Mutation Chance, High Mutation 
Chance 
The generations parameter is the number of times the clonal 
selection algorithm is allowed to be repeated. The drop number 
parameter is the number of initial B-Cells that is allowed to be 
dropped on the Othello board when a move is requested. 
Low/Medium/High cloning number is the amount clones that are 
made based on the affinity of the B-Cell. The higher the affinity, 
the higher the cloning number and vice versa. Low/Medium/High 
mutation chance is the chance that a B-Cell will be mutated one a 
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scale of 0 to 100. If the affinity of the B-Cell is low, it will have a 
high chance of being mutated and vice versa.  The initial values 
experimented with for these parameters were as follows: 

• Generations - 5, 6 

• Drop Number - 10, 20 

• Low/Medium/High Cloning Number - 2/4/15, 
5/10/15, 8/10/11 

• Low/Medium/High Mutation Chance - 15/40/65, 
25/50/75, 35/60/85 

Both the generation number and the drop number can have two 
values each, while the cloning number and mutation chance 
choose one of three configurations. The cloning number of 2/4/15 
attempts to favor those B-Cells with a high affinity, while paying 
little attention to those with lower affinities. The 5/10/15 options 
give a more evenly distributed weight to all B-Cells, while the 
8/10/11 option will accept and clone B-Cells much more 
frequently, cloning all at very close rates. Although this last 
method does not hold fast to the generic clonal selection model of 
cloning at a rate proportional to the affinity, it was important to 
experiment with it to observe the effects of different cloning rates 
on the system. Lastly, the mutation chance parameter uses an 
offset of -10, 0 and +10 from the base value of 25/50/75. Thus in 
the first grouping 10 is subtracted from all values, then the values 
are kept the same, then are increment by ten. To try all 
combinations of these 8 parameters, (2 * 2 * 3 * 3 =) 36 different 
tests needed to be run. Each test was run 1000 times for 36,000 
total tests. 
With respect to the win rate, the AIS performs anywhere between 
the 14 and 18 percent range. Although no claim that a particular 
configuration definitely yields better results was possible, the 
claim that the tests show a consistent playing ability and behavior 
is evident. Out of 1000 games, the chances of the AIS winning are  
14-18 percent. According to the data, the higher the generation 
number, the greater average number of B-Cells are created. The 
reason for this lies in the design of the AIS. Since the AIS will 
choose the top 10 percent of the entire B-Cell repertoire as the 
cloning pool, one extra iteration of the clonal selection algorithm 
will only add to the pool. The larger the pool, the greater amount 
of B-Cells are taken when the top 10 percent are extracted. As 
added statistical analysis given the large data set, standard 
deviations and 95% confidence intervals were calculated for each 
of the 36 configurations with respect to the win rate. Using the 
number of wins from each configuration, a mean of 165 wins was 
calculated, with a standard deviation of 11.8 and a 95% 
confidence interval of 160.6 - 168.6.  
The clone number and mutation number seemed to also produce 
varied behavior given their three different value sets. The cloning 
set of 5-10-15 resulted in the most wins, but not enough to claim 
that having this particular configuration was the best. Mutation 
rate, of all the parameters, seemed to offer the least information. 
In order to be thorough and put to rest the belief that the 
parameters did not effect the system in any major way, another set 
of experiments using more focused values for the clone number 
and mutation rate were used.  
Instead of running a cloning number set with different 
configurations of values, two of the 36 configurations were run 
1000 times each with a cloning set of 10-10-10 were run, giving 
equal chance for all of the B-Cells to be cloned, regardless of their 

affinities. Based on the prior experiments, it was speculated that 
this test would only show that an even range of clones would not 
produce better results against the opponent AI. The supposition 
was correct and the number of wins still resulted in the 14-18 
percent range, just as the previous test run and verifying that the 
clone number is inconsequential. 
To verify that the mutation chance also had little effect on the 
systems behavior, an experiment where the system would first try 
very little mutation and then a lot of mutation was tried. One 
configuration was taken and ran 1000 times with a mutation 
parameter set of 5-10-15 for low mutation occurrences and 75-85-
95 for very high mutation occurrences. It was found that, as 
anticipated, the mutation chance was not a great factor in the 
success of the AIS. 
Lastly with regards to the drop number, this parameter was 
viewed as having the least effect on the systems behavior next to 
the mutation rate. The explanation for this again lies in the intent 
of the system’s design. No matter what the number of random B-
Cells chosen to be dropped on the antigen board, they are then re-
inserted into the population, adding no new B-Cells to the already 
large pool, only altered ones. The drop number is really a way for 
the AIS to produce new affinity values for the repertoire, keeping 
the repertoire in an ever changing state. To help verify this, 
another experiment with the best performer, test number 29, was 
attempted 1000 times using a drop number of 5, 15, 25, and 30. 
Knowing the design of the AIS, it was expected to see a similar 
win rate as what was seen earlier. As expected, a varying value of 
drop numbers neither increases nor decreases the win rate. 
Once it was shown with a few extra experiments that the 
parameters to the system are not offering increased performance 
outside of the consistent 14 to 18 percent success rate the system 
achieved, it was necessary to think of ways to modify the system 
design that might offer new behavior.  
The first such design refinement was the directional value 
associated with each B-Cell. This is the value that determines the 
general area a B-Cell believes that a good move on the board 
might exist. The initial repertoire had predefined directional 
values that came from the authors’ bias, and subsequent B-Cells 
received their directions via their parents. Testing the effects of 
the system when the directional value is also allowed to be 
mutated was the next step in the test plan. Due to the important 
role that the directional value plays in the system, allowing it to 
be mutated should either increase or decrease the win rate. Since 
this was not one of the original design decisions of the system, the 
necessary code to implement this new functionality was added 
and then put together a small test plan. It was learned from 
previous experiments that no new behavior resulted from the 
initial parameter set, so the most neutral configuration was chosen 
as the base configuration, with a generation value of 5, a drop 
number of 10, clone rate of 5-10-15 and mutation chance of 25-
50-75. The new functionality of being able to mutate the 
directional value of the B-Cell uses a set value probability to 
decide whether or not the direction should be mutated. Three tests 
were compiled using the general configuration above where the 
effects of mutating the directional value 5, 50 and 85 percent of 
the time were tried. The speculations about the effects of mutating 
the directional value of the AIS were incorrect, since the win rate 
did indeed fell within the normal success rate for all three 
attempts at directional mutation. 



The second attempt at producing new behavior in the system by 
changing the design of the AIS involved the nature of mutation. If 
a B-Cell is chosen for mutation, then one of the nine squares on 
the B-Cell will be changed to a piece other than the piece 
currently placed there. The effects of this choice for mutation 
were in question, so the functionality to mutate more than one of 
these squares was added. Again using a set value probability, 
when a B-Cell is chosen to undergo mutation, it will have a 25 
percent chance of having 3 of its squares mutated, a 50 percent 
chance that 2 of its squares are mutated, and a 75 percent chance 
of just having one of its squares mutated, identical to the original 
design. By mutating more than one square, it was speculated that 
the added diversity in the configurations of the individual B-Cells 
would give rise to some new behavior. This extra diversity did 
nothing for the win rate as the AIS again performed within the 
normal success pattern. 
With two failed attempts at producing new behavior when 
applying design changes to the AIS, one more functionality 
change was conjured up by the revisiting of the biological 
inspiration of the model itself. In the natural immune system, 
when memory cells are produced, they are retained to fight new 
and possibly returned invaders for years to come. In the design, 
every time a new game is initiated, a brand new memory cell 
repertoire is produced. The effects of keeping the memory cells’ 
repertoire around from game to game was explored while 
allowing it to be manipulated as the progression of games 
continues. If the memory cells that carry on after many games are 
refined and successful contributors in game play, then it was 
speculated that the AIS should perform better than when it does 
not have these matured B-Cells to work with. It was surprising to 
see that the AIS did worse than before it had this extra 
information to work with. By using the memory cells, the AIS 
only won 11 percent of the time, a negative behavior not 
anticipated given the biological model.  
At this point in the experiments, a change in the design of the AIS 
was not worth pursuing, seeing from the three different 
experiments above the lack of better behavior once these changed 
were incorporated. To try and better understand why these 
changes were not helping the system, an analysis of the opponent 
AI patterns of play was begun. The opponent AI uses the square 
base heuristic as illustrated in Figure 4 and has an advantage of 
knowing good and bad pieces on the board. The AIS has no 
concept of board location, as the B-Cells are only of size three by 
three and only know about the squares they land on and move to. 
Furthermore, the B-Cells in the AIS gain affinity by finding 
successful moves and recording the number of pieces that were 
flipped as a result of the move. So at the heart of the competition 
among these heuristics, the opponent AI incorporates a notion of 
good, bad and neutral positions while the AIS only cares about 
pieces flipped. This analysis gave a new way of thinking about 
the design of the AIS.  
Previously the focus was on design changes that had to do with 
the biological model and immune system components and how 
particular components and algorithms accomplished their goals. 
Now the focus moved to looking closer at the computational side 
of the system and how the heuristic components played a factor in 
the behavior of the AIS. Much like in the natural immune system 
where a receptor of a B-Cell might be more prone to attach to a 
particular region of an invader, those B-Cells that found a move 
that happened to be on particular locations of the antigen board, 

specifically the sides, were rewarded. At first the idea of 
rewarding the three by three B-Cells that happened to find a move 
that included the sides was considered; however, since the three 
by three blocks that include sides saturate almost the entire board, 
the desired effects would be lost because almost all B-Cells would 
be rewarded. So with some added code, a small boost of affinity 
was given to B-Cells that found moves laying on the outer edges 
of the antigen board, since the bias of the Othello game shows 
those are always good moves to be made. It was hypothesized that 
with this new positive reinforcement the AIS would perform 
better than average against the opponent AI.  
When the first tests began running to verify the idea, it was 
quickly noticed that the AIS taking a very long time to play the 
game, recalling that a typical game should only last about 10 
seconds. After some analysis, it was discovered that since the 
affinities of the B-Cells were growing larger due to the boost in 
finding moves on certain regions on the antigen board, many of 
the B-Cells were being cloned at the high end of the cloning 
algorithm, namely 15 clones each. This was causing the system to 
make many new clones which in turn resulted in the greater 
amount of time needed to make a move. To put the system back 
into a state of equilibrium, the affinity cut off points for which the 
system was determining how many clones to make was modified. 
Once this recalibration took place the system began to complete a 
game in about 30 seconds so the new run of 1000 games to test 
the hypothesis was begun. For the first time the hypothesis was 
confirmed and the AIS performed better than the normal success 
window. The AIS was able to win 22 percent of the time as 
opposed to the normal 14 - 18 percent. 
The positive reinforcement test gave a new and inspiring 
perspective on the inner workings of the AIS and what an 
important role the heuristic in the system played on the behavior. 
One final test was run to see if negative reinforcement would have 
any added benefit to the system. We deduct points from the 
affinity of the B-Cell if it happened to match a move on the 
antigen board that was unfavorable, namely involving those 
pieces that were adjacent to all side pieces. If positive 
reinforcement caused an extra 3 - 8 percent increase in 
performance, then it was suspected that the notion of unfavorable 
locations on the receptors would produce even better results. 
Unfortunately an increase was not observed, but the system still 
had a 2.5 - 7.5 increase in performance over the usual results. 
As a control group experiment, an AI program that finds all valid 
moves on the board and randomly chooses between them was 
implemented. The purpose of this AI program was to compare its 
win rate against the AIS win rate and determine at a minimum 
whether the AIS is at least better than random decision making. 
After 1000 runs of the AI program against the opponent AI that 
uses the square base heuristic, the AI program was able to win 
9.5% of the time, 95 wins out of 1000. The standard deviation 
was .293 with a 95% confidence interval of .077 - 0.11. This 
value is less than the average 14-18% win rate of the AIS against 
the same opponent, offering evidence that the AIS is at least 
better than random game play.  
The aims of the experiments presented here were to obtain a 
better understanding of the effects of the parameters on the 
behavior of the AIS with respect to game play and to explore the 
AIS design itself in this domain. It was shown that the parameters 
originally believed to have the most important roles in the system 



were in fact not heavily responsible for the results received. 
Furthermore, design changes other than parameter manipulation 
were attempted in hopes of acquiring new behavior. This resulted 
in discovering the effects of the computational aspects of the 
game, specifically those associated with calculation of the affinity 
measure. 

6. FUTURE WORK 
Using an AIS for making decisions in game play is a new 
application in an approach still in its infancy. That being the case, 
all data collected so far has led to many more ideas and 
experiments to be explored. For any expansion on this work or for 
the particular application of an AIS to game play, the following 
ideas are offered as a initial outline.  
Although it was determined from the experiments that the 
parameter set that was used was greatly affecting the behavior of 
the system, there are still some combinations of values that could 
have been tried if more time was available. It would be interesting 
to see the results of using the positive and negative reinforcement 
in conjunction with keeping the memory cell repertoire around 
from game to game. Perhaps the reinforcement technique would 
have further refined the memory cell set to one that better 
captured the notion of good directions of locations of moves on 
the board. The original idea of heuristic discovery was hoped to 
be realized in such a way; the ongoing refinement of a set of 
memory cells carried the information to support good choices. 
Patterns of play would be garnered over time. 
In the AIS, three by three blocks were used to serve as the B-Cell, 
and the reason for the decision to use such as size was because 
two by two blocks were too small to justify a direction for a 
possible move to be located while four by four blocks offered too 
many combinations for the initial round of experiments. A 
worthwhile experiment would include producing four by four 
blocks for B-Cell and observing its affects on the system. To 
undertake such a task, an initial repertoire that is much larger than 
the one created will need to be produced. The benefit of having a 
larger block size is the increase view that each B-Cell receives to 
incorporate into deciding where good moves are located. A larger 
view means an increased opportunity for finding larger pattern 
sizes, which could be an integral component of the success of the 
AIS. Since the AIS was tailored to use three by three blocks, 
making a jump to four by four blocks is non-trivial. The initial 
design of the code did not warrant an abstract implementation 
aimed at growth since the scope of this project was short.  
As B-Cells were dropped onto the board, they follow a direction 
and see if a valid move exists. If a valid move does exist, the 
move is made and its effects calculated. The B-Cell, with its 
limited view of the environment, namely three by three blocks, 
will not know the effects of its decision across the board. In 
Othello, the placement of one piece can affect a string of pieces 
spanning from one side of the board to the other. One way of 
being able to capture the changes that B-Cells produce as a result 
of trying moves is to produce some mechanism of communication 
between B-Cells, much like in the natural immune system where 
the cell use chemicals to communicate and pass messages. By 
allowing the B-Cells of the AIS some form of communication, 
then they would be more informed of their surrounding 
environment, which might lead to better performance.  

Keeping with the theme of alternate block size, the effects of 
using the entire board as one big B-Cell were contemplated. Now 
with a block size of three, four, or even five, there is a notion of 
travel direction, the direction that a B-Cell feels a good move 
might exist. If the B-Cell is one big board, then this notion of 
direction is lost and the model for the AIS is altered. The AIS 
now moves from an offensive strategy to a defensive one. In the 
offensive strategy, the AIS would use its clonal selection 
algorithm to find good moves and locations on the antigen board, 
a very proactive approach. In a defensive strategy, the AIS is 
more of an observer that captures the moves made by the 
opponent and saves them for future use in making decisions on 
moves that are worthwhile. These board configurations would 
turn out to be the memory cell repertoire of the AIS and could be 
used in future game play. The defensive strategy is similar to the 
notion of a board configuration database that is used by 
professional Othello playing programs. The notion of defensive 
playing need not be only applied when considering the whole 
board as one big B-Cell, but could also be applied when B-Cells 
are of smaller size.  
In the strict implementation of the clonal selection algorithm 
described in [3], the B-Cells that attempt to match an antigen are 
the cells that are immediately cloned and undergo somatic 
hypermutation in order to find a B-Cell with a higher affinity. In 
the design described here, these B-Cell are first re-inserted into 
the cell population and those B-Cells with the highest affinity are 
chosen to undergo the clonal selection algorithm. This method 
was chosen to introduce diversity into the clonal cell pool, 
allowing the system to trying a range of options and not just those 
believed to be the best. It turns out that those B-Cells that ended 
up being cloned actually came from the set of those B-Cells that 
were chosen to encounter the antigen in the first place, allowing 
the design to stay close to the stricter implementation described 
above. An interesting experiment would be to follow the strict 
implementation and observe the affects on the system. From the 
knowledge about the AIS, using this approach would cause the 
drop number parameter to play a much more important role. The 
higher the drop number, the greater number of B-Cells that will 
undergo clonal selection. Subsequently, the memory cell 
repertoire would be smaller than what was apparent because far 
fewer B-Cells would be chosen to become memory cells.  
Finally, the AIS was pinned against an opponent AI that used the 
square base heuristic, one that focuses on the value of each square 
and has no concept of look ahead in game play. One could try to 
put the AIS up against an AI that is far more informed than the 
opponent AI and verify its effects. Based on the win rate of the 
AIS, an opponent that is more informed would cause the 
consistent win rate of 14 -18 percent to drop dramatically. 
However, an AI that uses look ahead often assumes that its 
opponent will play that way it does, and since the AIS plays 
nothing like an AI that has look ahead, it would interesting to see 
how the opponent AI reacts. 

7. CONCLUSION 
The experiment set began as an ad hoc approach to understanding 
the boundaries of the AIS, it was quickly learned that there were 
resource limitations inherent in the design of the system. After 
this, a set of parameter values and alternatives were created to get 
a sense for the space of behaviors the AIS can exhibit, measured 
ultimately in the number of wins against the opponent AI. The 



first round of experiments were promising but lacked enough 
accuracy to make strong claims as to the behavior of the system, 
so the necessary optimizations were made to run 1000 games for 
each of the 36 configurations of parameters sets, learning about 
and fixing discrepancies in the code as the implementation 
progressed. Once it was clear that the parameter set was not 
offering any radical impact on behavior and that the system 
performed consistently in the 14-18 percent range, the focus 
shifted to design changes that might lead to new behavior. 
Manipulating the number of times and ways mutations occur was 
attempted, only to find it did not increase the performance of the 
AIS. The biological model was mimicked more closely by 
allowing the memory cell repertoire to carry on from game to 
game, but that too failed to offer better results. Unable to find 
performance insights in the biological model, the focus was then 
altered to the computational aspects of the system, namely the 
affinity calculations happening behind the scenes. Once a positive 
reinforcement to the B-Cell repertoire was added for matching 
particular regions on the antigen board, the first real performance 
increase was attained, going from the 14-18 percent range to the 
22 percent range. This effort gave rise to the idea that the affinity 
measure needed to receive more weight than previously thought, 
since it seemed to play such an important role in the behavior of 
the system. A final experiment to test the effects of negative 
reinforcement was added that reduced the affinity of a B-Cell 
when encountering an unfavorable region on the antigen. The 
results showed no increase in performance, leaving it necessary to 
research why the system was not performing any better even 
though affinity reinforcement seemed to be a step in the right 
direction. It is of note that the only changes with successful 
outcome undermined the very idea that this AIS would discover a 
heuristic by actually using a heuristic in the affinity calculation. 

Only two experiments that touched on the importance of the 
affinity measure as an important component to the system were 
completed. One idea that was struggled with was adding even 
more information to the affinity component to make it more 
informed. Consider the heuristic technique of mobility value as 
described in [5]. Such a technique would undoubtedly increase 
the playing power of the AIS, but for two reasons was not going 
to be accomplished. The first reason is the amount of effort it 
would take to give the AIS such a broader view of the 
environment, much larger than each B-Cells view. Secondly, and 
more importantly, doing so would make the AIS no different than 
a regular mobility- based heuristic, losing its meaning of being an 
AIS altogether. This method would also go against the original 
intent of the uninformed AIS "learning" the moves made by the 
opponent and then mimicking them in its own game play. After 
all the experiments that have been run thus far, an explanation as 
to why the AIS does not play Othello the way it was desired was 
formulated. 

The design of the AIS is myopic in nature, allowing a very 
limited view of the environment through the B-Cells of the 
system. The opponent AI looks at every piece of the board and 
then makes a decision based on its internal mechanisms. The AIS, 
however, could very well never encounter all squares on the 
board. No matter how many B-Cells are dropped on the antigen 
board, given all the different directions a B-Cell could travel, the 
board will not be completely saturated and thus not every best 
possible move found. Drawing from the understanding of games 
like Chess, making one bad move now can affect the outcome of 

the game later, and Othello is no different. The moment the AIS 
fails to make the best move it could have made, it has decreased 
its chances of winning, and if this occurs during every move 
cycle, its not surprising why the AIS (in its several variations) 
only won 14-22 percent of the time. Furthermore, the fact that a 
B-Cell cannot see the effects of its moves across the board limits 
the AIS even further. The AIS was designed to find local patterns 
on the board, when it could have benefited by knowing 
information from the environment outside of its field of view. 
Thus the combination of the chosen representation of the B-Cells 
and the method by which affinity is calculated was probably an 
incorrect choice for Othello. Given these limitations, the system 
as it stands has reached a plateau and will not be improved unless 
these limitations can be addressed.   

Othello is not the only game where understanding global patterns 
play an important role in the outcome of the game. Games such as 
Chess and Checkers cannot simply be played by deciding on 
which moves to make just by looking at a few pieces, rather, the 
entire board and its pattern must also be taken into consideration 
when deciding on the best move to make. However, some games, 
such as Go might be better suited for the design of the AIS, 
because they can be played effectively by focusing on local 
patterns [1]. Future work might focus on such a game that would 
best exploit the AIS design strategy.  

It was the goal of this work to use the artificial immune system 
model to build a program that could mimic the moves of a first 
time Othello player by using cell patterns trained and matured 
over many moves and many games. To mimic a novice, the AIS 
used no brute force look ahead such as Minimax and had no long 
term experience because it was always offered a fresh new 
memory cell repertoire to begin with. Given that we can only beat 
the opponent AI about 20 percent of the time too, the AIS does 
pretty well, all things considered. It was hoped that the memory 
cell set would in some way embody a heuristic that could then be 
transported to any other Othello playing program and compete 
like a beginner would. Being a type of complex adaptive system, 
it was inappropriate to hand the AIS any specific information 
about Othello, but rather to allow the notion of good moves and 
good patterns to emerge on their own. Based on the experiments, 
it is unclear that that actually happened.  It is also unclear from 
these experiments whether Othello is the appropriate game to 
study AIS behavior for. Whatever the case, further progress must 
first address the limitations described above. 
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