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ABSTRACT 
We consider a traffic flow model where the information about the 
actual travel time for each alternative route is not available when 
each driver performs route selection. For such a traffic flow 
model, we examine two routing methods to minimize the average 
travel time over all vehicles running in the model. One method 
tries to minimize the average travel time globally. It is assumed in 
this method that a central manager determines the routes of all 
vehicles. Since the number of combinations of vehicles’ routes 
exponentially increases as the number of vehicles increases, we 
need an efficient combinatorial optimization technique. In this 
paper, we employ a genetic algorithm to search for a near-optimal 
route combination for all vehicles. In the other method, each 
driver tries to minimize his/her own travel time locally with no 
central manager. It is assumed in this method that each driver 
selects the route with the shortest estimated travel time among 
alternative routes. Each driver uses a neural network for the travel 
time estimation. Through computational experiments, we clearly 
demonstrate the characteristic features of each method. 

Categories and Subject Descriptors 
I.2.1 [Artificial Intelligence]: Applications and Expert Systems – 
Games. 

General Terms 
Experimentation. 

Keywords 
Traffic congestion, traffic flow model, route selection, genetic 
algorithms, neural networks. 

1. INTRODUCTION 
Traffic congestion exacts a terrible social and economic toll on 
society. It occurs only when a demand for a roadway is greater 
than its capacity. There are two common approaches to the 
alleviation of traffic congestion [1]. One is to expand roadway’s 
capacity, and the other is to adjust demands for roadways. The 

latter approach includes methods for reducing total traffic demand 
for roadways (e.g., a driver changes the time zone when (s)he 
uses a car and chooses the alternative transportation) and methods 
for distributing traffic properly. Our study is concerned with 
proper traffic distribution. Traffic assignment to distribute traffic 
properly includes many mathematical assignment techniques such 
as equilibrium assignment [2]. In these mathematical techniques, 
it is usually assumed that the information about the actual travel 
time for each alternative route is available when each driver 
performs route selection [3]. Such information, however, is not 
usually available in the real-world road traffic system because the 
road environment around drivers constantly changes. Figure 1 
shows an example of this situation. Suppose that each vehicle 
runs from the start point S to the goal point G. Each driver has to 
select one route from the three alternative routes A, B and C. As 
shown in Fig. 1, traffic congestion exists on the route B. The 
drivers who get the information about travel time for each 
alternative route probably select the route A or C to avoid the 
traffic congestion on the route B. When many drivers use the 
same traffic information, the traffic congestion on the route B will 
be cleared up soon. In this case, such route selection by many 
drivers may cause new traffic congestion on the route A and/or C. 
Based on these discussions, we assume in this paper that the 
information about the actual travel time for each alternative route 
can not be given to a driver because the actual travel time depends 
on other drivers’ route selection. 
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Figure 1. Example of a traffic flow model. Traffic congestion 
exists on the route B. 

 
In this paper, first we develop a traffic flow model which has 
similar characteristics to real-world road traffic. In this model, the 
information about the actual travel time for each alternative route 
is not available when each driver performs route selection. Next 
we explain two routing methods to minimize the average travel 
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time over all vehicles running in our traffic flow model. One 
method tries to minimize the average travel time globally. It is 
assumed that a central manager determines the routes of all 
vehicles. Since the number of possible combinations of vehicles’ 
routes exponentially increases as the number of vehicles increases, 
we need an efficient combinatorial optimization technique. We 
employ a genetic algorithm [4] to search for a near-optimal route 
combination for all vehicles. In the other method, each driver tries 
to minimize his/her own travel time locally with no central 
manager. It is assumed that each driver selects the route with the 
shortest estimated travel time among alternative routes. Each 
driver uses a neural network for the travel time estimation. 

This paper is organized as follows. First we explain our traffic 
flow model in Section 2. Next we explain the two routing 
methods (i.e., centralized global optimization and distributed local 
optimization) to minimize the average travel time in Section 3. 
Then the two routing methods are compared with each other 
through computational experiments on our traffic flow model in 
Section 4. Experimental results show the characteristic features of 
each method. Finally Section 5 concludes this paper. 

2. TRAFFIC FLOW MODEL 
In this section, we explain our traffic flow model. This model will 
be employed in Section 4 to compare the two routing methods 
through computational experiments. 

In general, traffic flow models can be divided into macroscopic 
and microscopic models. In macroscopic models, traffic flow is 
treated as a phenomenon based on fluid dynamics [5]. On the 
other hand, traffic flow is treated as the interaction between each 
vehicle in microscopic models. Yikai et al. [6], [7] proposed a 
traffic flow model based on fuzzy estimation of each vehicle’ 
behavior. Tamaki et al. [8], [9] proposed a traffic flow model 
using cellular automata where the stochastic velocity model [10] 
was utilized. These studies are examples of microscopic models. 

In this paper, we develop a traffic flow model using cellular 
automata as in [6]-[15]. A cellular automaton is a discrete model 
which has been studied in computability theory, mathematics, and 
theoretical biology. It is based on a regular grid of cells, each of 
which assumes one of a finite number of states. Time is also 
discrete. The state of a cell at time t +1 is a function of the states 
of a finite number of neighboring cells at time t.  

2.1 Global Transition Rules 
We explain global transition rules used in our traffic flow model. 
Figure 2 shows the route map of our model. The simulation area 
is divided into squared cells. Roads (i.e., alternative routes) are 
represented by white cells in Fig. 2. All vehicles travel from the 
start point S to the goal point G.  

Each driver performs route selection at the point P1, so that every 
vehicle runs on either the route L1 or L2 to the goal point G. We 
assume that the route L1 is the main route to goal point G. There 
is a traffic signal on the route L1 . We also assume that the route 
L2 is a detour for the route L1 to the goal point G. The two routes 
merge at the point P2 . We assume that the vehicle traveling on the 
route L1 has the right-of-way because the route L1 is the main 
route. The traffic signal has only two lights: red (i.e., stop) and 
green (i.e., go). The two lights alternate. The duration times of the 
red and green lights are four and two time steps, respectively. 

 

Figure 2. Route map of the traffic flow model. 

 

 

Figure 3. Example of a smooth traffic flow.  

 

 

Figure 4. Traffic congestion on the route L1. 

 

 

Figure 5. Traffic congestion on the route L2. 



Figures 3-5 show three typical situations in our traffic flow model. 
We can see a smooth traffic flow in Fig. 3 which will be realized 
by the centralized global optimization method in Section 4. On 
the other hand, there is traffic congestion in Fig. 4 and Fig. 5. This 
is because almost all vehicles select the route L1  in Fig. 4 and the 
route L2 in Fig. 5. In these figures, we need an efficient route 
selection method to realize a smooth traffic flow such as Fig. 3. 

In our traffic flow model, the information about the actual travel 
time for each route is not available when each driver performs 
route selection at the point P1. This is because the interaction at 
the merging point P2 depends on other vehicles behinds the driver. 
There exist many similar situations in the real-world traffic. 

2.2 Local Transition Rules 
In this subsection, we explain local transition rules in our traffic 
flow model. Our model is a deterministic one, which follows the 
Wolfram’s rule 184 (CA-184) [13], [14] except for the traffic 
signal and the merging point P2. The state of each cell is empty or 
occupied by a vehicle. The positions of all vehicles running in the 
model are updated synchronously. At every state transition time, 
each vehicle stays at the current cell or jump to its destination cell. 
The local transition rule is simply stated as “a vehicle moves only 
when its destination cell is empty.” This means that the drivers 
are short-sighted. That is, they do not know whether the vehicle in 
front can move or is also stuck by another car. Therefore, the state 
of each cell si is entirely determined by the occupancy of the cell 
itself and its two nearest neighbors si - 1  and si + 1  along the route. 
Figure 6 summarizes the local transition rule where all the eight 
possible configurations (si - 1  si  si + 1 )t → (si)t + 1  are given. Empty 
and occupied cells are shown by white and black squares, 
respectively. In Fig. 6, the state (si) t + 1  of the center cell at the 
next time step t +1 is specified based on the states si - 1 , si  and si + 1  
at the current time step t. 
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Figure 6. Illustration of local transition rules for the state si of 
the i-th cell under the motion rule of CA-184. 

 

3. ROUTING METHODS 
In this section, we explain two routing methods (i.e., centralized 
global optimization and distributed local optimization) to 

minimize the average travel time over all vehicles running in our 
traffic flow model. In the centralized global optimization method, 
the average travel time over all vehicles is minimized by a central 
manager who can determine the routes of all vehicles. On the 
other hand, each driver tries to individually minimize his/her own 
travel time based on the estimation of the travel time for each 
route in the distributed local optimization method. 

3.1 Centralized Global Optimization 
In this method, the routes of all vehicles are determined by a 
central manager who can observe and control all vehicles. It is, 
however, very difficult to find the optimal route selection for all 
vehicles for large-scale problems. This is because the number of 
possible combinations of vehicles’ routes exponentially increases 
as the number of vehicles increases. Thus we need an efficient 
combinatorial optimization technique. We use a genetic algorithm 
to search for a near-optimal route combination. 

When we apply a genetic algorithm to an optimization problem, 
we have to represent each solution by a string. In the case of route 
selection, the combination of routes for N vehicles is coded as a 
string of length N as 

Ni rrrrr LL21= ,  Ni ...,,2,1= ,       (1) 

where ri denotes the route selected by the i-th vehicle, that is, 
0=ir  means that the i-th vehicle selects the route L1 and 1=ir  

means that the vehicle selects the route L2. The fitness value f (r) 
of the string r is the average travel time over the N vehicles. 

The outline of our genetic algorithm is written as follows: 

Step 1: Randomly generate M binary strings of length N to 
construct an initial population. 

Step 2: Execute a single computer simulation using each binary 
string for our traffic flow model with the N vehicles to 
calculate the average travel time. The fitness value of 
each string is the calculated average travel time. 

Step 3: Generate the next population by iterating the following 
genetic operations M times. 
1. A pair of parent strings are selected from the 

current population using the binary tournament 
selection scheme. 

2. A new string is generated from the selected pair of 
parent strings by crossover and mutation. 

Step 4: Update the current population using its single elite sting 
and the newly generated population.  

Step 5: If a prespecified stopping condition is not satisfied, 
return to Step 2. Otherwise, the algorithm terminates. 

In this paper, we use the one-point crossover and the bit-flip 
mutation in Step 3 and use the elitist strategy in Step 4. 

3.2 Distributed Local Optimization 
In this method, each driver selects the route with the shortest 
estimated travel time between the two alternative routes. We 
develop route selection agents [16], [17] using three-layer feed-
forward neural networks to estimate the travel time for each route 
from the available road information. 

The available road information for the travel time estimation is as 
follows: 



1. The traffic signal (green: 1, red: 0), 
2. The degree of traffic congestion of each route. 

We define the traffic congestion degree fi of the route Li as  
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where m is the number of the cells taken into account (m = 5 in 
this paper), cj is the weighting factor for the j-th cell from the 
point P1, and xij is the state of the j-th cell on the route Li from the 
point P1 (i.e., empty: 0, occupied: 1). Figure 7 shows an example. 
Whereas there exist two vehicles on each route, their congestion 
degrees are different for the vehicle A (i.e., f1 =1.2500, f2 =0.5625). 
This is because the vehicles on the route L1 are nearer to the point 
P1 than those on the route L2.  

Each agent chooses a route in the following manner: 

Step 1: Obtain the available road information. 
Step 2: Estimate the travel time for each route using the neural 

network. 
Step 3: Select the route with the shortest estimated travel time. 

All agents use the common (i.e., shared) neural network. The 
input vector to the neural network is a three-dimensional vector of 
the following form: (the route number, the traffic signal, the 
traffic congestion degree). The output is the estimated travel time 
for the selected route. The back-propagation algorithm [18] is 
used to train the neural network. 

First the neural network is randomly initialized. Next each agent 
chooses one route using the neural network. In the learning phase, 
each agent selects the route L1 or L2 according to the following 
probabilities: 
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where di is the estimated travel time for the route Li (i = 1 ,2), 
which is calculated as the output from the neural network. 

When a vehicle arrives at the goal point G, a single input-output 
pair for the learning of the neural network is obtained. The input 
vector in the generated input-output pair consists of the selected 
route and the used information at the point P1 when the vehicle 
chose that route. The corresponding target output is the actual 
travel time of the vehicle. Whenever the input-output pair is 
obtained, the learning of the neural network is performed to 
minimize the following cost function: 
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p
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E
−

= ,         (6) 

where p is an index of the input-output pair, tp is the target output 
(i.e., the actual travel time), and op is the output from the neural 
network (i.e., the estimated travel time).  

A

 
Figure 7. Example of a traffic flow. 

 

4. COMPUTATIONAL EXPERIMENTS 
In this section, we compare the two methods with each other to 
demonstrate the characteristic features of each method. 

4.1 Learning for Estimating Travel Time 
We performed the learning of the neural network using the 
following parameter values: 

Number of hidden unit: 20, 
Learning rate: 0.8, 
Momentum term constant: 0.6, 
Total number of input-output pairs: 100000. 

In Fig. 8, we show how the squared error in (6) was decreased by 
the learning of the neural network. From Fig. 8, we can see that 
the error decreased to almost zero by the learning of the neural 
network. Thus we can say that the route selection agent can 
estimate the travel time for each route properly. 
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Figure 8. Squared error in the estimation of the travel time. 

 

4.2 Comparison between Two Methods 
We compared the two methods with each other (i.e., centralized 
global optimization and distributed local optimization). For 
comparison, we also examined a random selection method and a 
simple heuristic method. In the random method, each driver 
selects a route randomly. We calculated the average travel time 
from 50 independent runs of our computer simulation. On the 



other hand, the simple heuristic method always chooses the route 
with the less congestion degree. The average travel time can be 
calculated in a deterministic manner. 

We used the following parameter values in the centralized global 
optimization method follow: 

Population size: 50, 
Tournament size: 2, 
Crossover probability: 1.0, 
Mutation probability: 1/N (N: Number of vehicles), 
Stopping condition: 1000 generations. 

The average travel time was calculated from ten independent runs 
except for the case with 10000 vehicles. In this case, the average 
travel time was calculated from five independent runs. 

4.2.1 Case 1: Number of vehicles is small 
Here we report experimental results with 20 vehicles. Since the 
number of vehicle is very small, we can examine all combinations 
of vehicles’ routes (i.e., 220 combinations). This means that we 
can obtain the optimal value of the average travel time over all 
vehicles by centralized global optimization. The optimal value is 
obtained as 18.55. We show the average travel time by each 
method in Table 1. When we used a genetic algorithm for 
centralized global optimization, the same average travel time was 
obtained as 18.55. On the other hand, the average travel by the 
distributed local optimization method is large than its optimal 
value in Table 1 whereas it outperformed random selection and 
simple heuristic. From these results, we can see that the local 
optimization by each vehicle to minimize its own travel time does 
not lead to the globally optimal value of the average travel time 
over all vehicles by the central manager. 

 

Table 1. Average travel time obtained by each method in the 
case where the number of vehicles is 20. 

Route selection method Average travel time 
Global optimization by GA 18.55  
Local optimization by NN 21.95  

Random selection 23.24  
Simple heuristic 22.30  

 

4.2.2 Case 2: Number of vehicles is large 
In the same manner as the previous subsection, we perform 
computer simulations using genetic algorithm-based global 
optimization, neural network-based local optimization, random 
selection and simple heuristic. We examined various specification 
of the number of vehicles: 20, 50, 100, 200, 500, 1000, 2000, 
5000, and 10000. Experimental results are summarized in Fig. 9. 
On the other hand, Figure 10 shows the decrease in the average 
travel time during the evolution by the genetic algorithm for each 
specification. The average travel time in Fig. 10 was calculated 
using the elite string at each generation. From Fig. 9 and Fig. 10, 
we can see that the performance of the genetic algorithm-based 
global optimization method was degraded by increasing the 
number of vehicles. When the number of vehicle is 10000, it is 
inferior to the simple heuristic method in Fig. 9. This is because 
the centralized global optimization becomes very difficult due to 

the exponential increase in the search space (i.e., 210000 
combinations). 

On the other hand, the performance of the distributed local 
optimization method is much less sensitive to the increase in the 
number of vehicles. This is because the optimization is performed 
by each vehicle. The best results were obtained by the distributed 
local optimization method when the number of vehicles was 5000 
and 10000 in Fig. 9. 
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Figure 9. Average travel times obtained by each method. 
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Figure 10. Average travel time of the elite string of the global 
optimization. 

 

5. CONCLUSIONS 
In this paper, we examined the performances of the two routing 
methods (i.e., centralized global optimization and distributed local 
optimization) for minimizing the average travel time over all 
vehicles using a simple traffic flow model with two alternative 
routes. Through computational experiments, we compared these 
two methods with each other. When the number of vehicles was 
very small (i.e., 20 vehicles: a micro-scale traffic flow model), we 
obtained the same optimal value of the average travel times by the 



genetic algorithm-based global optimization method as the 
enumeration of all possible combinations of vehicles’ routes. The 
performance of the genetic algorithm-based global optimization 
method, however, was significantly degraded by the increase in 
the number of vehicles. When the number of vehicle was large 
(i.e., 10000 vehicles: a macro-scale traffic flow model), the 
genetic algorithm-based global optimization method was inferior 
to a simple heuristic method. In contrast, the neural network-
based local optimization method was less sensitive to the increase 
in the number of vehicles. When the number of vehicles was 5000 
and 10000, the best results were obtained by the local 
optimization method. 

Real-world road traffic can be thought as a system with a lot of 
uncertainty and unpredictability. Let us consider the case where a 
traffic accident happens. In this case, it is very difficult for the 
centralized global optimization method to quickly search for the 
optimal routes of all vehicles especially when the traffic accident 
influences the route selection of a large number of vehicles. Thus 
the use of only the centralized global optimization method can not 
always generate a smooth traffic flow. Due to the lack of the 
global optimization ability, the use of only the distributed local 
optimization method can not always generate a smooth traffic 
flow, either.  

In our traffic flow model, a relatively good result can be obtained 
when all vehicles choose the route L2 independent of the number 
of vehicles. In this case, the average travel time is 21.00, which is 
better than all the four methods in Fig. 9 when the number of 
vehicles is more than 2000. This extreme traffic flow, however, is 
not likely to happen in real-world situations. This is because the 
cooperative behavior of all vehicles is required to realize this 
extreme traffic flow with the relatively good average travel time. 
When almost all vehicles select the route L2, the other vehicles 
can benefit from choosing the route L1. In this sense, our traffic 
flow model can be viewed as a kind of iterated dilemma game 
(e.g., see [19] for the iterated prisoner’s dilemma game). 

One future research direction is to simplify our traffic flow model 
as an iterated dilemma game. Another future research direction is 
to make our traffic flow model more realistic (e.g., by increasing 
the number of routes, traffic lanes and traffic signals, and 
employing a stochastic velocity model). We are also planning to 
implement a hybrid approach which is a combination of 
centralized global optimization and distributed local optimization. 
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