
Developing Scheduling Policies In Dynamic Job Shops
Using Pitts-Based Learning

Muzaffer Kapanoglu
Eskisehir Osmangazi University, College of

Engineering, Dept. of Indus. Eng., Eskisehir, 26030
Turkey 90-222-230-3972 ext. 271

muzaffer@ogu.edu.tr

Mete Alikalfa
Eskisehir Osmangazi University, College of

Engineering, Dept. of Informatics, Eskisehir, 26030
Turkey 90-222-230-3972 ext. 273

mete@ogu.edu.tr

ABSTRACT
A dispatching policy can be defined as a set of condition-action
(CA) rules in which changing job-shop circumstances (such as
number of waiting jobs in queues, machine queue lengths in
minutes or hours, overall system utilization, machine utilizations,
material transport equipment utilizations, work-in-process, and
the like) correspond to the condition part and the dispatching rules
(shortest processing time first, earliest due date, modified due
date, critical ratio, and the like) correspond to the action part.
Having considered the fact that advanced manufacturing
technologies can enable job shops to practice dispatching policies
as efficient as dispatching rules, this paper introduces an
intelligent scheduling system that can learn dispatching policies
depending on the queue lengths of machines by using Pitts
approach of genetics-based machine learning (GBML) for
dynamic job shops. In our proposed intelligent scheduling
system, the Pitts approach of GBML performs a matching
between all possible queue lengths of each machine and
dispatching policies (i.e., a set of dispatching rules for each
machine) according to the expected efficiencies. In our approach,
each dispatching policy (i.e., a set of CA rules) is represented as a
chromosome unlike the well-known Michigan approach. The four
objectives, all related to minimization of tardiness, are
considered: the total tardiness, average tardiness, maximum
tardiness, number of tardy jobs. The efficiencies of the
dispatching policies are computed by applying the corresponding
condition-action (CA) rule-set to the job-shop in a simulation
environment. Nine sets of problems (3 settings of tightness of due
dates x 3 settings of number of jobs) each with 3 problems were
used to compare solutions of our proposed scheduling system
with best known nine dispatching rules. The experiments show
that dispatching policies learned by the proposed scheduling
system outperform the dispatching rules including SPT, EDD,
MDD, COVERT, and CR significantly.

Keywords
Intelligent scheduling, dynamic job shop, dispatching policy,
genetics-based machine learning

1. INTRODUCTION
The scheduling of manufacturing systems have become more
crucial decisions for the companies facing increased competition
and/or enhancing their customer satisfaction policies.
Nevertheless, most of the manufacturing scheduling problems are
known to be NP-hard [1], that is, can not be solved optimally for
even modest problem sizes. Aydın and Oztemel [2] states that
while most of the methods scheduled the jobs in static manner, the

scheduling systems proposed in that manner are not suitable in
most real life problems. Thus, dynamic (real-time) scheduling
systems appear to be more appropriate against static (off-line)
ones.

Due to their ease of implementation and, again, their reduced
computational requirement, dispatching rules have been popular
approach for a long time. A dispatching rule is a rule that is used
to determine which job from the queue is to be operated next.
Numerous dispatching rules have been introduced in the
literature. Lawrence [3] compares the performance of ten
individual dispatching rules with a randomized combination of
these rules, and shows that the combined method provides far
superior results but requires substantially more computing time.
No dispatching rule appears to be superior to all the others [4].
Their efficiency depends on the performance criteria of interest
and the operating conditions (e.g., attributes of jobs/machines).
As a consequence, the best dispatching rule can not be known a
priori in many times. Some researchers adopted simulation to
determine the most favourable dispatching rule(s) for the
operating conditions, the production objectives, and the current
shop status [4]. Pierreval and Mebarki [5] developed a heuristic
dispatching strategy, called “shift from standard rules” (SFSR).
The strategy proposed is based on a dynamic selection of certain
pre-determined dispatching rules. The method for the selection of
dispatching rules includes an optimization algorithm for the
numerical thresholds obtained via simulation.

Some researchers propose meta-heuristics such as genetic
algorithms and more recently, artificial intelligence (AI) methods.
Most AI approaches to the scheduling problem have been expert
system approaches or heuristic search methods combined with
expert knowledge [6, 7] Without an adequate learning
mechanism, expert system approaches are perceived as unsuitable
for scheduling problems [8]. Over the last two decades, only a
limited number of research articles seem to have addressed the
use of machine learning approaches for manufacturing scheduling
problems among those surveyed. Methods used in these
applications include rote-learning, neural networks, induction, and
case-based reasoning [9]. Dorndorf and Pesch [10] conducted a
probabilistic learning approach, where each gene represents one
rule from out of a set of decision rules. The decision rule at the
ith position means that a conflict in the ith iteration should be
resolved by using that rule. The algorithm seeks for the best
sequence of decision rules for selecting operations to guide the
search of a heuristic scheduling algorithm. Hilliard et al. [11]
first applied classifier systems (Michigan Approach) to discover
general rules for job shop scheduling. In their approach, the
scheduling rules determine job priorities in a queue. The learning

objective is to learn to order jobs in a queue. Lee et al. [12]
applied genetic algorithms to dispatch jobs at each machine by
inducing decision trees, a machine learning technique, to release
jobs into shop floor. Aytug et al. [13] consider the automated
learning of strategies for real-time scheduling in dynamic factory
floor environments by using Michigan style GBML. In Aytug's
study, learning is used to update the knowledge bases of
intelligent dispatchers in the floor shop. Tamaki et al. [14]
developed a priority equation to set priorities of jobs by using
genetics-based machine learning (GBML). Aytug et al. [9]
provide a comprehensive review of learning methods in
manufacturing scheduling.

This paper introduces a method of learning dispatching
policies –i.e., a set of adaptive CA rules- depending on queue
lengths of machines by using genetics-based machine learning for
dynamic job shop scheduling. Pitts approach is adopted where
each dispatching policy (CA rule-set) is represented as a
chromosome instead of Michigan approach studied by others.
Fitness of each chromosome is computed by running a simulation
for the corresponding CA rule-set. 9 sets of problems, each with
3 problems, are generated based on different tightness of due
dates and different number of jobs to compare solutions of the
proposed scheduling system with nine dispatching rules. In the
test problems, the objectives used are to minimize the total
tardiness, the average tardiness, the maximum tardiness, and the
number of tardy jobs.

The remaining of the paper is organized as follows.
Section 2 covers definitions and discussions related to job shop
scheduling and dispatching rules. Section 3 describes genetics-
based machine learning. The framework for the proposed
scheduling system using genetics-based machine learning is
discussed in Section 4. Experimental results obtained from the
proposed scheduling system and nine dispatching rules are
compared in Section 5. Section 6 presents the discussion and the
interpretation of computational results. The last section includes
our conclusions based on the experiments.

2. JOB SHOP SCHEDULING PROBLEM
In a general job shop, there are n jobs Jj (j = 1,.., n) to be
processed on m machines Mi (i = 1,.., m) for operations Ojk
(k=1,.., nj). Each operation is performed by a predetermined
machine for a certain length of time (called processing time) pjk.
Jobs may not require all m machines, and may have to visit some
machines more than once. A due date dj may be assigned to each
job Jj as well.

A job-shop scheduling (JSS) problem is defined as determining
the processing sequence of jobs for a given objective such as
minimizing makespan, minimizing total tardiness or total number
of tardy jobs, maximizing system utilization, etc. The test
problems we generated for performance analysis of the proposed
scheduling system can be represented as follows according to
Pinedo's n/m/A/B notation [15] where n, m, A and B represent
number of jobs, number of machines, shop type, and performance
measure(s) respectively.:

{50, 100, 200}/4/G/ ⎭
⎬
⎫

⎩
⎨
⎧

∑
=

n

j
jsum UTTT

1
max ,,,

jU is 0 if jj dC ≤ , and 1 others. The sum of tardiness is

formulated below:

Tsum = ()∑ −
j

jj dt } ,0 {max

where tj, and dj mean completion time, and due date, respectively.

and maxT T are also given as follows respectively:

maxT = ()jj dt − ,0 max

and

()
n

dt
T j

jj∑ −
=

} ,0 {max
.

2.1. Dispatching rules
The dispatching rules, also sometimes called as scheduling or
priority rules, have been widely used to provide good and time-
efficient solutions to job-shop scheduling problems for decades
[15, 16].

The dispatching rules can be classified according to their time-
dependency and the depth of the information they contain. Time-
dependent classification categorizes rules as static and dynamic.
Static rules are not time dependent. They are just a function of
the job and/or machine data, such as SPT (Shortest Processing
Time) rule. The SPT rule assigns higher priorities to jobs with
shorter processing times at the current machine. However,
dynamic rules are time dependent as it is in MST (Minimum
Slack Time) rule. MST is defined as the difference between the
due date and the remaining time at the current point. Therefore,
the processing priorities of jobs directly depend on their current
status.

A second way of classifying rules is according to the information
they are based upon, either local or global. A local rule uses only
information pertaining to either the queue where the job exists or
to the machine where the job is queued [15]. Most of the rules
can be defined as local rules, such as FIFO (First In First Out). A
global rule uses information regarding other machines, such as the
processing time of the job on the next machine to be visited.
According to SQNO (Shortest Queue at the Next Operation), a
machine selects a job that currently has the shortest queue at the
next machine for its following operation.

Nine dispatching rules are considered in this study. These nine
rules select the job with minimum Zij as the next job to be
processed on the machine, where Zij is the priority index, and is
defined differently for each rule.

• FIFO (First In First Out): This rule selects the next job
to be processed on the machine from the queue based on
their arrival time. The formula that calculates the
priority of the jobs is Zij = rij, where rij is arrival time of
job i at machine j.

• EDD (Earliest Due Date): This rule assigns the highest
priority to the job with the earliest due date, and ranks

the rest accordingly. The priority formula is Zij=di,
where di is the due date of job i.

• MST (Minimum Slack Time): This rule selects the next
job from the queue based on their slack times. Slack
time of a job is computed by deducting the current time
and the total remaining processing time from the due
date of the job. The priority formula is Zij=si=di - rti - t,
where rti is the remaining process time of job i, and t is
the current time.

• SOPN (Minimum Slack Time per Operation): The rule
selects the next job from the queue based on their slack
time divided by the total remaining operations of the
job. The priority formula is Zij=(di - rti - t)/ roi, where
roi is the total remaining operations of job i.

• SPT (Shortest Processing Time): This rule selects the
next job from the queue based on their processing times
at the current machine. The priority formula is Zij=pij,
where pij is the processing time of job i at machine j.

• CR (Critical Ratio): This rule selects the next job from
the queue based on their relatively available time
divided by the total remaining processing time of the
job. The priority formula is Zij=(di - t)/rti.

• SRPT (Shortest Remaining Processing Time): The rule
selects the next job from the queue based on their
remaining processing time. The priority formula is
Zij=r ti.

• MDD (Modified Due Date): The rule uses a job’s
original due date as the due date when the job’s slack is
greater than zero. When the job’s slack becomes zero,
the earliest finish time act as the modified due date.
The priority formula is

⎭
⎬
⎫

⎩
⎨
⎧

+= ∑ ijii ptd ,max Zij

• COVERT (Cost over Time): COVERT sequences jobs
in the descending order of its priority index. Wiq, is
generally estimated as proportional to its processing
time using a parameter b, and it also needs to be
adjusted to the worst case by a look-ahead parameter h.
If job i queuing for operation j has zero or negative
slack then its expected priority is wi/pij. If the slack
exceeds some worst-case estimates of the remaining
waiting time over remaining operations, its expected
cost is set to zero. If the slack time is between these
two extremes, then the priority goes up linearly as the
slack decreases. The priority formula is

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

−−−

×=

∑

∑∑

iq

iqiiq

ij

ij

Wh

ptdWh

p
w

,0max
,0maxZij

During the last 30 years, the performances of these rules have
been studied extensively using varying techniques including

simulation. These studies have addressed determining the best
rule for different problem settings. At the present time, there is
no dispatching rule that is globally better than the others [5, 16]
under the varying operating conditions (e.g., tightness of due
dates, shop loading rate, etc.) even for a single performance
criterion. Any dispatching rule may turn out to be inefficient due
to changes in the operating conditions. Therefore, a job-shop
management has to address issues of (i) which dispatching rule
can yield better performance, and (ii) what changes in the
operating conditions lead to adopting a new rule(s) by combining
dispatching rules and the corresponding shop conditions in which
they work efficiently into dispatching policies. In this study, we
propose an intelligent scheduling system that resolves the two
issues aforementioned by learning dispatching policies including
dispatching rules and the corresponding queue lengths. There
exist numerous operating conditions that can affect the selection
of dispatching rules such as machine queue lengths, system and/or
machine utilization, work-in-process, etc [12, 13, 17]. We
adopted the queue lengths of machines at a point of time as the
key representative of the operating conditions. The proposed
scheduling system observes the queue lengths of machines, and
learns a common best CA rule set (i.e., the dispatching policy)
where each rule is learned to be best for a corresponding queue
length. We experimented with four performance criteria, the total
tardiness, maximum tardiness, average tardiness, and number of
tardy jobs in the test problems.

3. Genetics-based machine learning
Genetics-based machine learning (GBML), developed by
Holland, is a machine learning paradigm to automatically
discover CA rules for performing desired actions [18]. In contrast
to traditional expert systems where rules are handcrafted by
knowledge engineers, GBML use genetic algorithms as discovery
algorithm to generate and develop CA rules. The CA rules
contain two parts; condition part and action part as presented
below.

IF <condition> THEN <action>

Whenever the condition part of a CA rule matches the current
state of the environment, (i.e., the CA rule is satisfied) then the
action part of the CA rule is performed (i.e., the CA rule is fired).
That is, CA rules match information about the current state of
system and suggest actions, and system moves to a new state.
Separating successful CA rules from less successful (or
unsuccessful) CA rules, an evaluation (or reward) mechanism
needs to be implemented. Therefore, a strength Si(t) is associated
with each CA rule i at a time t. The strength is modified by a
certain reward mechanism, increasing the strength for successful
CA rules, and decreasing the strength for unsuccessful CA rules.
The strength measures the influence of a particular CA rule in an
evolutionary process, driven by a GA. GA seeks to improve the
system’s overall performance by replacing unsuccessful CA rules
with successful ones. These CA rules are evaluated in an
environment, and are automatically assigned strengths based on
system’s performance. As a result, GBML learns by interacting
with an environment from which it receives feedback in the form
of numerical reward. Learning is achieved by generating the CA
rule set that maximizes the amount of reward received.

GBML is classified into two approaches: the Michigan and Pitt
approaches. In the former approach, a CA rule is represented as a

chromosome of genetic algorithms (GA), and credits are allocated
to CA rules according to their performances obtained by applying
a CA rule-set. The CA rule is generated and improved by
applying GA at certain time or iteration intervals, where the
fitness of each individual is calculated according to its credit. On
the other hand, in the Pitt approach, a CA rule-set is represented
as a chromosome of GA, and the fitness of an individual is
calculated based on experiments, e.g. the simulation, by applying
a CA rule-set.

Among the two GBML approaches, Michigan and Pitt, we
adopted the latter which represents a CA rule-set as a
chromosome, and calculates the fitness of a chromosome based on
experiments, e.g. the simulation of the job-shop for a given CA
rule-set.

4. PROPOSED SCHEDULING SYSTEM
In our intelligent job-shop scheduling system, each chromosome
contains a list of dispatching rules that are associated with
different queue lengths. Chromosomes survive according to their
performances computed through system simulations. In the
proposed system, no machine or workstation has a predetermined
dispatching rule, rather a set of CA rules where each CA rule is
learnt to be the best for a given queue length and performance
criterion.

4.1. Representation of a chromosome
In the proposed approach, a CA rule-set is represented as a
chromosome including a set of n dispatching rules, R =
{R1,R2,...,Rn} and a set of k queue lengths Q = {Q1, Q2,.., Qk}.
The designed chromosome contains the dispatching rules.
Leftmost rule in the chromosome corresponds to the fact that a
single part is waiting in the queue, left second rule corresponds to
the fact that two parts are waiting in the queue, and so on. As a
generic representation of this structure, the proposed system
matches the queue lengths and dispatching rules, each taken from
out of their supersets, by employing condition-action pairs in the
form of IF Qi THEN Rj. Therefore, chromosomes are designed to
support this matching process as illustrated in Fig 1.

MST FIFO SOPN # SPT

Figure 1. Chromosomal representation of a dispatching policy

The chromosome presented in Fig 1 is interpreted in Fig 2 where
nj is the number of jobs in the queue at any moment.

IF nj=1 THEN MST

IF nj=2 THEN FIFO

IF nj=3 THEN SOPN

:

IF nj=n-1 THEN #

IF nj=n THEN SPT

Figure 2. Decoding of the chromosome presented in Fig.2

The last CA rule in Fig 2 is interpreted as follows. If there are n
jobs in the queue when the machine is available, the next job to be
processed at this machine will be selected according to the SPT
rule. The CA rule before the last in Fig 2, on the other hand,
means that if there are n-1 jobs on the queue when the machine is
available, the next job to be processed at the machine will be
selected based on the previously used rule.

4.2. Calculation of fitness
Each individual is evaluated based on the schedules obtained by
running a simulation for the corresponding dispatching policy on
the test problems. The fitness values are the objective function
values computed with respect to equations in Section 2. In this
study, the objective is to minimize the total tardiness, average
tardiness, maximum tardiness and number of tardy jobs.

4.3. Operators
The operators of the genetic algorithm used to improve our
solutions are described as follows.

Selection and reproduction: The tournament selection with the
elitist strategy is adopted. In the tournament selection, a small
group of individuals (related to tournament size) is sampled from
the population, and the individual with the best fitness is chosen
for reproduction. Elitism appears to eliminate the destruction of
the best solution due to selection. In elitism, the fittest member of
a population should always survive and also be present in the next
generation. We applied the tournament selection with elitist
strategy in this study.

Crossover: Two individuals are matched randomly in a
population, and the crossover is performed with respect to
crossover rate pc. Simple, single-point crossover is used in this
paper. In single-point crossover, one crossover point is selected.
String from the beginning of the chromosome to the crossover
point is copied from the first parent; the rest is copied from the
other parent for the first child. For the second child, first part of
the second parent and second part of the first parent is merged.

Mutation: A gene is selected for mutation with mutation rate pm.
In our proposed approach, the mutation operator changes the CA
rules with respect to a uniform distribution when applied.

4.4. The proposed scheduling system
The algorithm of the proposed learning scheduling

system is outlined as follows:

I. Generate N number of CA rule-sets randomly, and
encode the CA rule-sets as chromosomes. Set iteration
counter to 1 (i.e., t = 1), and initialize the upper bound
of generation ng.

II. Apply each corresponding CA rule-set to the problem
via simulation. Calculate the fitness value according to
the performance criteria based on the simulation
results.

III. If t<ng, go to Step IV. Otherwise go to Step V.

IV. Apply genetic operators (selection, crossover,
mutation) to the population and generate new
population. Set t = t + 1 and go to Step II.

Terminate and select the best CA rule-set.

G
en

et
ic

 A
lg

or
ith

m
 Rule1; ...; Rule n

Rule1; ...; Rule n

Chromosome 1

Rule-set 2

.

.

.

Population Simulation

Apply CA rule-set

Fitness

Figure 4. Proposed learning job shop scheduling system

In this study, we propose an intelligent scheduling system that (i)
builds dispatching policies considering the queue length as the
major attribute of a dynamic job shop, and (ii) minimizes average
tardiness, maximum tardiness, total tardiness, and number of
tardy jobs by utilizing Pitt approach of genetics-based machine
learning.

5. Computational experiments
In the experiments of our study, we determine a dispatching
policy to minimize the total tardiness, the average tardiness, the
maximum tardiness and the number of tardy jobs in a dynamic job
shop. Experiments were conducted on randomly generated
problems to test the performance of the intelligent scheduling
system. The processing times for each machine are presented in
Table 1 [2].

Machine Distribution
1 Uniform [2, 9]
2 Uniform [2, 9]
3 Uniform [2, 9]
4 Uniform [2, 9]

Table 1. The processing time distributions of machines

Inter-arrival times between jobs are determined according to an
exponential distribution using the following rule:

()RNt exp
5.4

120 ⋅⋅=

where RN is the random number and t represents the inter-arrival
time (Aydın and Öztemel 2000).

Due dates are identified with the following rule:

6 ,4 ,2 ,DD
1

=⋅+= ∑
=

kpkr
n

i
ii

where DD, r, n, k and pi represent due date, arrival time, the
number of operations, coefficient of tightness, and processing
time of ith operation, respectively (Aydın and Öztemel 2000). 50,
100, and 200 jobs are used in the every test problem.

Nine sets of problems (three settings of tightness of due dates x
three settings of number of jobs) each with three problems are
used to compare solutions of our intelligent scheduling system
with best known nine dispatching rules, i.e. FIFO, EDD, MST,
SOPN, SPT, SRPT, CR, COVERT, and MDD.

Parameter settings of GBML-based learning system are given in
Table 2 as a result of our pilot experiments.

Parameter Value
Population Size 100
Crossover Rate 0.65 (% 65)
Mutation Rate 0.05 (% 0.5)
No. Of Iterations 1000
Tournament Selection Size 4

Table 2. GBML parameter settings

The proposed intelligent scheduling system has been developed in
C#. The main screen of the GBML-module is presented in Fig.3.

Figure 3 Main screen of the developed GBML system
The dispatching policies obtained from our intelligent scheduling
system were compared with the selected dispatching rules in
ARENA™ software with VBA™ programming. The
experimental results are presented for each group of test problems
(k=2, 4, 6) in Table 4a, 4b and 4c in terms of the improvements
obtained by using dispatching policies built by our intelligent
scheduling system. The improvements are computed based on the
average objective values obtained from our generated dispatching
policies, and the objective value obtained from the best-
performing dispatching rule, i.e.,

Improvement (%) = []
[]rulegdispatchinperformingBestT

100PolicygDispatchinT
100

.
−

for the average tardiness as objective.

K=2 Min – Max Improvements (%)

 Tsum Tave Tmax # of Tardy
Jobs

 Min Max Min Max Min Max Min Max

50
jobs

6.31 10.58 3.37 9.57 4.54 16.79 6.06 23.80

100
jobs

3.24 11.38 3.24 15.83 0.55 11.69 4.91 9.23

200
jobs

3.08 6.90 3.08 6.90 1.30 5.62 2.22 4.25

Table 4.a Improvements for k=2

k=4 Min – Max Improvements (%)

 Tsum Tave Tmax # of Tardy
Jobs

 Min Max Min Max Min Max Min Max

50
jobs

13.46 20.0 13.4 20.0 4.4 27.2 16.6 40.0

100
jobs

4.6 38.0 4.6 38.0 5.5 20.4 8.3 28.0

200
jobs

10.1 16.4 10.1 16.4 0.0 8.0 0.0 3.3

Table 4.b Improvements for k=4

k=6 Min – Max Improvements (%)

 Tsum Tave Tmax # of Tardy
Jobs

 Min Max Min Max Min Max Min Max

50
jobs

0.0 100. 0.0 100. 0.0 100. 0.0 100.

100
jobs

5.7 33.7 5.7 33.7 7.3 28.2 30.4 41.1

200
jobs

10.0 16.4 6.7 16.4 3.7 5.6 2.9 15.5

Table 4.c Improvements for k=6

The computational times of our intelligent scheduling system are
presented for each group of test problems (k=2, 4, 6) in Table 5.

 Min – Max Time (minute:second)

 Tsum Tave Tmax # of
Tardy
Jobs

50 jobs 1:30 –
1:35

1:43 –
1:52

1:30 –
1:37

1:29 –
1:37

k=2

100 2:55 – 3:24 – 2:59 – 2:59 –

jobs 3:13 3:45 3:17 3:39

200
jobs

6:07 –
6:20

7:03 –
7:15

6:12 –
6:21

6:17 –
6:39

50 jobs 1:30 –
1:37

1:43 –
1:51

1:29 –
1:38

1:29 –
1:37

100
jobs

3:00 –
3:07

3:28 –
3:35

3:00 –
3:06

3:03 –
3:10

k=4

200
jobs

6:01 –
6:09

6:57 –
7:05

6:03 –
6:08

6:05 –
6:09

50 jobs 1:30 –
1:39

1:48 –
1:55

1:34 –
1:38

1:34 –
1:39

100
jobs

3:01 –
3:13

3:28 –
3:41

3:00 –
3:11

3:01 –
3:13

k=6

200
jobs

6:01 –
6:09

6:57 –
7:05

6:04 –
6:10

6:02 -
6:09

Table 5 Computational times for each set of problems

6. Interpretation and Conclusion
The computational results of the experiments presented in the
previous section are interpreted to determine the performance of
the proposed learning scheduling system against dispatching rules
in this section. For each set of problems, first we determined the
best-performing rule from out of nine dispatching rules. Then we
generated a dispatching policy for each case by running our
intelligent scheduling system. The performance of the
dispatching policies obtained from our intelligent scheduling
system for nine problem sets significantly outperforms the best-
performing dispatching rule as seen on Table 4 a-c.

In this study, we propose a new intelligent scheduling system for
dynamic job shops. The proposed scheduling system adopts (i) a
Pitts-GBML as learning mechanism, and (ii) a simulation for
evaluations of schedules to construct dispatching policies
depending on system attributes. Pitts-based GBML generates a
population of dispatching policies each containing of a list of
dispatching rules that will be applied when a condition on the
system attribute is satisfied. Simulation is performed to collect all
performance measurements that will be used in the evaluation of
schedules. The dispatching policies determined by the scheduling
system contain a dispatching rule for each system attribute which
is taken as queue lengths in the experiments. Therefore, as the
queue lengths vary, the dispatching rule that will be applied varies
according to the corresponding CA rules. The proposed
scheduling system has been experimented on 27 test problems for
the objective of minimizing tardiness in a job shop with four
machines. The results based on the test problems have been very
impressive for the dispatching policies constructed by our
scheduling system for a dynamic job shop environment by
outperforming the selected-best dispatching rules prominently.
Building one dispatching policy that applies to all machines can
be considered as another success factor in the real shop-floor
applications.

The proposed scheduling system incorporates the practical
success of dispatching rules into the learning paradigm of GBML.
Our experiments demonstrate the strength and robustness of

learning scheduling system for dynamic job-shop scheduling
problems. The experiments related to the different objective
functions than tardiness, impacts of multi-objectivity in different
manufacturing configurations including material handling
considerations should be addressed in the future researches.

4. REFERENCES
[1] Lageweg, B.J., Lenstra, J.K. and Rinnooy Kan, A.H.G., Job

shop scheduling by implicit enumeration, Management
Science, (1977), 24, 441-450.

[2] Aydın, M.E. and Öztemel, E., Dynamic job-shop scheduling
using reinforcement learning agents, Robotics and
Autonomous Systems, (2000), 33, 169-178.

[3] Lawrence S., Supplement to resource constrained project
scheduling: An experimental investigation of heuristic
scheduling techniques, Technical Report, (1984) (Graduate
School of Industrial Administration, Carnegie Mellon
University).

[4] Kouiss, K., Pierreval, H. and Mebarki, N., Using multi-agent
architecture in FMS for dynamic scheduling, Journal of
Intelligent manufacturing, (1997), 8, 41-47.

[5] Pierreval, H. and Mebarki, N., Dynamic selection of
dispatching rules for manufacturing system scheduling,
International Journal of Production Research, (1997), 35,
1575-1591.

[6] Alpar, P. and Srikanth, K.N., A comparison of analytic and
knowledge-based approaches to closed-shop scheduling,
Annals of Operations Research, (1989), 17, 347-362.

[7] Bel, G., Bensana, E., Dubois, D., Erschier, J. and Esquirol,
P., A knowledge-based approach to industrial job-shop
scheduling. In Knowledge-Based Systems in Manufacturing,
edited by A. Kusiak, pp. 207-246, (1989) (Taylor & Francis:
London).

[8] Yih, Y., Trace driven knowledge acquisition for rule based
real time scheduling systems, Journal of Intelligent
Manufacturing, (1990), 1, 217-230.

[9] Aytug, H., Bhattacharyya, S., Koehler, G.J. and Snowdon,
J.L., A review of machine learning in scheduling, IEEE
Transactions on Engineering Management, (1994), 41, 165-
171.

[10] Dorndorf, U. and Pesch, E., Evolution based learning in a job
shop scheduling environment, Computers and Operations
Research, (1995), 22, 25-40.

[11] Hilliard, M.R., Liepins, G.E. and Palmer, M., Machine
learning applications to job shop scheduling, in Proceedings
of the first international conference on Industrial and
engineering applications of artificial intelligence and expert
systems, Tullahoma, TN, US, (1988), pp. 728-737.

[12] Lee, C.Y., Piramuthu, S. and Tsai, Y.K., Job shop scheduling
with a genetic algorithm and machine learning, International
Journal of Production Research, (1997), 35, 1171-1191.

[13] Aytug, H., Bhattacharyya, S. and Koehler, G.J., Genetic
learning through simulation: An investigation in shop floor
scheduling, Annals of Operations Research, (1998), 78, 1-29.

[14] Tamaki, H., Sakakibara, K., Murao, H. and Kitamura, S.,
Rule acquisition for production scheduling: genetics-based
machine learning approach to flexible shop scheduling, in
Proceedings of The Society of Instrument and Control
Engineers (SICE) Annual Conference 2003, Japan, (2003)
pp. 252-257.

[15] Pinedo, M., Scheduling: Theory, Algorithms, and Systems,
(1995) Prentice-Hall: Englewood Cliffs, NJ.

[16] Blackstone, J., Phillips, D. and Hogg, G., A state-of-the-art
survey of dispatching rules for manufacturing job shop
operations, International Journal of Production Research,
(1982), 20, 27-45.

[17] Bhattacharyya, S. and Koehler, G.J., Learning by objectives
for adaptive shop-floor scheduling, Decision Sciences,
(1998), 29, 347-376.

[18] Holland, J.H., Adaptation in natural and artificial systems.
Ann Arbor, MI: University of Michigan Press, (1975)

	1. INTRODUCTION
	2. JOB SHOP SCHEDULING PROBLEM
	3. Genetics-based machine learning
	4. REFERENCES

