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ABSTRACT 
A dispatching policy can be defined as a set of condition-action 
(CA) rules in which changing job-shop circumstances (such as 
number of waiting jobs in queues, machine queue lengths in 
minutes or hours, overall system utilization, machine utilizations, 
material transport equipment utilizations, work-in-process, and 
the like) correspond to the condition part and the dispatching rules 
(shortest processing time first, earliest due date, modified due 
date, critical ratio, and the like) correspond to the action part.  
Having considered the fact that advanced manufacturing 
technologies can enable job shops to practice dispatching policies 
as efficient as dispatching rules, this paper introduces an 
intelligent scheduling system that can learn dispatching policies 
depending on the queue lengths of machines by using Pitts 
approach of genetics-based machine learning (GBML) for 
dynamic job shops.  In our proposed intelligent scheduling 
system, the Pitts approach of GBML performs a matching 
between all possible queue lengths of each machine and 
dispatching policies (i.e., a set of dispatching rules for each 
machine) according to the expected efficiencies.  In our approach, 
each dispatching policy (i.e., a set of CA rules) is represented as a 
chromosome unlike the well-known Michigan approach. The four 
objectives, all related to minimization of tardiness, are 
considered: the total tardiness, average tardiness, maximum 
tardiness, number of tardy jobs.  The efficiencies of the 
dispatching policies are computed by applying the corresponding 
condition-action (CA) rule-set to the job-shop in a simulation 
environment.  Nine sets of problems (3 settings of tightness of due 
dates x 3 settings of number of jobs) each with 3 problems were 
used to compare solutions of our proposed scheduling system 
with best known nine dispatching rules. The experiments show 
that dispatching policies learned by the proposed scheduling 
system outperform the dispatching rules including SPT, EDD, 
MDD, COVERT, and CR significantly. 
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1. INTRODUCTION 
The scheduling of manufacturing systems have become more 
crucial decisions for the companies facing increased competition 
and/or enhancing their customer satisfaction policies.  
Nevertheless, most of the manufacturing scheduling problems are 
known to be NP-hard [1], that is, can not be solved optimally for 
even modest problem sizes.  Aydın and Oztemel [2] states that 
while most of the methods scheduled the jobs in static manner, the 

scheduling systems proposed in that manner are not suitable in 
most real life problems.  Thus, dynamic (real-time) scheduling 
systems appear to be more appropriate against static (off-line) 
ones.     

Due to their ease of implementation and, again, their reduced 
computational requirement, dispatching rules have been popular 
approach for a long time.  A dispatching rule is a rule that is used 
to determine which job from the queue is to be operated next.  
Numerous dispatching rules have been introduced in the 
literature.  Lawrence [3] compares the performance of ten 
individual dispatching rules with a randomized combination of 
these rules, and shows that the combined method provides far 
superior results but requires substantially more computing time.  
No dispatching rule appears to be superior to all the others [4].  
Their efficiency depends on the performance criteria of interest 
and the operating conditions (e.g., attributes of jobs/machines).  
As a consequence, the best dispatching rule can not be known a 
priori in many times.  Some researchers adopted simulation to 
determine the most favourable dispatching rule(s) for the 
operating conditions, the production objectives, and the current 
shop status [4].  Pierreval and Mebarki [5] developed a heuristic 
dispatching strategy, called “shift from standard rules” (SFSR).  
The strategy proposed is based on a dynamic selection of certain 
pre-determined dispatching rules.  The method for the selection of 
dispatching rules includes an optimization algorithm for the 
numerical thresholds obtained via simulation.   

Some researchers propose meta-heuristics such as genetic 
algorithms and more recently, artificial intelligence (AI) methods.  
Most AI approaches to the scheduling problem have been expert 
system approaches or heuristic search methods combined with 
expert knowledge [6, 7]  Without an adequate learning 
mechanism, expert system approaches are perceived as unsuitable 
for scheduling problems [8].  Over the last two decades, only a 
limited number of research articles seem to have addressed the 
use of machine learning approaches for manufacturing scheduling 
problems among those surveyed.  Methods used in these 
applications include rote-learning, neural networks, induction, and 
case-based reasoning [9].  Dorndorf and Pesch [10] conducted a 
probabilistic learning approach, where each gene represents one 
rule from out of a set of decision rules.  The decision rule at the 
ith position means that a conflict in the ith iteration should be 
resolved by using that rule.  The algorithm seeks for the best 
sequence of decision rules for selecting operations to guide the 
search of a heuristic scheduling algorithm.  Hilliard et al. [11] 
first applied classifier systems (Michigan Approach) to discover 
general rules for job shop scheduling.  In their approach, the 
scheduling rules determine job priorities in a queue.  The learning 



objective is to learn to order jobs in a queue.  Lee et al. [12] 
applied genetic algorithms to dispatch jobs at each machine by 
inducing decision trees, a machine learning technique, to release 
jobs into shop floor.  Aytug et al. [13] consider the automated 
learning of strategies for real-time scheduling in dynamic factory 
floor environments by using Michigan style GBML.  In Aytug's 
study, learning is used to update the knowledge bases of 
intelligent dispatchers in the floor shop.  Tamaki et al. [14] 
developed a priority equation to set priorities of jobs by using 
genetics-based machine learning (GBML). Aytug et al. [9] 
provide a comprehensive review of learning methods in 
manufacturing scheduling. 

This paper introduces a method of learning dispatching 
policies –i.e., a set of adaptive CA rules- depending on queue 
lengths of machines by using genetics-based machine learning for 
dynamic job shop scheduling.  Pitts approach is adopted where 
each dispatching policy (CA rule-set) is represented as a 
chromosome instead of Michigan approach studied by others.  
Fitness of each chromosome is computed by running a simulation 
for the corresponding CA rule-set.  9 sets of problems, each with 
3 problems, are generated based on different tightness of due 
dates and different number of jobs to compare solutions of the 
proposed scheduling system with nine dispatching rules.  In the 
test problems, the objectives used are to minimize the total 
tardiness, the average tardiness, the maximum tardiness, and the 
number of tardy jobs. 

The remaining of the paper is organized as follows.  
Section 2 covers definitions and discussions related to job shop 
scheduling and dispatching rules.  Section 3 describes genetics-
based machine learning.  The framework for the proposed 
scheduling system using genetics-based machine learning is 
discussed in Section 4.  Experimental results obtained from the 
proposed scheduling system and nine dispatching rules are 
compared in Section 5.  Section 6 presents the discussion and the 
interpretation of computational results.  The last section includes 
our conclusions based on the experiments. 

2. JOB SHOP SCHEDULING PROBLEM 
In a general job shop, there are n jobs Jj  (j = 1,.., n) to be 
processed on m machines Mi (i = 1,.., m) for operations Ojk 
(k=1,.., nj). Each operation is performed by a predetermined 
machine for a certain length of time (called processing time) pjk. 
Jobs may not require all m machines, and may have to visit some 
machines more than once.  A due date dj may be assigned to each 
job Jj as well.  

A job-shop scheduling (JSS) problem is defined as determining 
the processing sequence of jobs for a given objective such as 
minimizing makespan, minimizing total tardiness or total number 
of tardy jobs, maximizing system utilization, etc.  The test 
problems we generated for performance analysis of the proposed 
scheduling system can be represented as follows according to 
Pinedo's n/m/A/B notation [15] where n, m, A and B represent 
number of jobs, number of machines, shop type, and performance 
measure(s) respectively.: 
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2.1. Dispatching rules 
The dispatching rules, also sometimes called as scheduling or 
priority rules, have been widely used to provide good and time-
efficient solutions to job-shop scheduling problems for decades 
[15, 16]. 

The dispatching rules can be classified according to their time-
dependency and the depth of the information they contain.  Time-
dependent classification categorizes rules as static and dynamic.  
Static rules are not time dependent.  They are just a function of 
the job and/or machine data, such as SPT (Shortest Processing 
Time) rule.  The SPT rule assigns higher priorities to jobs with 
shorter processing times at the current machine.  However, 
dynamic rules are time dependent as it is in MST (Minimum 
Slack Time) rule.  MST is defined as the difference between the 
due date and the remaining time at the current point.  Therefore, 
the processing priorities of jobs directly depend on their current 
status. 

A second way of classifying rules is according to the information 
they are based upon, either local or global.  A local rule uses only 
information pertaining to either the queue where the job exists or 
to the machine where the job is queued [15].  Most of the rules 
can be defined as local rules, such as FIFO (First In First Out).  A 
global rule uses information regarding other machines, such as the 
processing time of the job on the next machine to be visited. 
According to SQNO (Shortest Queue at the Next Operation), a 
machine selects a job that currently has the shortest queue at the 
next machine for its following operation. 

Nine dispatching rules are considered in this study.  These nine 
rules select the job with minimum Zij as the next job to be 
processed on the machine, where Zij is the priority index, and is 
defined differently for each rule. 

• FIFO (First In First Out): This rule selects the next job 
to be processed on the machine from the queue based on 
their arrival time.  The formula that calculates the 
priority of the jobs is Zij = rij, where rij is arrival time of 
job i at machine j. 

• EDD (Earliest Due Date): This rule assigns the highest 
priority to the job with the earliest due date, and ranks 



the rest accordingly. The priority formula is Zij=di, 
where di is the due date of job i. 

• MST (Minimum Slack Time): This rule selects the next 
job from the queue based on their slack times.  Slack 
time of a job is computed by deducting the current time 
and the total remaining processing time from the due 
date of the job.  The priority formula is Zij=si=di - rti - t, 
where rti is the remaining process time of job i, and t is 
the current time. 

• SOPN (Minimum Slack Time per Operation): The rule 
selects the next job from the queue based on their slack 
time divided by the total remaining operations of the 
job.  The priority formula is Zij=( di - rti - t)/ roi, where 
roi is the total remaining operations of job i. 

• SPT (Shortest Processing Time): This rule selects the 
next job from the queue based on their processing times 
at the current machine.  The priority formula is Zij=pij, 
where pij is the processing time of job i at machine j. 

• CR (Critical Ratio): This rule selects the next job from 
the queue based on their relatively available time 
divided by the total remaining processing time of the 
job.  The priority formula is Zij=(di - t)/rti. 

• SRPT (Shortest Remaining Processing Time): The rule 
selects the next job from the queue based on their 
remaining processing time.  The priority formula is 
Zij=r ti. 

• MDD (Modified Due Date): The rule uses a job’s 
original due date as the due date when the job’s slack is 
greater than zero.  When the job’s slack becomes zero, 
the earliest finish time act as the modified due date.  
The priority formula is  

⎭
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• COVERT (Cost over Time):  COVERT sequences jobs 
in the descending order of its priority index.  Wiq, is 
generally estimated as proportional to its processing 
time using a parameter b, and it also needs to be 
adjusted to the worst case by a look-ahead parameter h.  
If job i queuing for operation j has zero or negative 
slack then its expected priority is wi/pij.  If the slack 
exceeds some worst-case estimates of the remaining 
waiting time over remaining operations, its expected 
cost is set to zero.  If the slack time is between these 
two extremes, then the priority goes up linearly as the 
slack decreases.  The priority formula is 
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During the last 30 years, the performances of these rules have 
been studied extensively using varying techniques including 

simulation.  These studies have addressed determining the best 
rule for different problem settings.  At the present time, there is 
no dispatching rule that is globally better than the others [5, 16] 
under the varying operating conditions (e.g., tightness of due 
dates, shop loading rate, etc.) even for a single performance 
criterion.  Any dispatching rule may turn out to be inefficient due 
to changes in the operating conditions.  Therefore, a job-shop 
management has to address issues of (i) which dispatching rule 
can yield better performance, and (ii) what changes in the 
operating conditions lead to adopting a new rule(s) by combining 
dispatching rules and the corresponding shop conditions in which 
they work efficiently into dispatching policies.  In this study, we 
propose an intelligent scheduling system that resolves the two 
issues aforementioned by learning dispatching policies including 
dispatching rules and the corresponding queue lengths.  There 
exist numerous operating conditions that can affect the selection 
of dispatching rules such as machine queue lengths, system and/or 
machine utilization, work-in-process, etc [12, 13, 17].  We 
adopted the queue lengths of machines at a point of time as the 
key representative of the operating conditions.  The proposed 
scheduling system observes the queue lengths of machines, and 
learns a common best CA rule set (i.e., the dispatching policy) 
where each rule is learned to be best for a corresponding queue 
length.  We experimented with four performance criteria, the total 
tardiness, maximum tardiness, average tardiness, and number of 
tardy jobs in the test problems. 

3. Genetics-based machine learning 
Genetics-based machine learning (GBML), developed by 
Holland, is a machine learning paradigm to automatically 
discover CA rules for performing desired actions [18].  In contrast 
to traditional expert systems where rules are handcrafted by 
knowledge engineers, GBML use genetic algorithms as discovery 
algorithm to generate and develop CA rules.  The CA rules 
contain two parts; condition part and action part as presented 
below. 

IF <condition> THEN <action> 

Whenever the condition part of a CA rule matches the current 
state of the environment, (i.e., the CA rule is satisfied) then the 
action part of the CA rule is performed (i.e., the CA rule is fired).  
That is, CA rules match information about the current state of 
system and suggest actions, and system moves to a new state.  
Separating successful CA rules from less successful (or 
unsuccessful) CA rules, an evaluation (or reward) mechanism 
needs to be implemented. Therefore, a strength Si(t) is associated 
with each CA rule i at a time t. The strength is modified by a 
certain reward mechanism, increasing the strength for successful 
CA rules, and decreasing the strength for unsuccessful CA rules.  
The strength measures the influence of a particular CA rule in an 
evolutionary process, driven by a GA. GA seeks to improve the 
system’s overall performance by replacing unsuccessful CA rules 
with successful ones.  These CA rules are evaluated in an 
environment, and are automatically assigned strengths based on 
system’s performance.  As a result, GBML learns by interacting 
with an environment from which it receives feedback in the form 
of numerical reward.  Learning is achieved by generating the CA 
rule set that maximizes the amount of reward received.   

GBML is classified into two approaches: the Michigan and Pitt 
approaches.  In the former approach, a CA rule is represented as a 



chromosome of genetic algorithms (GA), and credits are allocated 
to CA rules according to their performances obtained by applying 
a CA rule-set.  The CA rule is generated and improved by 
applying GA at certain time or iteration intervals, where the 
fitness of each individual is calculated according to its credit. On 
the other hand, in the Pitt approach, a CA rule-set is represented 
as a chromosome of GA, and the fitness of an individual is 
calculated based on experiments, e.g. the simulation, by applying 
a CA rule-set. 

Among the two GBML approaches, Michigan and Pitt, we 
adopted the latter which represents a CA rule-set as a 
chromosome, and calculates the fitness of a chromosome based on 
experiments, e.g. the simulation of the job-shop for a given CA 
rule-set. 

4.  PROPOSED SCHEDULING SYSTEM 
In our intelligent job-shop scheduling system, each chromosome 
contains a list of dispatching rules that are associated with 
different queue lengths.  Chromosomes survive according to their 
performances computed through system simulations.  In the 
proposed system, no machine or workstation has a predetermined 
dispatching rule, rather a set of CA rules where each CA rule is 
learnt to be the best for a given queue length and performance 
criterion.   

4.1.  Representation of a chromosome 
In the proposed approach, a CA rule-set is represented as a 
chromosome including a set of n dispatching rules, R = 
{R1,R2,...,Rn} and a set of k queue lengths Q = {Q1, Q2,.., Qk}.  
The designed chromosome contains the dispatching rules.  
Leftmost rule in the chromosome corresponds to the fact that a 
single part is waiting in the queue, left second rule corresponds to 
the fact that two parts are waiting in the queue, and so on.  As a 
generic representation of this structure, the proposed system 
matches the queue lengths and dispatching rules, each taken from 
out of their supersets, by employing condition-action pairs in the 
form of IF Qi THEN Rj.  Therefore, chromosomes are designed to 
support this matching process as illustrated in Fig 1. 

MST FIFO SOPN      # SPT 

Figure 1.  Chromosomal representation of a dispatching policy 

The chromosome presented in Fig 1 is interpreted in Fig 2 where 
nj is the number of jobs in the queue at any moment. 

IF nj=1 THEN MST 

IF nj=2 THEN FIFO 

IF nj=3 THEN SOPN 

: 

IF nj=n-1 THEN # 

IF nj=n THEN SPT 

Figure 2.  Decoding of the chromosome presented in Fig.2 

The last CA rule in Fig 2 is interpreted as follows.  If there are n 
jobs in the queue when the machine is available, the next job to be 
processed at this machine will be selected according to the SPT 
rule.  The CA rule before the last in Fig 2, on the other hand, 
means that if there are n-1 jobs on the queue when the machine is 
available, the next job to be processed at the machine will be 
selected based on the previously used rule. 

4.2.  Calculation of fitness 
Each individual is evaluated based on the schedules obtained by 
running a simulation for the corresponding dispatching policy on 
the test problems.  The fitness values are the objective function 
values computed with respect to equations in Section 2.  In this 
study, the objective is to minimize the total tardiness, average 
tardiness, maximum tardiness and number of tardy jobs.  

4.3.  Operators 
The operators of the genetic algorithm used to improve our 
solutions are described as follows. 

Selection and reproduction:  The tournament selection with the 
elitist strategy is adopted.  In the tournament selection, a small 
group of individuals (related to tournament size) is sampled from 
the population, and the individual with the best fitness is chosen 
for reproduction.  Elitism appears to eliminate the destruction of 
the best solution due to selection.  In elitism, the fittest member of 
a population should always survive and also be present in the next 
generation.  We applied the tournament selection with elitist 
strategy in this study.  

Crossover: Two individuals are matched randomly in a 
population, and the crossover is performed with respect to 
crossover rate pc.  Simple, single-point crossover is used in this 
paper.  In single-point crossover, one crossover point is selected. 
String from the beginning of the chromosome to the crossover 
point is copied from the first parent; the rest is copied from the 
other parent for the first child. For the second child, first part of 
the second parent and second part of the first parent is merged.  

Mutation: A gene is selected for mutation with mutation rate pm.  
In our proposed approach, the mutation operator changes the CA 
rules with respect to a uniform distribution when applied. 

4.4. The proposed scheduling system 
The algorithm of the proposed learning scheduling 

system is outlined as follows: 



I. Generate N number of CA rule-sets randomly, and 
encode the CA rule-sets as chromosomes.  Set iteration 
counter to 1 (i.e., t = 1), and initialize the upper bound 
of generation ng. 

II. Apply each corresponding CA rule-set to the problem 
via simulation.  Calculate the fitness value according to 
the performance criteria based on the simulation 
results. 

III. If t<ng, go to Step IV. Otherwise go to Step V. 

IV. Apply genetic operators (selection, crossover, 
mutation) to the population and generate new 
population. Set t = t + 1 and go to Step II. 

Terminate and select the best CA rule-set. 
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Figure 4.  Proposed learning job shop scheduling system 

In this study, we propose an intelligent scheduling system that (i) 
builds dispatching policies considering the queue length as the 
major attribute of a dynamic job shop, and (ii) minimizes average 
tardiness, maximum tardiness, total tardiness, and number of 
tardy jobs by utilizing Pitt approach of genetics-based machine 
learning. 

5.  Computational experiments 
In the experiments of our study, we determine a dispatching 
policy to minimize the total tardiness, the average tardiness, the 
maximum tardiness and the number of tardy jobs in a dynamic job 
shop.  Experiments were conducted on randomly generated 
problems to test the performance of the intelligent scheduling 
system.  The processing times for each machine are presented in 
Table 1 [2].   

Machine  Distribution 
1 Uniform [2, 9] 
2 Uniform [2, 9] 
3 Uniform [2, 9] 
4 Uniform [2, 9] 

Table 1.  The processing time distributions of machines 

Inter-arrival times between jobs are determined according to an 
exponential distribution using the following rule: 

( )RNt exp
5.4
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where RN is the random number and t represents the inter-arrival 
time (Aydın and Öztemel 2000). 

Due dates are identified with the following rule: 
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where DD, r, n, k and pi represent due date, arrival time, the 
number of operations, coefficient of tightness, and processing 
time of ith operation, respectively (Aydın and Öztemel 2000).  50, 
100, and 200 jobs are used in the every test problem. 

Nine sets of problems (three settings of tightness of due dates x 
three settings of number of jobs) each with three problems are 
used to compare solutions of our intelligent scheduling system 
with best known nine dispatching rules, i.e. FIFO, EDD, MST, 
SOPN, SPT, SRPT, CR, COVERT, and MDD. 

Parameter settings of GBML-based learning system are given in 
Table 2 as a result of our pilot experiments. 

Parameter Value 
Population Size 100 
Crossover Rate 0.65 (% 65) 
Mutation Rate 0.05 (% 0.5) 
No. Of Iterations 1000 
Tournament Selection Size 4 

Table 2.  GBML parameter settings 

The proposed intelligent scheduling system has been developed in 
C#.  The main screen of the GBML-module is presented in Fig.3. 

 
Figure 3  Main screen of the developed GBML system 
The dispatching policies obtained from our intelligent scheduling 
system were compared with the selected dispatching rules in 
ARENA™ software with VBA™ programming.  The 
experimental results are presented for each group of test problems 
(k=2, 4, 6) in Table 4a, 4b and 4c in terms of the improvements 
obtained by using dispatching policies built by our intelligent 
scheduling system.  The improvements are computed based on the 
average objective values obtained from our generated dispatching 
policies, and the objective value obtained from the best-
performing dispatching rule, i.e.,  
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for the average tardiness as objective. 

K=2 Min – Max Improvements (%) 

 Tsum Tave Tmax # of Tardy 
Jobs 

 Min Max Min Max Min Max Min Max 

50 
jobs 

6.31 10.58 3.37 9.57 4.54 16.79 6.06 23.80 

100 
jobs 

3.24 11.38 3.24 15.83 0.55 11.69 4.91 9.23 

200 
jobs 

3.08 6.90 3.08 6.90 1.30 5.62 2.22 4.25 

Table 4.a Improvements for k=2 

k=4 Min – Max Improvements (%) 

 Tsum Tave Tmax # of Tardy 
Jobs 

 Min Max Min Max Min Max Min Max 

50 
jobs 

13.46 20.0 13.4 20.0 4.4 27.2 16.6 40.0 

100 
jobs 

4.6 38.0 4.6 38.0 5.5 20.4 8.3 28.0 

200 
jobs 

10.1 16.4 10.1 16.4 0.0 8.0 0.0 3.3 

Table 4.b Improvements for k=4 

k=6 Min – Max Improvements (%) 

 Tsum Tave Tmax # of Tardy 
Jobs 

 Min Max Min Max Min Max Min Max 

50 
jobs 

0.0 100. 0.0 100. 0.0 100. 0.0 100. 

100 
jobs 

5.7 33.7 5.7 33.7 7.3 28.2 30.4 41.1 

200 
jobs 

10.0 16.4 6.7 16.4 3.7 5.6 2.9 15.5 

Table 4.c Improvements for k=6 

The computational times of our intelligent scheduling system are 
presented for each group of test problems (k=2, 4, 6) in Table 5. 

  Min – Max Time (minute:second) 

  Tsum Tave Tmax # of 
Tardy 
Jobs 

50 jobs 1:30 – 
1:35 

1:43 – 
1:52 

1:30 – 
1:37 

1:29 – 
1:37 

k=2 

100 2:55 – 3:24 – 2:59 – 2:59 – 

jobs 3:13 3:45 3:17 3:39 

200 
jobs 

6:07 – 
6:20 

7:03 – 
7:15 

6:12 – 
6:21 

6:17 – 
6:39 

50 jobs 1:30 – 
1:37 

1:43 – 
1:51 

1:29 – 
1:38 

1:29 – 
1:37 

100 
jobs 

3:00 – 
3:07 

3:28 – 
3:35 

3:00 – 
3:06 

3:03 – 
3:10 

k=4 

200 
jobs 

6:01 – 
6:09 

6:57 – 
7:05 

6:03 – 
6:08 

6:05 – 
6:09 

50 jobs 1:30 – 
1:39 

1:48 – 
1:55 

1:34 – 
1:38 

1:34 – 
1:39 

100 
jobs 

3:01 – 
3:13 

3:28 – 
3:41 

3:00 – 
3:11 

3:01 – 
3:13 

k=6 

200 
jobs 

6:01 – 
6:09 

6:57 – 
7:05 

6:04 – 
6:10 

6:02 -  
6:09 

Table 5 Computational times for each set of problems 

6. Interpretation and Conclusion 
The computational results of the experiments presented in the 
previous section are interpreted to determine the performance of 
the proposed learning scheduling system against dispatching rules 
in this section.  For each set of problems, first we determined the 
best-performing rule from out of nine dispatching rules.  Then we 
generated a dispatching policy for each case by running our 
intelligent scheduling system.  The performance of the 
dispatching policies obtained from our intelligent scheduling 
system for nine problem sets significantly outperforms the best-
performing dispatching rule as seen on Table 4 a-c.  

In this study, we propose a new intelligent scheduling system for 
dynamic job shops.  The proposed scheduling system adopts (i) a 
Pitts-GBML as learning mechanism, and (ii) a simulation for 
evaluations of schedules to construct dispatching policies 
depending on system attributes.  Pitts-based GBML generates a 
population of dispatching policies each containing of a list of 
dispatching rules that will be applied when a condition on the 
system attribute is satisfied.  Simulation is performed to collect all 
performance measurements that will be used in the evaluation of 
schedules. The dispatching policies determined by the scheduling 
system contain a dispatching rule for each system attribute which 
is taken as queue lengths in the experiments.  Therefore, as the 
queue lengths vary, the dispatching rule that will be applied varies 
according to the corresponding CA rules.  The proposed 
scheduling system has been experimented on 27 test problems for 
the objective of minimizing tardiness in a job shop with four 
machines.  The results based on the test problems have been very 
impressive for the dispatching policies constructed by our 
scheduling system for a dynamic job shop environment by 
outperforming the selected-best dispatching rules prominently.  
Building one dispatching policy that applies to all machines can 
be considered as another success factor in the real shop-floor 
applications.  

The proposed scheduling system incorporates the practical 
success of dispatching rules into the learning paradigm of GBML.  
Our experiments demonstrate the strength and robustness of 



learning scheduling system for dynamic job-shop scheduling 
problems.  The experiments related to the different objective 
functions than tardiness, impacts of multi-objectivity in different 
manufacturing configurations including material handling 
considerations should be addressed in the future researches. 
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