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ABSTRACT 
We present a new multiobjective evolutionary algorithm 
(MOEA), called fast Pareto genetic algorithm (FPGA). FPGA 
uses a new ranking strategy for the simultaneous optimization of 
multiple objectives where each solution evaluation is 
computationally expensive. New genetic operators are employed 
to enhance the algorithm’s performance in terms of convergence 
behavior and computational effort. Computational results for a 
number of benchmark test problems indicate that FPGA is a 
promising approach and it outperforms the improved 
nondominated sorting genetic algorithm (NSGA-II), which can be 
considered a widely-accepted benchmark in the MOEA research 
community, within a relatively small number of solution 
evaluations. 

Categories and Subject Descriptors 
G.1.6 [Numerical Analysis] Optimization – evolutionary 
algorithms, unconstrained optimization. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Multiobjective optimization, Genetic algorithms, Pareto 
optimality. 

1. INTRODUCTION 
Most real-world problems often involve multiple, conflicting 
objectives, where improving one objective may degrade the 
performance of one or more of the other objectives. 
Multiobjective optimization problems (MOPs) have the following 
general form: 

min (max) , ( )z = f x (1) 

where f(x) is vector of m objective functions to be optimized, i.e., 
f(x) = (f1(x), f2(x), …, fm(x)), and solution x is a n-dimensional 
vector of decision variables that are continuous or discrete or 
both. Eq. 1, which can be converted to a maximization problem 
with no loss of generality, is typically subject to the constraints 

( ) , 1, 2, ,j j j k≤ =g x b K , and (2) 

, 1,2, ,i i ia x b i n≤ ≤ = K , (3) 

where b is a k-dimensional vector of inequality constraints. Eq. 3 
restricts the values of each decision variable xi between an upper 
and a lower bound. 

Traditional approaches for solving MOPs typically try to scalarize 
the multiple objectives into a single objective using a vector of 
user-defined weights. This transforms the original multiple 
optimization problem formulation into a single objective 
optimization problem with a single solution. Several drawbacks of 
using such traditional methods include: 

• The weight (or priority) vector used in the scalarization 
process greatly influences the final solution; 

• Some optimal solutions may never be found if the objective 
space is not convex (or concave, for maximization 
problems); and 

• Traditional approaches may not work effectively if 
objectives have discontinuous variable space. 

However, these and other known drawbacks to traditional 
approaches have motivated researchers and practitioners to seek 
alternative techniques to find a set of Pareto optimal solutions 
rather than just a single solution [e.g., 3, 4]. A solution is Pareto 
optimal if there exists no feasible solution for which an 
improvement in one objective does not lead to a simultaneous 
degradation in one or more of the remaining objectives. In other 
words, the solution is a nondominated solution. 

1.1 Evolutionary Algorithms for 
Multiobjective Optimization 
Many heuristic search algorithms have been developed to solve 
MOPs including simulated annealing, tabu search and 
evolutionary algorithms (EAs). EAs, the focus of this study, are 
population-based search algorithms inspired by Darwinian 
evolutionary theory (i.e., the survival of the fittest). It has been 
shown that EAs are intelligent optimization algorithms that are 
able to balance exploration and exploitation of the solution search 
space [8]. Other major advantages of EAs for MOPs include: 

• EA-based approaches are capable of finding a set of good 
solutions rather than a single solution [4]. 

• EA-based approaches are capable of exploring the search 
space more thoroughly within a smaller number of function 
evaluations than other point-to-point local search procedures 
such as simulated annealing and tabu search [1]. 

• EA-based approaches are less dependent on the selection of 
the starting solutions, and they do not require definition of a 
neighborhood [1]. 

In recent years, several variations of MOEAs have been 
developed to handle MOPs [e.g., 3, 4]. Many of the suggested 
MOEAs have been employed in a variety of real-world 
applications [2]. Among the existing algorithms, an improved 



version of the nondominated sorting genetic algorithm (NSGA-II) 
of Deb et al. [6], a newer version of strength Pareto EA (SPEA2) 
of Zitzler et al. [12], Pareto-archived evolution strategy (PAES) of 
Knowles and Corne [9] are the more popular MOEAs. 

1.2 Purpose of Research 
In many previous applications of MOEAs, the time to perform a 
single solution evaluation is of the order of minutes or even hours 
restricting the total number of solution evaluations. Additionally, 
many real-world problems involve complicated, “black-box” 
objective functions making a large number of solutions 
evaluations computationally- and/or financially-prohibitive. 
Therefore, a fast multiobjective optimization algorithm capable of 
rapidly finding a diverse set of Pareto optimal solutions would be 
greatly beneficial. The purpose of this research is to propose such 
an EA-based multiobjective optimization methodology that finds 
evenly-distributed Pareto optimal solutions in an acceptable 
period of time. 

The remainder of this paper is organized as follows. Section  2 
describes the proposed MOEA that uses a new solution ranking 
strategy. The proposed MOEA and a widely-accepted benchmark 
MOEA are used to solve a suite of published test problems. 
Section  3 and Section  4 present the experimental design and 
computational results, respectively. This paper is concluded and 
future research directions are given in Section  5. 

2. PROPOSED METHODOLOGY – FAST 
PARETO GENETIC ALGORITHM 
The proposed framework named fast Pareto genetic algorithm 
(FPGA) utilizes a population-based evolutionary algorithm. 
However, more importantly, this framework incorporates a new 
solution ranking strategy into a MOEA. A real-coded GA is 
implemented to avoid the difficulties associated with binary 
representation and bit operations, particularly when dealing with 
continuous search spaces with large dimension. Recall that each 
solution to a MOP is represented by an n-dimensional vector x = 
(x1, x2, …, xn), where a decision variable xi is a real number 
bounded by a lower limit ai and upper limit bi, i.e., xi ∈ [ai, bi].  
The dimension of the vector is equal to the number of decision 
variables of the problem under study. 

New search operators are also introduced to improve the proposed 
algorithm’s convergence behavior and to reduce the required 
computational effort. An elitism operator is implemented to 
ensure the propagation of the Pareto optimal solution set. A 
regulation operator is introduced to dynamically adapt the 
population size of the GA as needed up to a user-specified 
maximum population size, which is the size of the set of 
nondominated solutions in this study. Figure 1 gives the 
pseudocode for FPGA.  

The primary steps of FPGA are the following: 

1. Initialize all decision parameters to user-specified values; 
2. Create an initial population of candidate solution vectors 

randomly at the first generation; however, FPGA can be 
easily modified to generate the initial population 
heuristically, seeded with user-defined solution vectors, or 
using a combination of these approaches; 

3. If it is the first generation, go to Step 5; otherwise, increment 
the generation number and select pairs of solutions as parents 
from the previous population in the reproduction operation 

using binary tournament selection; 
4. Perform the crossover and mutation operations to generate 

candidate solutions (offspring);  
5. Evaluate the candidate solution vectors for the m objective 

functions and record them; 
6. Combine generated candidate solutions with the previous 

population to form a composite population; 
7. Rank the composite population of solutions based on the new 

ranking strategy using their fitness values; 
8. Regulate the population size according to the number of 

nondominated solutions and generate a new population from 
the composite population by discarding the inferior 
(dominated) solutions; and 

9. Terminate the algorithm if the stopping criterion is met; 
otherwise, return to Step 3. 

A detailed discussion of the primary features of FPGA is provided 
in the sections that follow. 
 

initialize user decision parameters (numvars, numobjs, 
maxpopsize, maxsolevals, pc, pm, …) 
t := 0 
create initial random population { }1 2 3, , ,t t t

t =P x x x K  

evaluate(Pt) 
do while (stopping criteria is not met) 
{ 

t := t +1 

t′P  := select(Pt-1)        // select pairs of solutions for 
reproduction 

Ot := crossover( t′P ) 
Ot := mutate(Ot) 
evaluate(Ot) 
CPt := Pt-1  OU t         // form composite population 
rank(CPt) 
regulate(CPt) 
Pt := generate(CPt) 

}end do 
Figure 1. Pseudocode of the proposed fast Pareto genetic 
algorithm. 

2.1 Initialization and Solution Evaluation 
After initializing the user-specified parameter settings (e.g., 
number of decision variables, number of objectives, maximum 
population size, maximum number of solution evaluations, etc.), 
the initial population is created by random sampling each decision 
variable within its defined range of variation. The evaluation of 
new solutions in terms of the objective functions is accomplished 
by calculating the complicated mathematical, closed-form 
expressions specified by the published benchmark problems, 
which are discussed later. At each generation, the obtained 
solutions with their corresponding objective values are all 
recorded. 

2.2 Ranking and Fitness Assignment 
In the FPGA, before ranking and fitness assignment is performed, 
a new solution set Ot generated by crossover and mutation 
operations are combined with previous population Pt-1 to form the 
composite population CP = P  O, i.e., CP Ut t t-1 t, where  denotes 
the union of the two sets. The new ranking strategy is based on the 
classification of candidate solutions of the composite population 

U



CPt into two different categories (ranks) according to solution 
dominance. These ranks are used to evaluate solution fitness for 
the purpose of solution reproduction for subsequent generations. 
Combination of previous generation Pt-1 with generated offspring 
Ot provides an opportunity to preserve the superior solutions in 
the next generation and discard the inferior solutions depending 
on the number of nondominated solutions obtained in the 
composite population. 

Firstly, all nondominated solutions are identified as the first rank, 
which implies that there is no solution that is better than these 
solutions with respect to all objectives simultaneously. The fitness 
of the nondominated solutions in the first rank is calculated by 
comparing each nondominated solution with one another and 
assigning a fitness value. These values are computed using the 
crowding distance approach suggested by Deb et al. [6], which 
has been shown to help maintain diversity among the 
nondominated solutions in the Pareto optimal front. It is important 
to note that a solution with a large fitness value is preferred. The 
larger a solution’s fitness value, the greater the distance that 
solution is from its neighboring nondominated solutions along the 
Pareto front. 

All dominated solutions are identified as the second rank. Each 
dominated solution in the second rank is compared with all other 
solutions and assigned a fitness value depending on the number of 
solutions they dominate. The idea here is similar to the strength 
concept employed in SPEA [13] and SPEA2 [12]; however, it has 
been generalized. The fitness assignment takes into account both 
dominating and dominated solutions for any dominated solution. 
Here, each solution in the composite population CPt is assigned a 
net strength value S(xi), indicating the number of solutions it 
dominates, where 

( ) { }|= ∀ ∈ ∧ ∧ ≠fi j j t i jS x x x CP x x j i

j

. (4) 

The cardinality of a set is denoted as |·| and the expression 
 means that solution xix xf i dominates solution xj. Then, the 

fitness value of each dominated solution is calculated by 

( ) ( ) ( ) , .
i j j i

i j j j tF S S= − ∀ ∈ ∧∑ ∑
x x x x

x x x x CP
f f

j i≠  
(5) 

In other words, the fitness value assigned to each dominated 
solution xi in the second rank is equal to the summation of the 
strength values of all solutions it dominates minus the summation 
of the strength values of all solutions by which it is dominated. In 
contrast to SPEA and SPEA2 where the strength values of only 
solutions that xi is dominated by (second term in Eq. 5) is 
considered, FPGA takes into account both dominating and 
dominated solutions with respect to solution xi. This strategy 
provides more information on Pareto dominance and niching 
relations among solutions in the composite population and reduces 
the chance that two solutions have the same fitness value. 
Therefore, no additional diversity preservation mechanism is used 
among the dominated solutions in the second rank thus requiring 
less computation (unlike SPEA2, which requires much higher 
computation for the density estimator). It is interesting to note that 
if most solutions do not dominate one another, it is implied that 
they belong to the first rank where crowding distance operator is 
invoked to maintain the diversity among them. 

 are 

calculated, the solutions are compared where three different 
scenarios might occur. In the first scenario, two selected solutions 
have different ranks in which the solution with the better rank is 
preferred. In the second scenario, two solutions have the same 
rank but different fitness values. In such cases, the solution with 
larger fitness value is preferred. In the last scenario, two solutions 
have the same rank and fitness value. In the last case, one of 
solutions is randomly preferred. 

2.3 Elitism and Population Regulation  
An elitism operator with relatively high intensity is implemented 
to ensure propagation of the nondominated solutions (i.e., elite 
solutions) to subsequent generations. This is accomplished by 
copying all solutions in the previous generation Pt-1 to the 
composite population CPt. 

The number of nondominated solutions usually increases over 
generations resulting in low elitism intensity in early generations 
if the population size is quite large and kept fixed. Moreover, the 
fluctuations of the number of nondominated solutions over 
generations demand an adaptive population sizing strategy to 
place appropriate emphasis of elitism intensity on nondominated 
solutions. If elitism intensity is too high, premature convergence 
might occur and if elitism intensity is too low, convergence might 
be too slow and computationally-expensive. Therefore, FPGA 
employs a regulation operator to dynamically adjust the 
population size until it reaches a user-specified maximum 
population size as calculated by: 

{ }{ }min | is nondominated ,t t t i i t ia b maxpopsize⎡ ⎤= + × ∈ ∧⎢ ⎥P x x CP x

, 
(6) 

where 
tP  is the population size at generation t, at is a positive 

integer variable that might change over generations, bt is a 
positive real variable that might change over generations, x⎡ ⎤⎢ ⎥  is 

the smallest integer that is greater than or equal to the real number 
x, and maxpopsize is the user-specified maximum population size. 
In this study, we set at = 20, bt = 1 and maxpopsize = 100. Thus, 
we get 

{ }{ }is nondominatedmin 20 | , 100t i i t i= + ∈ ∧P x x CP x .  

In other words, the population size at generation t is 20 plus the 
number of nondominated solutions in the composite population if 
it is not larger than the pre-specified maximum population size. 
Otherwise, it is kept (truncated) equal to the maximum population 
size. 

FPGA, unlike many of the proposed MOEAs, benefits the small 
number of offspring created by crossover and mutation operations 
over generations. In this study, we set the number of offspring 
created at each generation |Ot| = 20. It is interesting to note that 
this feature makes FPGA capable of saving significant number of 
solution evaluations during the search and utilizes the exploitation 
in a more efficient manner at later generations. Bear in mind that 
in expensive MOPs where only small number of solution 
evaluations is desired, more emphasis on exploitation and less 
emphasis on exploration can be extremely beneficial. Creating a 
large number of offspring at early generations consumes 
considerable number of solution evaluations limiting the total 
number of generations which consequently results in no extensive 
utilization of exploitation. FPGA requires less number of solution After the fitness values of all candidate solutions in CPt



evaluations per generation providing more generations for more 
search exploitation. 

The suggested values for at, bt and |Ot| are obtained by performing 
several pilot runs. As the intent of this research is to introduce a 
novel strategy that addresses adaptive population sizing and 
conservative offspring generation in order to improve the 
efficiency and effectiveness of the search, the attempt to 
determine optimal settings for these parameters is left for future 
study. 

2.4 Termination Criterion 
Different approaches have been used to stop the search process of 
EAs including those that consider the landscape of the response 
surface, the desired solutions quality, the specific number of 
solution evaluations and the required computation time. Originally 
designed for dealing with expensive MOPs, FPGA uses a new 
stopping criterion that considers the convergence speed towards 
the true Pareto optimal front. Here, when the number of 
nondominated solutions reaches the pre-specified maximum 
population size and thereafter no changes are made in the number 
of nondominated solutions within a certain number of solution 
evaluations, the search stops. For better understanding of the 
suggested stopping criterion for expensive MOPs, a convergence 
velocity measure is defined. 

Definition 1: The Pareto production rate (PPR) is the rate at 
which a particular algorithm produces nondominated solutions per 
population and is calculated as 

 
t

t
t

PPR =
NP
P

, 
(7) 

where Pt is the population at generation t, and |NPt| denotes the 
number of nondominated solutions belonging to population Pt. 
When PPRt reaches one (i.e., all solutions in the population are 
nondominated) and it does not make any changes over a pre-
specified number of solution evaluations implying no promising 
nondominated solutions are found within this period, the search 
stops. 

2.5 A Discussion on Computational 
Complexity of FPGA 
To determine the computational complexity of FPGA, consider 
the worst case complexity at generation t of the search process. 
The key operations of FPGA with respect to complexity include 
the new ranking strategy, fitness assignment, and crowding 
distance computation. The complexity of FPGA’s ranking strategy 
that determines the nondominated solutions and dominated 
solutions is O(mNtlogNt) for m = 2 and 3 and O(mNtlogNt

m-2) for 
m ≥ 4. The complexity of the crowding distance computation 
performed for fitness assignment of the nondominated solutions is 
O(mNtlog(Nt)). Sorting of the nondominated solutions based on 
their fitness assignments obtained from crowding distance needs 
O(mNtlogNt) computations. Fitness assignment of dominated 
solutions requires O(m ) computations. Thus, the overall 
complexity of FPGA is at most O(m ). If the maximum 
population size of FPGA is the static population size of most other 
MOEAs, i.e., N, the overall complexity of FPGA is O(mN

2
tN

2
tN

2), 
which is no more than that of other popular MOEAs such as 
NSGA-II, SPEA2, and PAES. 

3. EXPERIMENTAL STUDY 
In this section, we evaluate the performance of FPGA on a suite 
of published benchmark test problems having two objectives and 
no coupled constraints. In all test problems, the functions are to be 
minimized. The results of FPGA are also benchmarked against 
one of the state-of-the-art MOEAs – the real-coded NSGA-II of 
Deb et al. [6]. It has been reported that NSGA-II outperforms 
most of its competitors including SPEA and PISA, and it 
competes closely with SPEA2 in terms of convergence to the true 
Pareto optimal front while maintaining the diversity [e.g., 6, 7, 
12]. However, SPEA2 requires higher computational complexity 
of O(mN2 2logN) [12] compared to that of NSGA-II, O(mN ), 
raising the question of whether the computationally-intensive 
fitness assignment strategy and truncation operator in SPEA2 pays 
off for expensive MOPs. Some studies report that there is no 
significant difference between the performance of SPEA2 and 
NSGA-II, although SPEA2 requires significantly higher 
computational time [5, 7, 12]. 

3.1 Benchmark Test Problems 
The suite of test problems consists of four well-known ZDTs real-
variable benchmark problems that have been selected from the 
literature [11]. The test problems ZDT1 and ZDT2 have 30 
decision variables each and the former has a convex Pareto 
optimal front and the latter has five discontinuous Pareto optimal 
fronts. The 10-decision variable test problem ZDT4 is a multi-
frontal (multi-modal) problem having a large number of local 
Pareto optimal fronts and a single global Pareto optimal front. The 
test problem ZDT6 has 10 decision variables and a nonconvex 
Pareto optimal front. Moreover, the density of solutions across its 
Pareto optimal front is non-uniform and the density towards the 
Pareto optimal front gets thin. The selected suite of test problems 
include quite challenging Pareto optimality characteristics. Many 
researchers have used these problems as benchmarks for 
evaluating their proposed algorithms [e.g., 6, 12]. 

3.2 Algorithm Parameter Settings 
For both FPGA and NSGA-II, all of the user-specified parameter 
settings (except the maximum number of solution evaluations) are 
used according to the suggested values in the original study of 
Deb et al. [6]. These settings are summarized in Table 1. In order 
to make better comparisons, the maximum population size for 
FPGA is set to the suggested population size used by Deb et al. 
[6]. The number of solution evaluations shown in Table 1 depends 
on the characteristics and complexity of the underlying problem. 
The number of solution evaluations is kept relatively small to 
evaluate the performance of each algorithm more effectively for 
expensive, real-world MOPs that may only allow a small number 
of solution evaluations. 

3.3 Performance Metrics 
In MOPs, there are three primary goals: 1) fast convergence to the 
true Pareto frontier solution set in the objective space, 2) close 
proximity to the true Pareto frontier solution set, and 3) diversity 
and even dispersion of the obtained nondominated solutions along 
the true Pareto optimal front. Many performance metrics have 
been introduced within the last decade [e.g., 3, 4, 6, 7, 13]. Few 
performance metrics have been suggested to simultaneously 
consider the above goals. Most previous studies emphasize only 
the closeness and diversity measures. Fast convergence to optimal 
solutions for expensive MOPs is very important. This is especially 
the case in real-world problems where finding the optimal or even 



near-optimal solutions is often computationally-prohibitive. In 
this study, four performance metrics are used to assess the 
convergence behavior and diversity of FPGA and NSGA-II, two 
of which are newly introduced. They are the diversity metric and 
the delineation metric. Two of the four metrics, delineation and 
hypervolume, are employed for simultaneous evaluation of 
closeness and diversity of the obtained solutions to gain a more 
thorough overall evaluation. For each test problem, each 
algorithm is run with 30 different seed values and the mean, 
standard deviation and 95% confidence interval are computed. 
The lower and upper bounds of the 95% confidence interval are 
calculated by 

/ 2, 1nx t sα −± n , where x  is the sample mean, s is 

sample standard deviation, α is the significance level and is equal 
to 0.05 and n is the sample size and is equal to 30. Given the fact 
that in expensive MOPs the time required for solution evaluations 
significantly dominates the actual CPU time of any approach, no 
attempt is made to measure the computation time needed to run 
each algorithm. However, equality of the computational 
complexity of FPGA and NSGA-II indicates that there should be 
no appreciable difference between their computation times.  

 
Table 1. Parameter settings for FPGA and NSGA-II. 

Algorithm Parameter FPGA and Real-Coded NSGA-II 

Test Problem ZDT1 ZDT3 ZDT4 ZDT6
No. of Solution Evaluations 6500 6000 10000 10000
Initial Population Size 100 
Maximum Population Size 100 
Crossover Probability 1 
Mutation Probability 1/n (where n is number of variables) 
Crossover Type Simulated Binary Crossover (ηc=15) 

Mutation Type Polynomial Mutation (ηm=20) 

Selection Scheme Binary Tournament 

3.3.1 Distance from the Pareto Optimal Front 
Deb et al. [5] suggest the distance metric ϒ, which evaluates the 
convergence to a known Pareto optimal frontier set. The goal of 
this metric is to identify how close a set of obtained solutions are 
to the true Pareto optimal set. The smaller the value of this metric, 
the closer the solutions are to the true Pareto optimal frontier set. 
Ideally, this metric is zero, where each obtained solution falls 
exactly on one of the selected H uniformly-spaced solutions from 
the true Pareto optimal set in the objective space. However, the 
likelihood of this happening is rare. 

3.3.2 Diversity of Nondominated Solutions 
We define the diversity metric Δ to evaluate the extent of 
dispersion of the obtained nondominated solutions in the objective 
space. Here, the goal is to obtain a set of nondominated solutions 
that are both widely- and uniformly-distributed along the Pareto 
optimal front at the end of the search. To compute the diversity 
metric Δ, the Euclidean distance di between consecutive 
nondominated solutions is calculated in the objective space, as 
shown in Figure 2, where i = 1, ..., |NPt|-1 and |NPt| is the number 
of nondominated solutions at the end of the search. Then, the 
standard deviation of these distances σd is calculated representing 
the degree of non-uniformity of the nondominated solutions. The 
minimum Euclidean distance of the two extreme Pareto solutions 
of the true Pareto optimal set from the nondominated solutions, 

denoted by dp  and dq , is calculated. Note that the distances dp and 
dq are the distances from the closest nondominated solutions, not 
necessarily the endpoints of nondominated solutions, to the two 
extreme Pareto solutions (shown in Figure 2). Finally, the 
diversity of the set of nondominated solutions is 

( ) ( )
1 2

1

1
1

t

t p q i
it

d d d d
−

=

Δ = + + −
− ∑

NP

NP
NP

. 
(8) 

The first two terms of Eq. 8 measure the spread of the 
nondominated solutions and the last term measures their uniform 
spacing. The diversity metric Δ returns a value in the range of [0, 
∞). Small values of this metric mean the nondominated solutions 
are well-spread and well-distributed. Ideally, this metric takes a 
value of zero. This happens when each end nondominated solution 
falls exactly on the extreme Pareto optimal solutions and all 
Euclidean distance di between consecutive nondominated 
solutions are equal in the objective space. However, similar to the 
distance metric ϒ, this rarely happens. 

f2
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e 
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d1
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Nondominated solution

f1
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Figure 2. Diversity metric Δ. 

3.3.3 Delineation of Pareto Optimal Front 
The delineation metric Φ is proposed to evaluate simultaneously 
the extent of both convergence and diversity to a known Pareto 
optimal front. The goal of this study is to identify a set of 
solutions that well represent the Pareto optimal set. The idea 
behind this metric is how well each solution on the Pareto optimal 
front is represented by the obtained solutions. To calculate the 
delineation metric Φ, a large set of H uniformly-spaced solutions 
from the Pareto optimal set that well reflects the true Pareto 
optimal front must be known. The same set of H solutions used in 
calculating the distance metric ϒ are used here. The minimum 
Euclidean distance from each Pareto optimal solution to the 
obtained solutions li is calculated and the average of these 
distances is used as the delineation metric Φ, i.e., 

1

1( )
H

t i
i

l
H =

Φ = ∑P . 
(9) 

Figure 3 presents the calculation procedure of this metric. It is 
important to note that all solutions obtained by an algorithm 
including those that are dominated are considered for the 
calculation of this metric. The delineation metric Φ returns a value 
in the range of [0, ∞). The smaller the value of this metric, the 
better the Pareto optimal solutions are represented by the obtained 
solutions. Ideally, this metric is zero, where population size is 



adequately large (≥ H) and each H selected Pareto solution is 
exactly overlapped by one of the nondominated solutions. The 
likelihood of this happening is zero, especially when population 
size is smaller than H, which is the case in most applications. 

 
Figure 3. Delineation metric Φ. 

3.3.4 Hypervolume 
The hypervolume metric HV, originally suggested by Zitzler and 
Thiele [13], calculates the volume of the objective space 
dominated by the nondominated solutions having the reference 
point R. The goal of this measure is to identify the proportion of 
the volume enclosed by reference point and Pareto optimal front 
covered by the nondominated solutions obtained at the end of the 
search. To be consistent with other performance metrics used in 
this study (i.e., the smaller value of the metric, the better), a 
modification of hypervolume ratio HVR is employed. Here, the 
proportion of the volume enclosed by reference point R and the 
true Pareto optimal front that is not covered by the nondominated 
solutions is of interest. 

4. DISCUSSION OF THE RESULTS 
Table 2 and Table 3 show the output statistics including mean, 
standard deviation and 95% confidence interval (CI) of the four 
performance metrics obtained from generating 30 random runs for 
each test problem using FPGA and NSGA-II. Distance ϒ and 
diversity ∆ metrics are shown in Table 2 and delineation metric Φ 
and hypervolume ratio HVR are given in Table 3. Recall that 
lower values are preferred for all four metrics.  

The results shown in Table 3 indicate that FPGA significantly 
outperforms NSGA-II with respect to the convergence to the 
Pareto optimal front. There is no overlap between the confidence 
intervals of the distance metric ϒ for FPGA and NSGA-II in all 
problems. Compared with FPGA, NSGA-II exhibits poor 
convergence in the ZDT4 and ZDT6 test problems. Both MOEAs 
have acceptable standard deviations for ϒ-metric on most 
problems. An exception occurs on ZDT4, where NSGA-II has 
very high standard deviation for ϒ-metric. To illustrate the 
convergence behavior of FPGA and NSGA-II, the sample 
obtained populations at the end of the search together with the 
Pareto optimal front for ZDT1, ZDT3, ZDT4 and ZDT6 are 
shown in Figure 4, Figure 5, Figure 6 and Figure 7, respectively. 
These figures show the superiority of FPGA over NSGA-II in 

rapidly converging to the true Pareto optimal solution set while 
preserving a diverse set of nondominated solutions. Within the 
fixed number of solution evaluations, FPGA obtains the 
population of nondominated solutions while a significant 
proportion of solutions in NSGA-II are dominated solutions, 
indicating that FPGA has much faster convergence. It is 
interesting to note that all obtained nondominated solutions 
yielded by NSGA-II at the end of the search are dominated by the 
nondominated solutions of FPGA in most problems. The 
favorable performance of FPGA is most likely due to high elitism 
intensity and regulation operator employment. These settings help 
to improve search space exploitation and to save a considerable 
number of solution valuations for further investigation at later 
generations. 
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Table 2 shows that FPGA has significantly better performance 
than NSGA-II in terms of the diversity metric ∆ for most 
problems. There is no overlap of confidence intervals for ∆ for 
FPGA and NSGA-II in ZDT1, ZDT4 and ZDT6 problems. 
NSGA-II performs slightly better than FPGA on ZDT3 with 
respect to this metric. It is surprising to note that FPGA has better 
∆-metric than NSGA-II in many runs on ZDT3, but its 
performance is actually poor in few runs. The reason for this 
happening is most likely due to the employment of high elitism 
intensity resulting in biasness towards some particular regions of 
the Pareto front in few runs. This undesired biasness with FPGA 
is also realized on ZDT3 and ZDT4 problems having relatively 
large standard deviation. NSGA-II has good standard deviations 
for ∆-metric on all problems, except in ZDT4, where it has very 
high standard deviation. 

Table 3 indicates that FPGA has better performance than NSGA-
II in terms of the delineation metric Φ for most problems. There is 
no overlap between the confidence intervals of the Φ-metric for 
FPGA and NSGA-II in FON, KUR, ZDT1, ZDT4 and ZDT6 
problems. FPGA has a little better average performance than 
NSGA-II on ZDT3, but there is a considerable overlap of their 
confidence intervals. The standard deviations of the Φ-metric 
across all problems for both MOEAs are small, except for FPGA 
on ZDT3 (due to the poor diversity in few runs) and for NSGA-II 
on ZDT4. 

For HVR, the reference point R is set at (1, 1.1) for all test 
problems. The results shown in Table 3 indicate that FPGA 
outperforms NSGA-II with respect to HVR. There is no overlap of 
confidence intervals for HVR for FPGA and NSGA-II in all 
problems. It is interesting to note that although there is 
considerable overlap between the confidence intervals of both 
algorithms on ZDT3 with respect to delineation metric Φ, FPGA 
outperforms NSGA-II with respect to HVR. Regarding the 
obtained results, it is implied that although nondominated 
solutions with FPGA in few runs do not represent the Pareto 
fronts of ZDT3 pretty well, they dominate a considerable portion 
of the hypervolumes enclosed by the Pareto fronts and reference 
point R. The standard deviations of HVR for NSGA-II is small on 
all problems, except in ZDT4. 

 

 
 
 



 
Table 2. Mean, standard deviation and 95% confidence interval of distance and diversity metrics for FPGA and NSGA-II over 30 
random runs. 

Distance ϒ Diversity ∆ Test 
Problem Algorithm Avg. Std. Dev. 95% CI Avg. Std. Dev. 95% CI 

FPGA 0.0210 0.0110 [0.0169, 0.0251] 0.0769 0.0296 [0.0659, 0.0879]ZDT1 
NSGA-II 0.0659 0.0128 [0.0612, 0.0707] 0.1324 0.0220 [0.1242, 0.1406]

FPGA 0.0200 0.0092 [0.0166, 0.0235] 0.2017 0.1036 [0.1631, 0.2403]ZDT3 
NSGA-II 0.0297 0.0091 [0.0263, 0.0331] 0.1968 0.0233 [0.1882, 0.2055] 

FPGA 0.0332 0.0262 [0.0234, 0.0430] 0.3812 0.1804 [0.3140, 0.4485]ZDT4 
NSGA-II  0.7677 0.3414 [0.6404, 0.8950] 1.5111 0.5797 [1.2950, 1.7273] 

FPGA 0.0445 0.0082 [0.0414, 0.0475] 0.1393 0.0256 [0.1297, 0.1488] 
ZDT6 

NSGA-II 0.2647 0.0380 [0.2506, 0.2789] 0.7239 0.1063 [0.6843, 0.7636] 
 
Table 3. Mean, standard deviation and 95% confidence interval of delineation and hypervolume ratio metrics for FPGA and 
NSGA-II over 30 random runs. 

Delineation Φ Hypervolume Ratio HVR Test 
Problem Algorithm Avg. Std. Dev. 95% CI Avg. Std. Dev. 95% CI 

FPGA 0.0208 0.0097 [0.0172, 0.0244] 0.0443 0.0198 [0.0369, 0.0517]ZDT1 
NSGA-II 0.0599 0.0111 [0.0557, 0.0640] 0.1259 0.0226 [0.1175, 0.1343]

FPGA 0.0269 0.0255 [0.0174, 0.0364] 0.0850 0.0345 [0.0722, 0.0979]ZDT3 
NSGA-II 0.0286 0.0084 [0.0255, 0.0318] 0.1086 0.0252 [0.0992, 0.1180] 

FPGA 0.0701 0.0457 [0.0531, 0.0872] 0.0910 0.0479 [0.0732, 0.1089]ZDT4 
NSGA-II  0.6557 0.3128 [0.5391, 0.7724] 0.8173 0.2123 [0.7381, 0.8964] 

FPGA 0.0415 0.0079 [0.0385, 0.0444] 0.1083 0.0190 [0.1012, 0.1154] 
ZDT6 

NSGA-II 0.2538 0.0396 [0.2391, 0.2686] 0.5731 0.0690 [0.5473, 0.5988] 
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Figure 4. The populations with FPGA and NSGA-II on ZDT1. 
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Figure 5. The populations with FPGA and NSGA-II on ZDT3.  
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Figure 6. The populations with FPGA and NSGA-II on ZDT4. 
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Figure 7. The populations with FPGA and NSGA-II on ZDT6. 
 

5. SUMMARY AND CONCLUSIONS 
This research presents a MOEA, called FPGA, for dealing with 
MOPs where each solution evaluation is computationally- and/or 
financially-expensive. This approach incorporates a Pareto-based 
multiobjective optimization method into a genetic algorithm. New 
genetic operators are introduced to enhance the algorithm’s 
performance in finding Pareto optimal solutions minimizing 
computational effort. In addition to distance and hypervolume 
metrics, two new metrics, called diversity and delineation, are 
defined to better discriminate among the MOEAs. Computational 
results for a number of well-known test problems with different 
Pareto optimality characteristics indicate that FPGA is capable of 
efficiently and effectively direct the search toward Pareto optimal 
front. Statistical analyses show that, within a relatively small 
number of solution evaluations, FPGA outperforms NSGA-II in 
most problems in terms of rapidly converging to the true Pareto 
optimal solution set while preserving a diverse, evenly-distributed 
set of nondominated solutions. Adaptive population sizing is most 
likely one of the main factors resulting in the superiority of FPGA 
over NSGA-II in this benchmark environment.  

Future research includes additional testing and benchmarking 
FPGA on several other MOPs higher in dimension of objective 
space. The attempt to find the best FPGA parameter settings will 
also be pursued in the next step of this study. Finally, more 
precise statistical analyses of the results will be performed. 
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