
Solving Expensive Multiobjective Optimization Problems:
A Fast Pareto Genetic Algorithm Approach

Hamidreza Eskandari
Department of Industrial Engineering and Management

Systems
University of Central Florida

4000 Central Florida Blvd, Orlando, FL 32816

eskandar@mail.ucf.edu

Christopher D. Geiger
Department of Industrial Engineering and Management

Systems
University of Central Florida

4000 Central Florida Blvd, Orlando, FL 32816

cdgeiger@mail.ucf.edu

ABSTRACT
We present a new multiobjective evolutionary algorithm
(MOEA), called fast Pareto genetic algorithm (FPGA). FPGA
uses a new ranking strategy for the simultaneous optimization of
multiple objectives where each solution evaluation is
computationally expensive. New genetic operators are employed
to enhance the algorithm’s performance in terms of convergence
behavior and computational effort. Computational results for a
number of benchmark test problems indicate that FPGA is a
promising approach and it outperforms the improved
nondominated sorting genetic algorithm (NSGA-II), which can be
considered a widely-accepted benchmark in the MOEA research
community, within a relatively small number of solution
evaluations.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis] Optimization – evolutionary
algorithms, unconstrained optimization.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Multiobjective optimization, Genetic algorithms, Pareto
optimality.

1. INTRODUCTION
Most real-world problems often involve multiple, conflicting
objectives, where improving one objective may degrade the
performance of one or more of the other objectives.
Multiobjective optimization problems (MOPs) have the following
general form:

min (max) , ()z = f x (1)

where f(x) is vector of m objective functions to be optimized, i.e.,
f(x) = (f1(x), f2(x), …, fm(x)), and solution x is a n-dimensional
vector of decision variables that are continuous or discrete or
both. Eq. 1, which can be converted to a maximization problem
with no loss of generality, is typically subject to the constraints

() , 1, 2, ,j j j k≤ =g x b K , and (2)

, 1,2, ,i i ia x b i n≤ ≤ = K , (3)

where b is a k-dimensional vector of inequality constraints. Eq. 3
restricts the values of each decision variable xi between an upper
and a lower bound.

Traditional approaches for solving MOPs typically try to scalarize
the multiple objectives into a single objective using a vector of
user-defined weights. This transforms the original multiple
optimization problem formulation into a single objective
optimization problem with a single solution. Several drawbacks of
using such traditional methods include:

• The weight (or priority) vector used in the scalarization
process greatly influences the final solution;

• Some optimal solutions may never be found if the objective
space is not convex (or concave, for maximization
problems); and

• Traditional approaches may not work effectively if
objectives have discontinuous variable space.

However, these and other known drawbacks to traditional
approaches have motivated researchers and practitioners to seek
alternative techniques to find a set of Pareto optimal solutions
rather than just a single solution [e.g., 3, 4]. A solution is Pareto
optimal if there exists no feasible solution for which an
improvement in one objective does not lead to a simultaneous
degradation in one or more of the remaining objectives. In other
words, the solution is a nondominated solution.

1.1 Evolutionary Algorithms for
Multiobjective Optimization
Many heuristic search algorithms have been developed to solve
MOPs including simulated annealing, tabu search and
evolutionary algorithms (EAs). EAs, the focus of this study, are
population-based search algorithms inspired by Darwinian
evolutionary theory (i.e., the survival of the fittest). It has been
shown that EAs are intelligent optimization algorithms that are
able to balance exploration and exploitation of the solution search
space [8]. Other major advantages of EAs for MOPs include:

• EA-based approaches are capable of finding a set of good
solutions rather than a single solution [4].

• EA-based approaches are capable of exploring the search
space more thoroughly within a smaller number of function
evaluations than other point-to-point local search procedures
such as simulated annealing and tabu search [1].

• EA-based approaches are less dependent on the selection of
the starting solutions, and they do not require definition of a
neighborhood [1].

In recent years, several variations of MOEAs have been
developed to handle MOPs [e.g., 3, 4]. Many of the suggested
MOEAs have been employed in a variety of real-world
applications [2]. Among the existing algorithms, an improved

version of the nondominated sorting genetic algorithm (NSGA-II)
of Deb et al. [6], a newer version of strength Pareto EA (SPEA2)
of Zitzler et al. [12], Pareto-archived evolution strategy (PAES) of
Knowles and Corne [9] are the more popular MOEAs.

1.2 Purpose of Research
In many previous applications of MOEAs, the time to perform a
single solution evaluation is of the order of minutes or even hours
restricting the total number of solution evaluations. Additionally,
many real-world problems involve complicated, “black-box”
objective functions making a large number of solutions
evaluations computationally- and/or financially-prohibitive.
Therefore, a fast multiobjective optimization algorithm capable of
rapidly finding a diverse set of Pareto optimal solutions would be
greatly beneficial. The purpose of this research is to propose such
an EA-based multiobjective optimization methodology that finds
evenly-distributed Pareto optimal solutions in an acceptable
period of time.

The remainder of this paper is organized as follows. Section 2
describes the proposed MOEA that uses a new solution ranking
strategy. The proposed MOEA and a widely-accepted benchmark
MOEA are used to solve a suite of published test problems.
Section 3 and Section 4 present the experimental design and
computational results, respectively. This paper is concluded and
future research directions are given in Section 5.

2. PROPOSED METHODOLOGY – FAST
PARETO GENETIC ALGORITHM
The proposed framework named fast Pareto genetic algorithm
(FPGA) utilizes a population-based evolutionary algorithm.
However, more importantly, this framework incorporates a new
solution ranking strategy into a MOEA. A real-coded GA is
implemented to avoid the difficulties associated with binary
representation and bit operations, particularly when dealing with
continuous search spaces with large dimension. Recall that each
solution to a MOP is represented by an n-dimensional vector x =
(x1, x2, …, xn), where a decision variable xi is a real number
bounded by a lower limit ai and upper limit bi, i.e., xi ∈ [ai, bi].
The dimension of the vector is equal to the number of decision
variables of the problem under study.

New search operators are also introduced to improve the proposed
algorithm’s convergence behavior and to reduce the required
computational effort. An elitism operator is implemented to
ensure the propagation of the Pareto optimal solution set. A
regulation operator is introduced to dynamically adapt the
population size of the GA as needed up to a user-specified
maximum population size, which is the size of the set of
nondominated solutions in this study. Figure 1 gives the
pseudocode for FPGA.

The primary steps of FPGA are the following:

1. Initialize all decision parameters to user-specified values;
2. Create an initial population of candidate solution vectors

randomly at the first generation; however, FPGA can be
easily modified to generate the initial population
heuristically, seeded with user-defined solution vectors, or
using a combination of these approaches;

3. If it is the first generation, go to Step 5; otherwise, increment
the generation number and select pairs of solutions as parents
from the previous population in the reproduction operation

using binary tournament selection;
4. Perform the crossover and mutation operations to generate

candidate solutions (offspring);
5. Evaluate the candidate solution vectors for the m objective

functions and record them;
6. Combine generated candidate solutions with the previous

population to form a composite population;
7. Rank the composite population of solutions based on the new

ranking strategy using their fitness values;
8. Regulate the population size according to the number of

nondominated solutions and generate a new population from
the composite population by discarding the inferior
(dominated) solutions; and

9. Terminate the algorithm if the stopping criterion is met;
otherwise, return to Step 3.

A detailed discussion of the primary features of FPGA is provided
in the sections that follow.

initialize user decision parameters (numvars, numobjs,
maxpopsize, maxsolevals, pc, pm, …)
t := 0
create initial random population { }1 2 3, , ,t t t

t =P x x x K

evaluate(Pt)
do while (stopping criteria is not met)
{

t := t +1

t′P := select(Pt-1) // select pairs of solutions for
reproduction

Ot := crossover(t′P)
Ot := mutate(Ot)
evaluate(Ot)
CPt := Pt-1 OU t // form composite population
rank(CPt)
regulate(CPt)
Pt := generate(CPt)

}end do
Figure 1. Pseudocode of the proposed fast Pareto genetic
algorithm.

2.1 Initialization and Solution Evaluation
After initializing the user-specified parameter settings (e.g.,
number of decision variables, number of objectives, maximum
population size, maximum number of solution evaluations, etc.),
the initial population is created by random sampling each decision
variable within its defined range of variation. The evaluation of
new solutions in terms of the objective functions is accomplished
by calculating the complicated mathematical, closed-form
expressions specified by the published benchmark problems,
which are discussed later. At each generation, the obtained
solutions with their corresponding objective values are all
recorded.

2.2 Ranking and Fitness Assignment
In the FPGA, before ranking and fitness assignment is performed,
a new solution set Ot generated by crossover and mutation
operations are combined with previous population Pt-1 to form the
composite population CP = P O, i.e., CP Ut t t-1 t, where denotes
the union of the two sets. The new ranking strategy is based on the
classification of candidate solutions of the composite population

U

CPt into two different categories (ranks) according to solution
dominance. These ranks are used to evaluate solution fitness for
the purpose of solution reproduction for subsequent generations.
Combination of previous generation Pt-1 with generated offspring
Ot provides an opportunity to preserve the superior solutions in
the next generation and discard the inferior solutions depending
on the number of nondominated solutions obtained in the
composite population.

Firstly, all nondominated solutions are identified as the first rank,
which implies that there is no solution that is better than these
solutions with respect to all objectives simultaneously. The fitness
of the nondominated solutions in the first rank is calculated by
comparing each nondominated solution with one another and
assigning a fitness value. These values are computed using the
crowding distance approach suggested by Deb et al. [6], which
has been shown to help maintain diversity among the
nondominated solutions in the Pareto optimal front. It is important
to note that a solution with a large fitness value is preferred. The
larger a solution’s fitness value, the greater the distance that
solution is from its neighboring nondominated solutions along the
Pareto front.

All dominated solutions are identified as the second rank. Each
dominated solution in the second rank is compared with all other
solutions and assigned a fitness value depending on the number of
solutions they dominate. The idea here is similar to the strength
concept employed in SPEA [13] and SPEA2 [12]; however, it has
been generalized. The fitness assignment takes into account both
dominating and dominated solutions for any dominated solution.
Here, each solution in the composite population CPt is assigned a
net strength value S(xi), indicating the number of solutions it
dominates, where

() { }|= ∀ ∈ ∧ ∧ ≠fi j j t i jS x x x CP x x j i

j

. (4)

The cardinality of a set is denoted as |·| and the expression
 means that solution xix xf i dominates solution xj. Then, the

fitness value of each dominated solution is calculated by

() () () , .
i j j i

i j j j tF S S= − ∀ ∈ ∧∑ ∑
x x x x

x x x x CP
f f

j i≠
(5)

In other words, the fitness value assigned to each dominated
solution xi in the second rank is equal to the summation of the
strength values of all solutions it dominates minus the summation
of the strength values of all solutions by which it is dominated. In
contrast to SPEA and SPEA2 where the strength values of only
solutions that xi is dominated by (second term in Eq. 5) is
considered, FPGA takes into account both dominating and
dominated solutions with respect to solution xi. This strategy
provides more information on Pareto dominance and niching
relations among solutions in the composite population and reduces
the chance that two solutions have the same fitness value.
Therefore, no additional diversity preservation mechanism is used
among the dominated solutions in the second rank thus requiring
less computation (unlike SPEA2, which requires much higher
computation for the density estimator). It is interesting to note that
if most solutions do not dominate one another, it is implied that
they belong to the first rank where crowding distance operator is
invoked to maintain the diversity among them.

 are

calculated, the solutions are compared where three different
scenarios might occur. In the first scenario, two selected solutions
have different ranks in which the solution with the better rank is
preferred. In the second scenario, two solutions have the same
rank but different fitness values. In such cases, the solution with
larger fitness value is preferred. In the last scenario, two solutions
have the same rank and fitness value. In the last case, one of
solutions is randomly preferred.

2.3 Elitism and Population Regulation
An elitism operator with relatively high intensity is implemented
to ensure propagation of the nondominated solutions (i.e., elite
solutions) to subsequent generations. This is accomplished by
copying all solutions in the previous generation Pt-1 to the
composite population CPt.

The number of nondominated solutions usually increases over
generations resulting in low elitism intensity in early generations
if the population size is quite large and kept fixed. Moreover, the
fluctuations of the number of nondominated solutions over
generations demand an adaptive population sizing strategy to
place appropriate emphasis of elitism intensity on nondominated
solutions. If elitism intensity is too high, premature convergence
might occur and if elitism intensity is too low, convergence might
be too slow and computationally-expensive. Therefore, FPGA
employs a regulation operator to dynamically adjust the
population size until it reaches a user-specified maximum
population size as calculated by:

{ }{ }min | is nondominated ,t t t i i t ia b maxpopsize⎡ ⎤= + × ∈ ∧⎢ ⎥P x x CP x

,
(6)

where
tP is the population size at generation t, at is a positive

integer variable that might change over generations, bt is a
positive real variable that might change over generations, x⎡ ⎤⎢ ⎥ is

the smallest integer that is greater than or equal to the real number
x, and maxpopsize is the user-specified maximum population size.
In this study, we set at = 20, bt = 1 and maxpopsize = 100. Thus,
we get

{ }{ }is nondominatedmin 20 | , 100t i i t i= + ∈ ∧P x x CP x .

In other words, the population size at generation t is 20 plus the
number of nondominated solutions in the composite population if
it is not larger than the pre-specified maximum population size.
Otherwise, it is kept (truncated) equal to the maximum population
size.

FPGA, unlike many of the proposed MOEAs, benefits the small
number of offspring created by crossover and mutation operations
over generations. In this study, we set the number of offspring
created at each generation |Ot| = 20. It is interesting to note that
this feature makes FPGA capable of saving significant number of
solution evaluations during the search and utilizes the exploitation
in a more efficient manner at later generations. Bear in mind that
in expensive MOPs where only small number of solution
evaluations is desired, more emphasis on exploitation and less
emphasis on exploration can be extremely beneficial. Creating a
large number of offspring at early generations consumes
considerable number of solution evaluations limiting the total
number of generations which consequently results in no extensive
utilization of exploitation. FPGA requires less number of solution After the fitness values of all candidate solutions in CPt

evaluations per generation providing more generations for more
search exploitation.

The suggested values for at, bt and |Ot| are obtained by performing
several pilot runs. As the intent of this research is to introduce a
novel strategy that addresses adaptive population sizing and
conservative offspring generation in order to improve the
efficiency and effectiveness of the search, the attempt to
determine optimal settings for these parameters is left for future
study.

2.4 Termination Criterion
Different approaches have been used to stop the search process of
EAs including those that consider the landscape of the response
surface, the desired solutions quality, the specific number of
solution evaluations and the required computation time. Originally
designed for dealing with expensive MOPs, FPGA uses a new
stopping criterion that considers the convergence speed towards
the true Pareto optimal front. Here, when the number of
nondominated solutions reaches the pre-specified maximum
population size and thereafter no changes are made in the number
of nondominated solutions within a certain number of solution
evaluations, the search stops. For better understanding of the
suggested stopping criterion for expensive MOPs, a convergence
velocity measure is defined.

Definition 1: The Pareto production rate (PPR) is the rate at
which a particular algorithm produces nondominated solutions per
population and is calculated as

t

t
t

PPR =
NP
P

,
(7)

where Pt is the population at generation t, and |NPt| denotes the
number of nondominated solutions belonging to population Pt.
When PPRt reaches one (i.e., all solutions in the population are
nondominated) and it does not make any changes over a pre-
specified number of solution evaluations implying no promising
nondominated solutions are found within this period, the search
stops.

2.5 A Discussion on Computational
Complexity of FPGA
To determine the computational complexity of FPGA, consider
the worst case complexity at generation t of the search process.
The key operations of FPGA with respect to complexity include
the new ranking strategy, fitness assignment, and crowding
distance computation. The complexity of FPGA’s ranking strategy
that determines the nondominated solutions and dominated
solutions is O(mNtlogNt) for m = 2 and 3 and O(mNtlogNt

m-2) for
m ≥ 4. The complexity of the crowding distance computation
performed for fitness assignment of the nondominated solutions is
O(mNtlog(Nt)). Sorting of the nondominated solutions based on
their fitness assignments obtained from crowding distance needs
O(mNtlogNt) computations. Fitness assignment of dominated
solutions requires O(m) computations. Thus, the overall
complexity of FPGA is at most O(m). If the maximum
population size of FPGA is the static population size of most other
MOEAs, i.e., N, the overall complexity of FPGA is O(mN

2
tN

2
tN

2),
which is no more than that of other popular MOEAs such as
NSGA-II, SPEA2, and PAES.

3. EXPERIMENTAL STUDY
In this section, we evaluate the performance of FPGA on a suite
of published benchmark test problems having two objectives and
no coupled constraints. In all test problems, the functions are to be
minimized. The results of FPGA are also benchmarked against
one of the state-of-the-art MOEAs – the real-coded NSGA-II of
Deb et al. [6]. It has been reported that NSGA-II outperforms
most of its competitors including SPEA and PISA, and it
competes closely with SPEA2 in terms of convergence to the true
Pareto optimal front while maintaining the diversity [e.g., 6, 7,
12]. However, SPEA2 requires higher computational complexity
of O(mN2 2logN) [12] compared to that of NSGA-II, O(mN),
raising the question of whether the computationally-intensive
fitness assignment strategy and truncation operator in SPEA2 pays
off for expensive MOPs. Some studies report that there is no
significant difference between the performance of SPEA2 and
NSGA-II, although SPEA2 requires significantly higher
computational time [5, 7, 12].

3.1 Benchmark Test Problems
The suite of test problems consists of four well-known ZDTs real-
variable benchmark problems that have been selected from the
literature [11]. The test problems ZDT1 and ZDT2 have 30
decision variables each and the former has a convex Pareto
optimal front and the latter has five discontinuous Pareto optimal
fronts. The 10-decision variable test problem ZDT4 is a multi-
frontal (multi-modal) problem having a large number of local
Pareto optimal fronts and a single global Pareto optimal front. The
test problem ZDT6 has 10 decision variables and a nonconvex
Pareto optimal front. Moreover, the density of solutions across its
Pareto optimal front is non-uniform and the density towards the
Pareto optimal front gets thin. The selected suite of test problems
include quite challenging Pareto optimality characteristics. Many
researchers have used these problems as benchmarks for
evaluating their proposed algorithms [e.g., 6, 12].

3.2 Algorithm Parameter Settings
For both FPGA and NSGA-II, all of the user-specified parameter
settings (except the maximum number of solution evaluations) are
used according to the suggested values in the original study of
Deb et al. [6]. These settings are summarized in Table 1. In order
to make better comparisons, the maximum population size for
FPGA is set to the suggested population size used by Deb et al.
[6]. The number of solution evaluations shown in Table 1 depends
on the characteristics and complexity of the underlying problem.
The number of solution evaluations is kept relatively small to
evaluate the performance of each algorithm more effectively for
expensive, real-world MOPs that may only allow a small number
of solution evaluations.

3.3 Performance Metrics
In MOPs, there are three primary goals: 1) fast convergence to the
true Pareto frontier solution set in the objective space, 2) close
proximity to the true Pareto frontier solution set, and 3) diversity
and even dispersion of the obtained nondominated solutions along
the true Pareto optimal front. Many performance metrics have
been introduced within the last decade [e.g., 3, 4, 6, 7, 13]. Few
performance metrics have been suggested to simultaneously
consider the above goals. Most previous studies emphasize only
the closeness and diversity measures. Fast convergence to optimal
solutions for expensive MOPs is very important. This is especially
the case in real-world problems where finding the optimal or even

near-optimal solutions is often computationally-prohibitive. In
this study, four performance metrics are used to assess the
convergence behavior and diversity of FPGA and NSGA-II, two
of which are newly introduced. They are the diversity metric and
the delineation metric. Two of the four metrics, delineation and
hypervolume, are employed for simultaneous evaluation of
closeness and diversity of the obtained solutions to gain a more
thorough overall evaluation. For each test problem, each
algorithm is run with 30 different seed values and the mean,
standard deviation and 95% confidence interval are computed.
The lower and upper bounds of the 95% confidence interval are
calculated by

/ 2, 1nx t sα −± n , where x is the sample mean, s is

sample standard deviation, α is the significance level and is equal
to 0.05 and n is the sample size and is equal to 30. Given the fact
that in expensive MOPs the time required for solution evaluations
significantly dominates the actual CPU time of any approach, no
attempt is made to measure the computation time needed to run
each algorithm. However, equality of the computational
complexity of FPGA and NSGA-II indicates that there should be
no appreciable difference between their computation times.

Table 1. Parameter settings for FPGA and NSGA-II.

Algorithm Parameter FPGA and Real-Coded NSGA-II

Test Problem ZDT1 ZDT3 ZDT4 ZDT6
No. of Solution Evaluations 6500 6000 10000 10000
Initial Population Size 100
Maximum Population Size 100
Crossover Probability 1
Mutation Probability 1/n (where n is number of variables)
Crossover Type Simulated Binary Crossover (ηc=15)

Mutation Type Polynomial Mutation (ηm=20)

Selection Scheme Binary Tournament

3.3.1 Distance from the Pareto Optimal Front
Deb et al. [5] suggest the distance metric ϒ, which evaluates the
convergence to a known Pareto optimal frontier set. The goal of
this metric is to identify how close a set of obtained solutions are
to the true Pareto optimal set. The smaller the value of this metric,
the closer the solutions are to the true Pareto optimal frontier set.
Ideally, this metric is zero, where each obtained solution falls
exactly on one of the selected H uniformly-spaced solutions from
the true Pareto optimal set in the objective space. However, the
likelihood of this happening is rare.

3.3.2 Diversity of Nondominated Solutions
We define the diversity metric Δ to evaluate the extent of
dispersion of the obtained nondominated solutions in the objective
space. Here, the goal is to obtain a set of nondominated solutions
that are both widely- and uniformly-distributed along the Pareto
optimal front at the end of the search. To compute the diversity
metric Δ, the Euclidean distance di between consecutive
nondominated solutions is calculated in the objective space, as
shown in Figure 2, where i = 1, ..., |NPt|-1 and |NPt| is the number
of nondominated solutions at the end of the search. Then, the
standard deviation of these distances σd is calculated representing
the degree of non-uniformity of the nondominated solutions. The
minimum Euclidean distance of the two extreme Pareto solutions
of the true Pareto optimal set from the nondominated solutions,

denoted by dp and dq , is calculated. Note that the distances dp and
dq are the distances from the closest nondominated solutions, not
necessarily the endpoints of nondominated solutions, to the two
extreme Pareto solutions (shown in Figure 2). Finally, the
diversity of the set of nondominated solutions is

() ()
1 2

1

1
1

t

t p q i
it

d d d d
−

=

Δ = + + −
− ∑

NP

NP
NP

.
(8)

The first two terms of Eq. 8 measure the spread of the
nondominated solutions and the last term measures their uniform
spacing. The diversity metric Δ returns a value in the range of [0,
∞). Small values of this metric mean the nondominated solutions
are well-spread and well-distributed. Ideally, this metric takes a
value of zero. This happens when each end nondominated solution
falls exactly on the extreme Pareto optimal solutions and all
Euclidean distance di between consecutive nondominated
solutions are equal in the objective space. However, similar to the
distance metric ϒ, this rarely happens.

f2

Minimize

M
in

im
iz

e

Pareto Solution Set

d1

di

d|NPt|-1

dp

Pareto optimal solution

Nondominated solution

f1

dq

Figure 2. Diversity metric Δ.

3.3.3 Delineation of Pareto Optimal Front
The delineation metric Φ is proposed to evaluate simultaneously
the extent of both convergence and diversity to a known Pareto
optimal front. The goal of this study is to identify a set of
solutions that well represent the Pareto optimal set. The idea
behind this metric is how well each solution on the Pareto optimal
front is represented by the obtained solutions. To calculate the
delineation metric Φ, a large set of H uniformly-spaced solutions
from the Pareto optimal set that well reflects the true Pareto
optimal front must be known. The same set of H solutions used in
calculating the distance metric ϒ are used here. The minimum
Euclidean distance from each Pareto optimal solution to the
obtained solutions li is calculated and the average of these
distances is used as the delineation metric Φ, i.e.,

1

1()
H

t i
i

l
H =

Φ = ∑P .
(9)

Figure 3 presents the calculation procedure of this metric. It is
important to note that all solutions obtained by an algorithm
including those that are dominated are considered for the
calculation of this metric. The delineation metric Φ returns a value
in the range of [0, ∞). The smaller the value of this metric, the
better the Pareto optimal solutions are represented by the obtained
solutions. Ideally, this metric is zero, where population size is

adequately large (≥ H) and each H selected Pareto solution is
exactly overlapped by one of the nondominated solutions. The
likelihood of this happening is zero, especially when population
size is smaller than H, which is the case in most applications.

Figure 3. Delineation metric Φ.

3.3.4 Hypervolume
The hypervolume metric HV, originally suggested by Zitzler and
Thiele [13], calculates the volume of the objective space
dominated by the nondominated solutions having the reference
point R. The goal of this measure is to identify the proportion of
the volume enclosed by reference point and Pareto optimal front
covered by the nondominated solutions obtained at the end of the
search. To be consistent with other performance metrics used in
this study (i.e., the smaller value of the metric, the better), a
modification of hypervolume ratio HVR is employed. Here, the
proportion of the volume enclosed by reference point R and the
true Pareto optimal front that is not covered by the nondominated
solutions is of interest.

4. DISCUSSION OF THE RESULTS
Table 2 and Table 3 show the output statistics including mean,
standard deviation and 95% confidence interval (CI) of the four
performance metrics obtained from generating 30 random runs for
each test problem using FPGA and NSGA-II. Distance ϒ and
diversity ∆ metrics are shown in Table 2 and delineation metric Φ
and hypervolume ratio HVR are given in Table 3. Recall that
lower values are preferred for all four metrics.

The results shown in Table 3 indicate that FPGA significantly
outperforms NSGA-II with respect to the convergence to the
Pareto optimal front. There is no overlap between the confidence
intervals of the distance metric ϒ for FPGA and NSGA-II in all
problems. Compared with FPGA, NSGA-II exhibits poor
convergence in the ZDT4 and ZDT6 test problems. Both MOEAs
have acceptable standard deviations for ϒ-metric on most
problems. An exception occurs on ZDT4, where NSGA-II has
very high standard deviation for ϒ-metric. To illustrate the
convergence behavior of FPGA and NSGA-II, the sample
obtained populations at the end of the search together with the
Pareto optimal front for ZDT1, ZDT3, ZDT4 and ZDT6 are
shown in Figure 4, Figure 5, Figure 6 and Figure 7, respectively.
These figures show the superiority of FPGA over NSGA-II in

rapidly converging to the true Pareto optimal solution set while
preserving a diverse set of nondominated solutions. Within the
fixed number of solution evaluations, FPGA obtains the
population of nondominated solutions while a significant
proportion of solutions in NSGA-II are dominated solutions,
indicating that FPGA has much faster convergence. It is
interesting to note that all obtained nondominated solutions
yielded by NSGA-II at the end of the search are dominated by the
nondominated solutions of FPGA in most problems. The
favorable performance of FPGA is most likely due to high elitism
intensity and regulation operator employment. These settings help
to improve search space exploitation and to save a considerable
number of solution valuations for further investigation at later
generations.

f2

Minimize

M
in

im
iz

e

Pareto Solution Set

li

l1

Pareto optimal solution

Nondominated solution

f1

lH

Table 2 shows that FPGA has significantly better performance
than NSGA-II in terms of the diversity metric ∆ for most
problems. There is no overlap of confidence intervals for ∆ for
FPGA and NSGA-II in ZDT1, ZDT4 and ZDT6 problems.
NSGA-II performs slightly better than FPGA on ZDT3 with
respect to this metric. It is surprising to note that FPGA has better
∆-metric than NSGA-II in many runs on ZDT3, but its
performance is actually poor in few runs. The reason for this
happening is most likely due to the employment of high elitism
intensity resulting in biasness towards some particular regions of
the Pareto front in few runs. This undesired biasness with FPGA
is also realized on ZDT3 and ZDT4 problems having relatively
large standard deviation. NSGA-II has good standard deviations
for ∆-metric on all problems, except in ZDT4, where it has very
high standard deviation.

Table 3 indicates that FPGA has better performance than NSGA-
II in terms of the delineation metric Φ for most problems. There is
no overlap between the confidence intervals of the Φ-metric for
FPGA and NSGA-II in FON, KUR, ZDT1, ZDT4 and ZDT6
problems. FPGA has a little better average performance than
NSGA-II on ZDT3, but there is a considerable overlap of their
confidence intervals. The standard deviations of the Φ-metric
across all problems for both MOEAs are small, except for FPGA
on ZDT3 (due to the poor diversity in few runs) and for NSGA-II
on ZDT4.

For HVR, the reference point R is set at (1, 1.1) for all test
problems. The results shown in Table 3 indicate that FPGA
outperforms NSGA-II with respect to HVR. There is no overlap of
confidence intervals for HVR for FPGA and NSGA-II in all
problems. It is interesting to note that although there is
considerable overlap between the confidence intervals of both
algorithms on ZDT3 with respect to delineation metric Φ, FPGA
outperforms NSGA-II with respect to HVR. Regarding the
obtained results, it is implied that although nondominated
solutions with FPGA in few runs do not represent the Pareto
fronts of ZDT3 pretty well, they dominate a considerable portion
of the hypervolumes enclosed by the Pareto fronts and reference
point R. The standard deviations of HVR for NSGA-II is small on
all problems, except in ZDT4.

Table 2. Mean, standard deviation and 95% confidence interval of distance and diversity metrics for FPGA and NSGA-II over 30
random runs.

Distance ϒ Diversity ∆ Test
Problem Algorithm Avg. Std. Dev. 95% CI Avg. Std. Dev. 95% CI

FPGA 0.0210 0.0110 [0.0169, 0.0251] 0.0769 0.0296 [0.0659, 0.0879]ZDT1
NSGA-II 0.0659 0.0128 [0.0612, 0.0707] 0.1324 0.0220 [0.1242, 0.1406]

FPGA 0.0200 0.0092 [0.0166, 0.0235] 0.2017 0.1036 [0.1631, 0.2403]ZDT3
NSGA-II 0.0297 0.0091 [0.0263, 0.0331] 0.1968 0.0233 [0.1882, 0.2055]

FPGA 0.0332 0.0262 [0.0234, 0.0430] 0.3812 0.1804 [0.3140, 0.4485]ZDT4
NSGA-II 0.7677 0.3414 [0.6404, 0.8950] 1.5111 0.5797 [1.2950, 1.7273]

FPGA 0.0445 0.0082 [0.0414, 0.0475] 0.1393 0.0256 [0.1297, 0.1488]
ZDT6

NSGA-II 0.2647 0.0380 [0.2506, 0.2789] 0.7239 0.1063 [0.6843, 0.7636]

Table 3. Mean, standard deviation and 95% confidence interval of delineation and hypervolume ratio metrics for FPGA and
NSGA-II over 30 random runs.

Delineation Φ Hypervolume Ratio HVR Test
Problem Algorithm Avg. Std. Dev. 95% CI Avg. Std. Dev. 95% CI

FPGA 0.0208 0.0097 [0.0172, 0.0244] 0.0443 0.0198 [0.0369, 0.0517]ZDT1
NSGA-II 0.0599 0.0111 [0.0557, 0.0640] 0.1259 0.0226 [0.1175, 0.1343]

FPGA 0.0269 0.0255 [0.0174, 0.0364] 0.0850 0.0345 [0.0722, 0.0979]ZDT3
NSGA-II 0.0286 0.0084 [0.0255, 0.0318] 0.1086 0.0252 [0.0992, 0.1180]

FPGA 0.0701 0.0457 [0.0531, 0.0872] 0.0910 0.0479 [0.0732, 0.1089]ZDT4
NSGA-II 0.6557 0.3128 [0.5391, 0.7724] 0.8173 0.2123 [0.7381, 0.8964]

FPGA 0.0415 0.0079 [0.0385, 0.0444] 0.1083 0.0190 [0.1012, 0.1154]
ZDT6

NSGA-II 0.2538 0.0396 [0.2391, 0.2686] 0.5731 0.0690 [0.5473, 0.5988]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
f1

f2

Pareto
FPGA
NSGA-II

Figure 4. The populations with FPGA and NSGA-II on ZDT1.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

f1

f2

Pareto
FPGA
NSGA-II

Figure 5. The populations with FPGA and NSGA-II on ZDT3.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
f1

f 2
Pareto

FPGA

NSGA-II

Figure 6. The populations with FPGA and NSGA-II on ZDT4.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
f1

f 2

Pareto
FPGA-s
NSGA-II

Figure 7. The populations with FPGA and NSGA-II on ZDT6.

5. SUMMARY AND CONCLUSIONS
This research presents a MOEA, called FPGA, for dealing with
MOPs where each solution evaluation is computationally- and/or
financially-expensive. This approach incorporates a Pareto-based
multiobjective optimization method into a genetic algorithm. New
genetic operators are introduced to enhance the algorithm’s
performance in finding Pareto optimal solutions minimizing
computational effort. In addition to distance and hypervolume
metrics, two new metrics, called diversity and delineation, are
defined to better discriminate among the MOEAs. Computational
results for a number of well-known test problems with different
Pareto optimality characteristics indicate that FPGA is capable of
efficiently and effectively direct the search toward Pareto optimal
front. Statistical analyses show that, within a relatively small
number of solution evaluations, FPGA outperforms NSGA-II in
most problems in terms of rapidly converging to the true Pareto
optimal solution set while preserving a diverse, evenly-distributed
set of nondominated solutions. Adaptive population sizing is most
likely one of the main factors resulting in the superiority of FPGA
over NSGA-II in this benchmark environment.

Future research includes additional testing and benchmarking
FPGA on several other MOPs higher in dimension of objective
space. The attempt to find the best FPGA parameter settings will
also be pursued in the next step of this study. Finally, more
precise statistical analyses of the results will be performed.

6. ACKNOWLEDGMENTS
The authors are extremely grateful to Mark P. Kleeman and Gary
B. Lamont of the Air Force Institute of Technology for their
thorough review of a related work that helped to strengthen this
paper. The authors would also like to thank Luis C. Rabelo of the
University of Central Florida for his financial support during the
early stages of this research investigation.

7. REFERENCES
[1] April, J., F. Glover, J. Kelly and M. Laguna. 2003. Practical

introduction to simulation optimization. In Proceedings of the
2003 Winter Simulation Conference. eds. S. Chick, T. Sanchez,
D. Ferrin and D. Morrice, 71-78. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers.

[2] Coello, C.A.C., and G.B. Lamont. 2004. Applications of Multi-
Objective Evolutionary Algorithms. Singapore: World
Scientific.

[3] Coello, C.A.C., D.A. Van Veldhuizen and G.B. Lamont. 2002.
Evolutionary Algorithms for Solving Multi-Objective Problems.
1st Ed. New York: Kluwer Academic Publishers.

[4] Deb, K. 2001. Multi-Objective Optimization using Evolutionary
Algorithms. 1st Ed. Chichester, UK: John Wiley & Sons.

[5] Deb, K., M. Mohan and S. Mishra. 2005. Evaluating the epsilon-
Domination Based Multi-Objective Evolutionary Algorithm for
a Quick Computation of Pareto-Optimal Solutions. Evolutionary
Computation 13(4), 501−525.

[6] Deb, K., A. Pratap, S. Agarval, and T.A. Meyarivan. 2002. Fast
and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computing, 6, 182-197.

[7] Erbas, C., S. Cerav-Erbas and A. D. Pimentel. 2006.
Multiobjective Optimization and Evolutionary Algorithms for
the Application Mapping Problem in Multiprocessor System-on-
Chip Design. To appear in IEEE Transactions on Evolutionary
Computation.

[8] Goldberg, D.E. 1989. Genetic Algorithms in Search,
Optimisation and Machine Learning. Addison Wesley.

[9] Knowles, J. and D. Corne. 1999. The Pareto Archived Evolution
Strategy: A New Baseline Algorithm for Multiobjective
Optimization. In Proceedings of the 1999 Congress on
Evolutionary Computation.

[10] Srinivas N. and K. Deb 1994. Multiobjective Optimization
Using Nondominated Sorting in Genetic Algorithms.
International Journal of Evolutionary Computation, 2(3), 221-
248.

[11] Zitzler, E., K. Deb and L. Thiele. 2000. Comparison of
Multiobjective Evolutionary Algorithms: Empirical Results.
Evolutionary Computation 8(2), 173195.

[12] Zitzler, E., M. Laumanns and L. Thiele. 2001. SPEA2:
Improving the Strength Pareto Evolutionary Algorithm,
Technical Report 103, Computer Engineering and Networks
Laboratory (TIK), Swiss Federal Institute of Technology (ETH)
Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland.

[13] Zitzler, E. and L. Thiele. 1999. Multiobjective Evolutionary
Algorithms: A Comparative Study and Strength Pareto
Approach. IEEE Transactions on Evolutionary Computation 83-
98.

http://www.amazon.com/exec/obidos/ASIN/047187339X/qid=1014758483/sr=1-2/ref=sr_1_2/102-9922337-0940114
http://www.amazon.com/exec/obidos/ASIN/047187339X/qid=1014758483/sr=1-2/ref=sr_1_2/102-9922337-0940114

	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	1.1 Evolutionary Algorithms for Multiobjective Optimization
	1.2 Purpose of Research
	2. PROPOSED METHODOLOGY – FAST PARETO GENETIC ALGORITHM
	2.1 Initialization and Solution Evaluation
	2.2 Ranking and Fitness Assignment
	2.3 Elitism and Population Regulation
	2.4 Termination Criterion
	2.5 A Discussion on Computational Complexity of FPGA

	3. EXPERIMENTAL STUDY
	3.1 Benchmark Test Problems
	3.2 Algorithm Parameter Settings
	3.3 Performance Metrics
	3.3.1 Distance from the Pareto Optimal Front
	3.3.2 Diversity of Nondominated Solutions
	3.3.3 Delineation of Pareto Optimal Front
	3.3.4 Hypervolume

	4. DISCUSSION OF THE RESULTS
	5. SUMMARY AND CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES

