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GECCO 2006

Tutorial

Evolutionary Image Analysis and 

Signal Processing

Stefano Cagnoni

• Using Heuristic Parameter Optimization to 

Solve Problems

• The Vision Chain

• What to Optimize (and How)

• EC Tools 

• Examples

• Discussion 

• Commercials!

OUTLINE

The function to be optimized:

• describes parametrically the solution to a 

practical problem 

• is optimized based on performance achieved on 

a set of examples which are representative of 

the problem at hand

Problem
Cost function  

f(p1…pn) 

Optimization

method

Optimized

Solution

HEURISTIC PARAMETER OPTIMIZATION 

AND REAL-WORLD PROBLEMS

Examples

Parametric 

solution S(p1…pn)

From:

• defining exact solutions, justified by an underlying 

theory

To:

• searching solutions which work well, by:

• defining a quality criterion to measure the 

effectiveness (cost) of possible solutions

• choosing a method which maximizes (minimizes) it.

A DIFFERENT CONCEPT OF “DESIGN”
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• No direct solution is available 

• Problem specifications can be provided only 

qualitatively or through examples

• Behaviors or phenomena can be described or 

measured with little precision (e.g., noisy signals) 

• Little a priori knowledge (or none at all!)

• Integration of modules to which any the previous 

conditions applies

WHEN ? COMPUTER VISION

The “art” of making computers see 

(and understand what they see)

Sub-topics (the ‘vision chain’)

Image Acquisition

Image Enhancement

Segmentation

3D-Information Recovery

Image Understanding

COMPUTER

Image Acquisition

Feature Enhancement

Segmentation

3D-Information Recovery

Image Understanding

COMPUTER AND HUMAN VISION

HUMAN

Perception

Selective information 

extraction

Grouping by ‘similarity’

Explicitation of spatial 

relationships

Object recognition and 

semantic reconstruction

(signal/image processing)

COMPUTER AND HUMAN VISION

COMPUTER

Image Acquisition

Feature Enhancement

Segmentation

3D-Information Recovery

Image Understanding

HUMAN

Perception

Selective information 

extraction

Grouping by ‘similarity’

Explicitation of spatial 

relationships

Object recognition and 

semantic reconstruction
LOW-LEVEL VISION

(signal/image processing)
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COMPUTER AND HUMAN VISION

COMPUTER

Image Acquisition

Feature Enhancement

Segmentation

3D-Information Recovery

Image Understanding

HUMAN

Perception

Selective information 

extraction

Grouping by ‘similarity’

Explicitation of spatial 

relationships

Object recognition and 

semantic reconstruction

HIGH-LEVEL VISION

(signal/image processing)

APPLICATION FRAMEWORKS APPLICATION FRAMEWORKS 

• Optimization of parameters of specific 

objective functions:

– related with a well-defined task.

– for a whole system. 

• Generation of solutions from scratch

Optimization of performances based on:

– Specific objective functions

– interactive qualitative comparisons between 

solutions

APPLICATIONS TO SIGNAL/IMAGE 

PROCESSING AND PATTERN RECOGNITION

• Optimization of filter/detector AND algorithm 

parameters for event detection and image 

segmentation.

• Qualitative optimization of image processing 

algorithms. 

• Design of implicitly parallel binary image 

operators and classifiers.

EC-BASED IMPLEMENTATIONS

• GA-based design of a QRS detector for ECG 

signals.

• Optimization of a 3D segmentation algorithm 

for tomographic images based on an elastic 

contour model. 

• GP-based design of lookup tables for color 

processing of MR images. 

• SmcGP-based low-level image processing 

and low-resolution character recognition.
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FILTER DESIGN/OPTIMIZATIONFILTER DESIGN/OPTIMIZATION

• Typical problems: 

– event detection 

– image segmentation

• Basic structure of a detection / segmentation 

algorithm

– Filter => signal (contrast) enhancement 

– Detector => event (feature) detection

SIGNAL PROCESSING

• Signal Enhancement and Event Detection

• Linear filter:

EVOLUTIONARY DESIGN OF QRS 

DETECTORS

Given: 

– Filter/detector layout 

– Training set 

– Fitness function

Optimize: 

– Filter coefficients 

– Detector threshold 

– Other parameters regulating the adaptive behavior 

of the detector

FILTER LAYOUT

• Linear:

• Linear with selected samples:

• Quadratic with selected samples:
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OTHER PARAMETERS EXPERIMENTAL SETUP

TRAINING SET

10 10-second tracts of the ECG from each of the

48 30-minute records of the MIT-BIH Arrhythmia

Database (5981 beats out of about 110,000).

FITNESS FUNCTION

f = fmax - (FP2 + FN2) ,       fmax such that f>0

FP = False Positives, FN = False Negatives

RESULTS

• 99.5% average sensitivity (100% on most 

“normal” recordings) 

• Much faster detection with respect to 

published algorithms yielding comparable 

results

IMAGE SEGMENTATION

Contour based

Region based
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RATIONALE

Pre-defined routines seldom work, so: 

• GA optimization of a specific edge detector, via 

• interactive specification of a few training contours, 

followed by 

• extraction of the contours of the structure of interest 

from the whole data set

CONTOUR CONTOUR EXTRACTION

The problem can be

reduced to 1D contour

detection.

FILTER

c0, ck
’ ck,l

’’ = filter coefficients of 0th, 1st, and 2nd order

terms. 

dk = offsets along the scan line

DETECTOR

2 possible detection schemes: 

• Thresholding of filter output 

O(xi)  = 0   if o(xi)>T 

1   otherwise

where T = threshold

• Detection of the threshold-crossings of the filter output 

O (xi) = 1  if   (o(xi) - Z) ( o(xi-1) – Z ) < 0

0  otherwise

where Z= threshold

T and Z are also optimized by the GA
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SEGMENTATION

• Definition of a starting contour 

• Iterate:

– Application of the GA-designed filter to the next 

contour

– Elastic contour model-based interpolation (also 

optimized by the GA) of the edge points 

extracted by the filter

TRAINING SET

One slice following the one which is used to 

seed the iterative segmentation process

FITNESS FUNCTION

dyk = distance, along scan line Lh, between the 

actual edge point and the one detected,   K = 

constant

RESULTS
INTERACTIVE EVOLUTION OF 

LOOKUP TABLES

Aim: given two images I1(x,y) and 

I2(x,y), produce a color image 

evolved by GP

IC(x,y) = F (I1(x,y), I2(x,y) )

with ‘interesting’ features from the 

point of view of a specific application

Fitness is implicitly defined by the 

user who acts as the referee of a 

tournament (of size 2) used in the 

selection phase
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Population size:  15

N. of generations : 10-15

Crossover rate: 0.7

No Mutation 

Results of 3 different 

experiments

SUBSUB--MACHINE CODE GENETIC MACHINE CODE GENETIC 

PROGRAMMING (Poli)PROGRAMMING (Poli)

GP variant: programs are evolved which use 

bitwise logic operations applied to a packed 

encoding of multiple binary data

Programs are executed on sequential 

computers but they implicitly implement un a 

SIMD (Single Instruction Multiple Data) 

paradigm

Software implementation of recent CPU’s 

multimedia instruction set extensions (es. Intel 

MMX, AMD 3DNow)

SUBSUB--MACHINE CODE GENETIC MACHINE CODE GENETIC 

PROGRAMMINGPROGRAMMING

Unsigned long variables are used (32 or 64 bit 

long depending on the compiler or the 

computing architecture) to encode the binary 

array of inputs

The bit string may encode consecutive samples 

of a temporal sequence, a row or a window 

within an image, etc.

A whole block of data is affected by a single 

boolean operation (SIMD paradigm)

SUBSUB--MACHINE CODE GENETIC MACHINE CODE GENETIC 

PROGRAMMINGPROGRAMMING

Advantages

• operating in parallel on multiple data makes 

fitness evaluation more efficient

• fitness can be evaluated on multiple fitness cases 

at the same time with a single operation sequence

Limitations

• Impossible to apply different operations (or 

different weights) to data from the same block: the 

long int variable is an array of independent data 

which undergo the same operation
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AIMS OF THE APPLICATION

• To test SmcGP effectiveness on a real-world 

problem (car license plate recognition)

• To compare results achieved by the SmcGP-

evolved programs with the corresponding 

algorithms used in the APACHE license-plate 

recognition system

EXPERIMENTAL TESTEXPERIMENTAL TEST--BED BED 
(APACHE PLATE(APACHE PLATE--RECOGNITION SYSTEM)RECOGNITION SYSTEM)

• Main task: car 

license-plate 

recognition

• Data: 130 images of 

running cars

• Sub-tasks: 

plate extraction and 

character recognition

PREPRE--PROCESSINGPROCESSING

Input image Grey-level 

image

H.gradient

image

The horizontal-gradient image is thresholded to 

obtain a binary image with only the strongest edges.

APACHE: PLATE EXTRACTION

The plate region is the region where the 

horizontal edge density is highest
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APACHE: CHARACTER RECOGNITION

an LVQ neural net is used to recognize them

Characters are extracted from the plate and

CHARACTER RECOGNITION

Recognition of digits represented by binary two-

dimensional patterns: 10 specialized binary 

classifiers have the pattern as input and 

produce as output:

1 if the patterns belongs to the class 

corresponding to the classifier

0 if the pattern belongs to another class

CLASSIFICATION BY INDEPENDENT CLASSIFICATION BY INDEPENDENT 

CLASSIFIERSCLASSIFIERS

Advantages

• Each classifier is specialized and yields high 

performances

• Classifiers are very ‘compact’: they don’t need to  

consider features belonging to several classes

Disadvantages 

Possible ambiguous classifications: 

- The output of all classifiers is 0

- The output of more than one classifier is 1

A disambiguation mechanism is needed

INPUT ENCODING (TERMINAL SET)

Input Pattern: binary digits of size 13x8

104 bits may be represented using 4 unsigned long 

variables.

72 bits of the pattern are packed into the 24 least 

significant bits of the first 3 long int variables

The remaining 32 are packed into the fourth one
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FUNCTION SET + FUNCTION SET + ERCsERCs

Binary bitwise operators: AND OR NOT XOR

Circular shift operators: SHR, SHR2, SHR4, 

SHL, SHL2, SHL4

Ephemeral Random Constants (ERC): 

32 bit unsigned long 

FITNESS FUNCTIONFITNESS FUNCTION

2 fitness functions have been considered

FIT1= number of correct classifications (TP+TN)

FIT2= sqrt ( Sensitivity 2 + Specificity 2 )

NB If training data are uniformly distributed, then 

the negative case shown to each classifier are 9 

times as many as the positive ones 

=> FIT1 privileges specificity

FIT2 keeps better balance between 

the two properties

EVOLUTION PARAMETERS

Population : 1000

Survival rate : 17 %

Crossover rate: 80%

Mutation rate : 3%

Tournament selection with tournament size = 7

300 to 2000 iterations 

TEST SET

Database of plate digits collected at toll booths 

of Italian highways

about 11000 digits of size 13x8 from real plates 

binarized with threshold=0.5 (0=black; 1 = white)

6024 in the training set

5010 in the test set  (exactly 501 per class)
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CLASSIFIERS

Set of 10 binary classifiers (one for each class)

For each classifier:

Input :  unsigned long pattern[4]

Output : unsigned long out

Each classifier actually produces 32 independent 

binary outputs: the output bit which has yielded the 

highest fitness on the training set is taken as the 

actual output of the classifier

CLASSIFICATION RULE

The same pattern is input into all classifiers. 

10 outputs are produced of which one (hopefully) is 

1 and the others are 0.

If the output is ambiguous an external tie-breaker is 

applied (the LVQ classifier embedded in the 

APACHE system).

For all-0 outputs this is the only possible remedy. In 

the case of more than one active outputs it is 

possible to train a second classifier set to act as tie-

breakers. 

FITNESS FUNCTION

FIT1 = TP+TN    has been used.

• High specificity => high positive predictivity

• All-zero classifications are less than 5%

• Ambiguous cases less than 1 %

About 95% of the digits is directly classified by the  

basic classifier set (accuracy: training 99.98%, 

testing 98.7%).

The remaining 5% is classified by the LVQ 

classifier.  

RESULTS

Training set

99.65% correct classifications

(99.98% of the correctly classified 99%)

Test Set

97.43% correct classifications

(98.7% of the correctly classified 95.3%)

About 0.1 microseconds per classifier (1 microsecond 

per pattern) on a Pentium IV 3 GHz computer after 

compiling the resulting programs.
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IMPLEMENTATION: PREFIX NOTATIONIMPLEMENTATION: PREFIX NOTATION

(AND (AND (NOT (SHR2 (OR PAT3 PAT2)))

(SHL4 (SHL4 (NOR (SHR2 PAT2)

(AND PAT3

(NOR (SHR4 (SHL PAT1)) PAT1))))))

(SHL4 (SHL4 (NOR (SHL2 (SHL4 PAT3))

(OR (OR (SHR PAT3)

(AND (NOR PAT2

(SHL2 PAT3))

(SHR2 (SHR4 (NOT (SHR PAT3))))))

(AND (SHR PAT2)

(SHR2 (SHR4 PAT3)))))))

INFIX NOTATION AND C SOURCEINFIX NOTATION AND C SOURCE

( ( ( NOT ( SHR2 ( ( PAT3 ) OR  ( PAT2 ) ) ) ) AND ( SHL4 ( SHL4 ( NOT 

( ( SHR2 ( PAT2 ) ) OR (( PAT3 ) AND ( NOT ( ( SHR4 ( SHL ( PAT1 ) ) ) 

OR ( PAT1 ) ) ) ) ) ) ) ) ) AND ( SHL4 ( SHL4 ( NOT ( (SHL2 ( SHL4 ( 

PAT3 ) ) ) OR ( ( ( SHR ( PAT3 ) ) OR ( ( NOT ( ( PAT2 ) OR ( SHL2 ( 

PAT3 ) ) ) ) AND ( SHR2 ( SHR4 ( NOT ( SHR ( PAT3 ) ) ) ) ) ) ) OR ( ( 

SHR ( PAT2 ) ) AND ( SHR2 ( SHR4 

( PAT3 ) ) ) ) ) ) ) ) ) )

unsigned long class0 (unsigned long p1, unsigned long p2,

unsigned long p3, unsigned long p4)

{

return ( ( ( ~ ( SHR2 ( ( p3 ) | ( p2 ) ) ) ) & ( SHL4 ( SHL4 ( ~ (   

( SHR2 ( p2 ) ) | ( ( p3 ) & ( ~ ( ( SHR4 ( SHL ( p1 ) ) )| ( p1 ) ) ) 

) ) ) ) ) ) & ( SHL4 ( SHL4 ( ~ ( ( SHL2 ( SHL4 ( p3 ) ) ) | ( ( ( SHR   

( p3 ) ) | ( ( ~ ( ( p2 ) | ( SHL2 ( p3 ) ) ) ) & ( SHR2 ( SHR4 ( ~    

( SHR ( p3 ) ) ) ) ) ) ) | ( ( SHR ( p2 ) ) & ( SHR2 ( SHR4 ( p3 ) ) ) 

) ) ) ) ) ) );

}

SmcGP-BASED PLATE DETECTION

• Input data: 4 unsigned long words encoding a 

window, of size 32x4 pixels, from the binarized

gradient image

• Desired output: 1 if the window belongs to the plate

0 otherwise

TRAINING SETTRAINING SET

• 80/130 images

• Input data: gradient 
image

• 100 samples/image: 60 
from the plate area, 30 
from around the plate, 
10 from anywhere else 
in the image 

• 366 negative  + 4824 
positive = 5190 training 
samples

Empty samples (that can 

be found both inside and 

outside the plate) have 

been purged.
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EVOLUTION PARAMETERSEVOLUTION PARAMETERS

• Population = 1000 

• Tournament selection of size = 7

• 80% crossover

17% survival

3% mutation
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RESULTS (TRAINING SET)

Performance of the best program:

Specificity = 323/366 (88.25%)

Sensitivity = 4045/4824 (83.85%) 

Program size : 1087

Fitness: 0.142296 

TYPICAL RESULTSTYPICAL RESULTS

The same algorithm that APACHE directly applies to the gradient 

image can be applied to this image to improve plate localization

RESULTSRESULTS

• When several edges are present outside the plate, 

the ‘basic’ algorithm may fail.

• ‘Filling the gaps’ in the plate increases robustness

• The evolved algorithm produces a 10-fold increase 

in the density of detected pixels within the plate.

GRADIENT (%) GENETIC (%) PLATE PIXELS

AVERAGE 367 (6.48%) 3513 (62.05%) 5661

GRADIENT (%) GENETIC (%) BACKGROUND PIXELS

AVERAGE 470 (0.12%) 8157 (2.00%) 407758

• The increase in the number of false detections is 

limited and mostly harmless.
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COMPARISON WITH APACHECOMPARISON WITH APACHE

• Both algorithms detect the plate correctly • APACHE fails, the genetic program detects the plate

COMPARISON WITH APACHECOMPARISON WITH APACHE

OTHER RESULTS

• Quasi-ideal results

OTHER RESULTS

• The plate is detected, in spite of a lot of noise
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OTHER RESULTS

• No edges are detected in the plate region: failure

SmcGPSmcGP RESULTSRESULTS

• Digit recognition:
– Performance close to the LVQ classifier with a 

10-fold reduction of computation time

• Plate detection:
– Improved accuracy with a limited increase of 

computation time

– The computation efficiency of SmcGP

classifiers limits the effects of the overhead 

added by the GP-evolved stage

CONCLUSIONSCONCLUSIONS

In many cases in which a signal/image 

processing/understanding problem can be 

reformulated as an optimization problem, 

evolutionary computation provides powerful and 

effective tools to search for ‘good’ solutions.
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