GP for Symbolic Regression

Maarten Keijzer

Chordiant Software Inc.

The Regression Problem

* Given a set of input data x and a set of desired outputs
t, find a function fsuch that:

t:f(xl:”

-, x,)+e€

x1

X2
051

0.54
0.16
0.99
0.18
0.37

x3
0.91

0.66|
0.16|
0.05|
0.12
0.94]

113

0.98
-0.24|
0.84]
-0.66
12

Overview

* What is Symbolic Regression?
* What techniques are in use?

* |ssues with SR
- overfitting
- parameters
- size
— numerics
* Formal description of regression
- maximum likelihood/maximum posterior
— The role for priors

* Interpretability

(Non-)Linear Regression

Linear:

I=wytw, x,+-+w x +E€

Generalized Linear:
t=wotw, f(x,x)++w, f (xx,)+e

Feedforward ANN:

t:WO+Z,~ W,-g(h()i"'zj h;.x;)+e

I What's this epsilon thing for? I Symbolic Regression

I tzf(x)@

Denotes the noise in the measurements ¢
The nature of this noise guides the choice of objective function @ (ADD (MULT X 0.341) V)

We seldomly (read: never) expect that we can obtain a perfect fit @ a
Corollary: perfect fit of the 'sextic' polynomial is of no interest o @

* Instead of finding coefficients for functions
* Find function structure (+ coefficients)

0341 x+y

I What does this buy? I Applications
* Automatic variable selection * Physics
I * Explicit symbolic results I - empirical equations/differential equations
— Interpretation (grey box?) * Econometrics
- Easy implementation of resulting expressions - empirical relations
* Freedom to implement non-continuous cost functions * Finance
* Multi-Objective - trading rules
* Industry

— process control/identification

I Setting up a run

- Terminal set (independent variables)
— Scheme for handling constants (ERC, mutation)
- Desired output (dependent variable)
- Function set
* simple arithmetic
* sqrt, pow
* trig
- Error measure
* Sum squared
* Sum absolute
— Usual parameters (population size, elitism, etc.)

I ¢ Define:

Machine Language Regression
(Nordin & Banzhaf)

I * Init registers with variables

* Execute register assembler program

X += X;
y *= X
X I=y;
return X,

Pretty Fast!

I The Standard Representation

- Possibly implemented as pre/postfix strings
- Subtree crossover
— Subtree (branch) mutation
- Node (point) mutation
e Strong elitism

* Largish populations (500-10000)

I * Individuals represented as trees

Regression through Assembler

* Commercially available (Discipulus)

I e FAST
* Potential difficulties with interpretation

I Stroganoff
| (Iba & Nikolaev)

* Use set of polynomial basis functions
I * Putthemin atree

* Optimize constants for each level
— minimize error for subtrees

2 2
Wot W X TW X+ W X W, X, WX, X,

weights are set to zero to create different functions

I Stroganoff (ctd)

* Inspired by GMDH
¢ Handles constants
* Handles smoothness

* Restricted (though complete) functionality
— More in line with other methods of regression.
* Does variable selection

I Stroganoff (ctd.)

I coefficients

optimized w.r.t. -\- GP used to find
target shape and size

2
F2 wytw, x +w,x{+w;x, X,

F8 w0+w1x2+w2xf

I Issues

Evaluation

Most 'off the shelf' GP toolboxes iterate over all cases

for each case:
f or each node:
eval node

implies overhead of interpreter incurred for each case and each node

For regression, we often have:
- Fixed set of cases
- No interdependencies between cases

Overfitting

* Getting a good fit on the training data is not good
enough:
- Need testing data
- Possibly need crossvalidation
* Time-honoured solution
- Split data in training/validation/testing set
* Other solutions:
- ensemble modelling
- add noise (both input and output)
- use smoothness (Stroganoff)

Vectorized Evaluation

I So we can do:

for each node:
i nterpret_node
eval func for_all_ cases

Overhead of interpreter now independent of number of cases
Additional benefits: pipelining +,*-

Standard stuff in Matlab/Octave/Mathematica
Usually absent in general GP toolboxes

I Using Constants

- Koza: ephemeral random constants (ERC)
- Angeline, Schoenaur, many others: special constant
mutation methods:
* Gaussian, Cauchy, uniform in small range, etc.
- ERC + Linear Scaling:
* f(x) -> a + b f(x) to minize squared error
* Multiple linear regression: many functions, combined
- Iba, Nikolaev (Stroganoff): Optimize all constants
* minimize subtree error
- Topzy & Punch: gradient descent on (symbolically)
differentiated functions

I * Many approaches

I Ephemeral Random Constants

- from range, or gaussian, or ...
* Don't allow changes to constants (ephemeral)

- New values can be synthesized by crossover
* (0.4 +0.1%2.3)

* Makes constant mutation a structural operator

I * Initialize with randomly chosen constants

I Linear Scaling
Very simple method to improve the fitting behaviour on
squared error considerably.

Find a and b, such that:

2 (t—a—b f(x))

is minimal. (x))
x))
)

Jlx

t
b=
(f

cov (
var

(
bflx

I Mutable constants

* Add mutation operators to:
- change constants using fixed distribution(s)
- change constant through adaptive distribution
* |dea: small local changes help in finding proper value
* Problem: two optimizations going on at the same time
— Search for proper structure
- Search for proper values inside structure
* Difficult to find proper balance

I * |nitialize constants

Why Linear Scaling?

Deterministic & Fast
Gives upper bound on squared error var(t)
Does not have problems with colinearity
— (multiple regression does)
No extra parameters
* Appears to work good (Keijzer), but maybe a bit too
good
* Does not tackle 'non-linear' constants
- Does not seem to matter much (?)

I Multiple Regression

- Find weights using multiple regression techniques
* How many trees?
* Won't we overfit (even more)?

I e Evolve a number of trees:

I Size Control
* Many methods to control size have been developed for
I genetic programming
- penalty based
- multi-objective based
— lexicographic

* Most (if not all) are directly applicable to regression
type of problems

Gradient Descent

e Calculate (symbolic) derivative of error w.r.t. the
constant values
* Move constants in direction of gradient
* Assumes relationship between error and constants is
locally linear
— True for ANN: not necessarily true for GP
* Very expensive:
- Doing a few gradient steps for an individual that gets thrown
out later on seems wasteful

- Balance between effort of finding optimal structure and
optimal constants within structure

Reasons for Size Control

* Cull bloat
— shorter solutions evaluate quicker

* [tis thought that smaller solutions generalize better.
- Appeal to Occam's razor

I Occams Razor

- What is necessity?
- If any improvement in error is a good thing, Occam does not

lead to penalty based parsimony pressure:
* does lead to lexicographical parsimony pressure

I * Objects should not be multiplied beyond necessity

Occams razor as such does not provide justification
for balancing size and error

I Penalty Functions

I MDL-Finess= D, (1,— f (x,))’+y|f]

How to set the parameter?
Fixed (trial and error)
low initially, stronger later (Zhang et. al. 1995)

Reports that penalty functions on size often work very well, yet do
lead to quite a few 'failed” runs. (Soule & Foster)

Minimum Description Length

I (Rissanen)
* Minimize the total length in bits to transmit:
I — The model
- The exceptions

tree_coding_length + exception_coding_length

tree size error

Problem: coding bias. True MDL is undecidable

I Multi Objective

I Evolve a front of individuals that uniquely balance size and performance

Choose which one?

Small size, bad performance

Lexicographic Parsimony Pressure

Only prefer shorter solutions when they're equal in fitness
(or equal in rank)

True implementation of Occam's Razor: if there's no
other reason (necessity) to prefer one model over the other,
prefer the shorter one.

Luke & Panait (2002) report that this doesn't work well
for symbolic regression type of problems.

More Numeric Issues

Protected operators are a BAD idea!

: /Protected point
-

% x e
X

Protection works on
s ing]le point, not in
nearby region

0.1

|
0z 0.3 04 0.5 0.6 07 0.8 0s 1

Numerics

Floating point arithmetic is imprecise

3.14 =

3.1400000000000001 (as a double)
3.1400001049041748 (as a float)

In large expressions, round-off errors can accumulate

float b =
float c =

is different from
log(sin(a));

float c =

// truncate!

tip: always check the results produced in another environment:
(for instance: check C/Java code with Matlab/Octave)

Interval Arithmetic

Solution: Use Interval Arithmetic

X = [-2,4]
y =1[1.4]
x+x = [0, 8]
x*y = [-2,16]
xly = [-2,4]
yl/ x = error
however

X*x =[-8, 16]
sqgr(x) = [0, 16]

ERROR

<«
-1,8]
[1,4] @

[-2,4] [1,4]

Measuring the Worth of Expressions

Formal description of relationship between
probability, error measures, likelihood, posterior
distributions and prior distributions

Likelihood and Noise

If however we have reason to assume that the noise is normally
distributed (and this is the maximum — least knowledge -- entropy
distribution), our likelihood function will become:

pllf)=T],——expl (1~ f (x)1207

s

noise was 0.1

p(1lfix)) = 4%

Likelihood

The Likelihood of our gp-function f'is the probability that we will have

observed targets #, given our estimation of f.

p(tlf)

If there is no noise in the problem (i.e., measurements are perfect),
the likelihood of f'is necessarily 1 iff # = f{x), and zero otherwise.

In other words. If we know that ¢ is noise-free, we will never settle
for anything less than a perfect fit.

Log-Likelihood / Squared Error

Maximizing Likelihood is equivalent with minimizing
negative log-likelihood. After taking the logarithm and
deleting constants, we end up with

argmax p(ilf)=argmin, = 3, (1, f (x))’

[T, expl= (1= 1 (x))"]

Thus: family of squared error functions assumes noise is
distributed normally.

Other Error Measures

Sometimes you do have an idea of the nature of the noise.
If you expect outliers (possibly caused by human intervention),
you might want to consider one of these robust measures

absolute error Iz-f{x)| --- double exponential distribution
Lorentzian log(1+(t-f(x))"2)— Lorentzian (Cauchy) distribution

Pearson limit VII log(sqrt(1+(t-f(x))"2) --- Pearson limit distr.

For 1/0 Classification:

cross entropy ¢ log(s(f(x))) + (I-t)log(1-s(f(x))) --- Binomial Distribution
s is the sigmoid function

Bayes Rule

posterior likelihood prior

normalizer, generally unknown/uncomputable

However

In general we are not interested in the probability of observing
the data given the (correctness of the) function.

We want the probability (correctness) of the function
given the data itself.

Maximizing this probability is called maximizing the posterior.

Maximize Posterior

maximizing posterior equals maximizing likelihood times prior
argmax ; p(f|t)=argmax . p(t|f)p(f)

The method of maximum likelihood assumes that
the prior is uniform, i.e., all functions are equally likely

A Prior for GP

Suggestion: take the probability of generating the function at
random as the prior. For instance under grow initialization

T={x}and F = {+}

generate with probability 0.5

with probability 0.5
<>

with probability 0.125

p(f)=2"

Maximum Posterior for GP

argmax , p(f|t)=argmax p(t|f) p(f)

—(t—=f(x))
20 oM

= argmax; Hi ﬁ e

= argminfzi%‘i“fhog(c)

2

_argmin, Y (1~ f(x)F+ylfl y=log(c)2n0

A Prior for GP

¢ depends on terminal/function set

p(f)=c

Exponential Prior on size =
Minimum Description Length

argmin ; Zi (ti_f(xi))2+y|f‘

y=log(c)2no’

RN

Coding bias induced by Intrinsic problem noise

primitive set (generally unkown, can also
(can be more complex, be more complex; per case
for instance 'speed’) uncertainty, weights)

Another Prior

Instead of incorporating structural information (size) in the prior,
it might be possible to incorporate more 'functional’ information

Smoothness defined as
sum of squared derivatives.

Tikhonov Regularization:
Weighted sum between:
Error (likelihood)

Smoothness (prior) Usually only second derivative

is considered

Variance Reduction
Ensemble Methods

* Bias/Variance tradeoff:
— Inflexible methods will not have good error (high bias)
— Flexible methods will not have good error (overfitting, high
variance)
* Flexible methods can be made more reliable by:

— training many models on different parts of the data
* bootstrapping/crossvalidation
— add the predictions together (bagging)

* Now we have many trees instead of one!

Smoothness Prior

argminfzk (t—f(X))2+yzk Zi Zj(aaxi,)

L

Prefers 'smooth' changes over wildly varying values

Guiding principle in neural network optimization (weight prior)

For General GP, very expensive; feasible with polynomials

Currently only used in Stroganoff (Nikolaev 2000)

Interpretation

f(x0) = -0.00363108+0. 262845*(si n(sqrt(x0)) *
((sin(sin((cos(x0) * sqrt((5.160156 +
sqrt(sqrt((x0 * 7.222656)))))))) * sin((x0 +
x0))) + ((sin(sgrt(x0)) * (-sin((x0 + x0)))) *
sqrt((sqrt((exp((((-sin((x0 + x0))) *
(sin(sqrt(x0)) * (sin(7.652344) *
(sin(7.652344) * (sin(sqgrt(x0)) * x0))))) *
(sin(sqrt(x0)) * (sin(sqrt(x0)) *
(sin(sqrt(x0)) * (-sin((x0 + (sin(sqrt(x0)) *
x0))))))))) + x0)) + x0)))))

I Interpretation

I The manual approach

Pick formula apart, simplify

analyze pieces,

throw away pieces that are not necessary
put pieces back together again

Often works surprisingly well
Yet many people are lazy enough to use black boxes

Can GP make life a bit easier?

I Two Approaches
| (Keijzer 2002)

* Strongly typed:
I — Search only dimensionally correct expressions
* Needs new GP system to handle these constraints (ALP)

- Fairly involved

* Coercion
- Normal GP
— Calculate amount of dimension error
- Use this as a second objective in a MOO search

Coercion approach also works when units are sparse
and incomplete

Units of Measurement

* Physical Measurements often have Units
* Units form a more-or-less formal system

e Can GP use this?
m/s

Cadd
m/s
<>
m 1/s
D

m/s

Units of Measurement
example result

GP-induced sediment transport formula:

!

u, —w u,'w
M(1+100 L

c,=10""
b u,tu, gds,

Correct balance of units,
competitive with existing equation,
simpler

)

Outlook: Matrix Arithmetic

In some fields large quantities of data can be
transparently manipulated with matrix expressions

Image processing: convol ve(mask, pi cture)
Time series: max(hi gh[1: 2: 20])
Bio-informatics: di st (pr ot ei n, protein)

Is there space for strongly typed/coercion Symbolic Regression
in such domains?

Conclusions

 Symbolic Regression is an interesting approach
— Still needs significant work
- Is productive though
* Interpretability allows for ‘grey-box' model development
- This does need human intervention
- Not 'off the shelf
* Fitting behaviour still ill-understood
- More informed priors?
- Smoothness?

