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ABSTRACT

This paper shows the first results of a new evolutionary algo-
rithm which the population is built by normal distribution
functions. Computer simulation compare Evonorm versus
Evolution strategies to optimize the Goldstein - Price func-
tion. The results show an advantage of EvoNorm as evolu-
tionary algorithm to optimize functions where the interac-
tions between variables is weak.
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1. INTRODUCTION

There is a new tendency to generate simplified versions
of evolutionary algorithms where crossover and mutation
procedures are eliminated. The population is built by a
model that represents an estimation of distributions where
the model parameters are defined by selected individuals.
Examples of these algorithms are the Population-Based In-
cremental Learning ([1]), the Compact Genetic Algorithm
([3]), the Bayesian Optimization Algorithm [7] and the Uni-
variate Marginal Distribution Algorithm ([6]). These algo-
rithms consider a weak interaction between variables. The
only exception is the Bayesian Optimization Algorithm. In
recent years has been appearing new algorithms where con-
sider a strong interaction between variables like Hierarchical
Bayesian Optimization Algorithm ([8]) and the Extended
Compact Genetic Algorithms ([4])

Evonorm is a new evolutionary algorithm where the popu-
lation is built by normal distribution functions. The param-
eters of these normal distribution functions are determined
by the calculation of the mean and the standard deviation of
selected population of solutions. The evolutionary algorithm
replaces the crossover and the mutation procedure with new
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ones to calculate parameters of distribution functions and to
generate new individuals from these distribution functions.
The present section is the introduction. The second sec-
tion is a review of the EvoNorm. The third section shows the
optimization of a test function with EvoNorm versus Evo-
lution strategies (i, A) to make comparison between them.
The conclusion and future work is given in section forth.

2. EVOLUTIONARY ALGORITHM BASED

INNORMAL DISTRIBUTION FUNCTIONS

The normal distribution function is a random variable and
describes many random phenomena that occurs in every day
life. The normal distribution function has two parameters,
the first is the mean and it is a numeric measure of the
central tendency of the random variable. The second pa-
rameter is the standard deviation and it is a measure of the
dispersion of a variable around the mean. A normal distri-
bution function can be used to represent a set of possible
values of a decision variable, so it is necessary to use a set
of parameters (mean and standard deviation) of the normal
distribution function per decision variable.

The EvoNorm procedure has the same philosophy of an
evolutionary algorithm, there are an evaluation process, a
selection, and a variation procedure where the crossover and
mutation are substituted by new procedures, the calculation
of the parameters of the normal distribution functions per
decision variable and the generation of a new population. In
continuous optimization a vector of real numbers can rep-
resent continuous decision variables. EvoNorm evolves the
parameter of every normal distribution function to generate
new real vectors of decision variables that will be evaluated
and some of them selected to calculate new parameters of
the distribution function to generate a new population. The
process is repeated again and again as it is shown in the
general algorithm of the Table 1.

There are two visible parameter of the algorithm. The
first parameter is the number of individuals generated per
iteration M , and the second parameter is the number of
individuals selected per iteration N where it must be a per-
cent of the total population; in other words, N represents
a percent of M like 10 or 20 percent. There are another
two practical parameter not described here but they will be
discussed in the next section.

3. EXPERIMENTAL RESULTS

The direct use of the parameters calculated from the indi-



Table 1: General evolutionary algorithm of normal
distribution functions.

1) Generation of a population of size M with

uniform distribution functions.

2) Evaluation of the population.

3) Selection of the best N individuals where N << M.
4) Calculation of the mean and standard deviation
with NV selected individuals of step (3)

5) Generation of a new population with normal
distribution functions. The mean and the standard
deviation of these functions were calculated in step (4)
6) If a condition of conclusion is not satisfied

go to step (2) otherwise end.

EvoNorm parameters
M: number of individuals generated per iteration
N: number of individuals selected per iteration

viduals selected causes a poor performance of the algorithm.
It was necessary to make some changes to the general algo-
rithm to make it practical. The mean is used directly but a
value of 0.5 in the standard deviation is used in a 50 percent
of total iterations. The value of 0.5 was acquired by trail
and error. The value of the standard deviation calculated
from the selected population is taken directly when there is
more than 50% of total iterations.

The exploration of the algorithm is high at the half of the
total iterations. The other half of the algorithm reduces the
exploration because the standard deviation decrease drasti-
cally. The following condition is added in step (4) to the
general algorithm of EvoNorm.

If actual generation < 50% of total iterations

then

Standard deviation of all the normal distribution function
is equal to 0.5

Else

Standard deviation is calculated from a population of
individuals selected.

There are two new parameter of the algorithm, the per-
cent of the total generation to consider another standard
deviation value and the standard deviation value to be used
by the normal distribution functions. In the experiments it
was used percent of 50% and a standard deviation of 0.5 as
mention above. The algorithm was tested to optimize the
Goldstein - Price function [5]:

a = 1+($1+$2+1)2

b = (19— 14z + 327 — 142 + 62122 + 323)

¢ = 30+ (2z1 — 3x2)°

d = (18 —32z1 + 12z] + 48x> — 36122 + 273)
f(x1,x2) = abcd

where —2 <= z; <= 2. The function has a global mini-
mum value of 3 at (z1,z2) = (0,—1)

It was used an evolution strategies (u, A) with self adap-
tation without recombination [2] to optimize the same func-
tion to make a comparisons between EvoNorm and evolution
strategies (ES). The parameters of both algorithms like the
total of individuals and the total of iterations are adjusted
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Figure 1: A zoom of the first 20 evaluations.
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Figure 2: A zoom between 1 and 100 evaluations .

to get 400 evaluations. ES is (20,20) and runs in 20 iter-
ations and EvoNorm has M = 20 with V = 5 and runs
in 20 iterations. Both algorithms were executed 100 times
to get an average of the performance. The figure 1 shows
the average performance of 100 runs in the first 20 evalua-
tions. ES has a slighter better performance than EvoNorm
between evaluation 4 and 15 but ES has a poor beginning
than EvoNorm between evaluation 1 and 4. The figure 2
shows the average performance of both algorithms in the
first 120 evaluations. The ES decrease smoothly to the op-
timum and EvoNorm decreace abruptly between evaluation
20 and 60; it behaves like evolution strategies later. The fig-
ure 3 shows the performance of both algorithms in the last
300 evaluations. EvoNorm has better performance than ES
because EvoNorm reachs the optimum more times than ES
(in 100 runs EvoNorm reaches 59 times a value smaller than
3.1 whereas ES reaches it only 5 times)

4. CONCLUSIONS

The EvoNorm is a new evolutionary algorithm for con-
tinuous optimization based in a estimation of parameters of
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Figure 3: A zoom of the last 100 evaluations.

normal distribution functions. The estimation is calculated
from a set of selected individuals. The algorithm shows a
good performance with the comparison again another evolu-
tionary algorithm as evolution strategies. The future work
includes new test functions and comparisons with similar
evolutionary algorithms for continuous optimization. It is
supposed an independent interaction between variables so
will be important to may use multivariable normal distribu-
tion functions and different distribution functions not only
the normal one.
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