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ABSTRACT

A preliminary investigation of cerebral stroke samplegatgd into

a mass spectrometer is performed from an evolutionary ctanpu
tion perspective. The detection and resolution of peptidakp
is pursued for the purpose of automatically and accuratetgrd
mining unlabeled peptide quantities. A theoretical peptidak
model is proposed and a series of experiments are then pursue
(most within a distributed computing environment) alonghna
data preprocessing strategy that incluges deisotoping step fol-
lowed byii) a peak picking procedure, followed lby) a series of
evolutionary computation experiments oriented towardsinkes-
tigation of their capability for achieving the aforememéal goal.
Results from four different genetic algorithms and oneedléhtial
evolution algorithm are reported with respect to theirigbib find
solutions that fit within the framework of the presented tietioal
peptide peak model. Both unconstrained and constrainete(as
mined by a course grained preprocessing stage) solutiare spa
periments are performed for both types of evolutionary @tigms.
Good preliminary results are obtained.
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1. INTRODUCTION

Stroke is the second leading cause of death and the most com-

mon cause of disability in the world. To relieve the heavydeur
of stroke, we need to understand its mechanisms that with fine
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basis of improved prevention and treatment. Stroke-sjpegifi-
tein changes may serve as surrogate markers of pharmacoityna
efficacy, toxicity, or outcome in preclinical and clinicadwklop-
ment of new medicines. Proteomics platforms that can efffilsie
identify and quantify changes in proteins related to disgasg.,
stroke) offer great promise for advancing biomedical regeand
the development of novel medicines.

Mass spectrometry is an analytical technique used to measur
the mass-to-charge ratio (m/z) of ions. It is most genenadlgd
to find the composition of a physical sample by generating ssma
spectrum representing the masses of sample componenttechhe
nique has several applications, includiriyidentifying unknown
compounds by the mass of the compound and/or fragment®there
ii) determining the isotopic composition of one or more element
in a compound,iii) determining the structure of compounds by
observing the fragmentation of the compodurj quantifying the
amount of a compound in a sample using carefully designeti-met
ods (mass spectrometry is not inherently quantitative$tudying
the fundamentals of gas phase ion chemistry (the chemistons
and neutrals in vacuumyj) determining other physical, chemical
or even biological properties of compounds with a varietpthier
approaches.

Two of the most commonly used methods for quantitative pro-
teomics are (i) two-dimensional electrophoresis (2DE)pted to
either mass spectrometry (MS) or tandem mass spectrond8iMS)
and (ii) liquid chromatography coupled to mass spectroyngi€-

S

Inthe 2DE-based approach, intact proteins are separat2idby
and the abundance of a protein is determined based on tharstai
tensity of the protein spot on the gel. The identity of thetgiro
is now generally determined by MS analysis peptides aftetepr
olysis of the protein spot. Since its inception in the midQ$8, the
2DE-based approach has been routinely used for large seate q
titative proteomics analysis. The 2DE method, howeveinmgéd
in sensitivity and can be inefficient when analyzing hydwigh
proteins or those with very high or low mass. In addition, 2ay=
proach is difficult to automate and has a limited detectiqracay
for proteins with extreme ranges in pl values (the isoelegtint
of proteins, which is the pH at which the net charge of thegirnot
is zero), and for low abundance proteins.
The LC-MS-based approach, on the other hand, can be auto-

mated and can identify proteins with extreme masses andygva



This approach is also more sensitive and can detect verybow-a
dant peptide peaks. However, to correctly quantify the |bwra
dant peaks, they need to be properly resolved from the bachkgr
"noise”. The LC-MS/MS based approach often uses stablefsot
labeling techniques, e.g. with 15N, 13C, stable isotopeliad
by amino acids in cell culture (SILAC), and isotope-codefthéf
tags (ICAT), to provide relative quantification. While potially
providing the greatest accuracy, isotopic labeling hasesdisad-
vantages. Labeling with stable isotopes is expensive, antes
labeling procedures involve complex processes and yi¢ifdets.

A "label-free” LC-MS approach is based on the principle that
the MS signal intensity of each peptide in a substantialfyilsir
sample analyzed under identical conditions is proportitmahe
abundance of the peptide within the dynamic range of theunst
ment. Therefore one may evaluate the relative abundanceep-a
tide in different, related samples by analyzing the sampteger
identical LC-MS conditions and by comparing MS signal irsign
of the same peptide in different LC-MS runs. A disadvantafye o
such a label-free approach is that biological samples asallys
very complex, and as a result, overlapping peptide peaksfe
observed, which may be difficult to resolve. In order to aately
quantify peptide levels in LC/MS sample, not only do we ne®d t
identify and subtract the background noise but also needdord
volve overlapping peaks.

The central dogma of Biology revolves around the idea thaADN
molecules give rise to RNA molecules which give rise to prote
molecules through a very complex and currently not comjylete
understood process. One aspect that is being tackled tiefths
tempting to understand the differences in quantity of pnoteole-
cules between different cells or tissues of various orgasisThis
problem is important because it has been noted that a loteof th
changes in proteomics data are very subtle, but may leadde la
phenotypic differences.

The purpose of this paper is to evaluate the possibilitievolu-
tionary algorithms, in particular, genetic algorithms aifterential
evolution in the detection and quantification of relevargkseasso-
ciated with peptides from mass-spectrometry data. Thewation
of modeling in the context of the high throughput mass spewtr
etry equipment will allow extensive data mining with highajty
interpretation, thus facilitating the knowledge discgverocess.
The idea is to describe the mass spectrum with a simple mathem
cal model, and explore the performance of evolutionaryritlyms
in the adjustment of the model parameters. A specific goal is t
decompose the spectrum into its constituent peaks isofated
the background noise. Such decomposition will allow thepeh-
dent identification and characterization of the peptides@nt. If
these operations can be performed reliably by an computsdtad-
gorithm, the high throughput of the mass spectrometry egei
used for this kind of research could be pipelined and thega®c
automated. This should be considered a a preliminary stépain
direction.

2. THE DATA AND ITS PREPROCESSING

Data was collected after one biological sample (contaipeig-
tides extracted from brain synapse of a stroke-induced @ivas
injected into a mass spectrometer operating in survey mddss-
Lynx software (available frorht t p: / / www. wat er s. comwas
used to generate peak lists for each of the MS survey scamallfus

Figure 1: Raw Mass Spectrometry data collected from one bi-
ological sample and represented as an image. Y-axis: Pepéd
elution. X-axis: Mass to charge.
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Figure 2: Outline of Mass Spectrometry Data Processing. The
current approach focusses on the more accurate determinain
of measurements for one sample.

The general overview of the data analysis that was then per-
formed on one sample is described in Fig.2. The first stedvago
a deisotoping process, which determines the specific charge
ues for each of the measured ions and removes all of the peaks
with intensity less than50. This threshold was selected due to the
fact that the mass spectrometer would not be able to progerly
quence lower abundant peptides. Then a series of heungties
applied to filter the data in order to decrease the complefithe
later analysis (no data values were altered, only deletpd)series
of partitioning steps were performed, leading to a set ofitamns
that each represent a measured peptide. ii) the partitiens then
analysed in terms of the number of consecutive missing satue
if more than a threshold were contiguous, then the parstisare
divided. The intention is that if the mass spectrometer dichave
sufficiently high measurements for an extended duraticen the

2,000 — 4, 000 per sample). Each list contains three types of infor- peptide was probably not eluting, and so it would be safe te co
mation: i) mass over charge, which is very accurate with an error sider consecutive partitions as belonging to differentigeg at this
of £0.05 Daltons,ii) intensity (ion counts) anii) time, which can stage of processing (they could be merged later). iii) a lteid
have a high error of-10 min. Fig.1 shows an example of raw mass mass to charge value was then calculated for each partéiwhiv)
spectrometry data for a set of eluting peptides from one E&amp a filter was applied in order to remove multiple measuremeoits



lected for the same scan (time) and small partitions. Figdvs
the first three isotopic peaks and their sum, for one of thgektr
partitions. The first monoisotopic peak was selected frogad-as
being representative of a spectrum (i.e. small, medium argel
peaks) that could then be more thoroughly investigatedusio-
lutionary computation techniques.
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Figure 3: View of one representative spectrum for the first thhee
isotopic peaks and their sum as extracted from the raw data
(Fig.1) using the described preprocessing. The spectrum ba
been truncated at2, 000, but rises to approx. 11, 000.

Numerically the spectrum is given by a collection fvalues
{zi,y:}, wherei € [1, N]. Usually the differences; — x;_1, for

i € [2, N] are not equal, and the spectrum has to be transformed

into a sequence of regularly sampled values by interpalaiibere
are many procedures available for function interpolatemd the

one used here is based on the computation of the best prdicte

value in a minimum expected squared error sense. The peddict
value is given by the conditional expectation givef8], [11]. For
the general multivariate case in which a dependent variglidea
function of a vectorz, the conditional expectation is given by

. > ffey (X y)d
Ey\)?(X): ffo:of foE y)dy
Joo Fry (X, y)dy
wheref)?y()?, y) is the joint density. In practice, this function

is unknown but it can be approximated using a Parzen estiniato
distance functions foX andy are defined as
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whereZ is an observed case am¢ are a training cases, and
Y—Yi 2
et - (152)
Oy
then the Parzen approximation is given by
N
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where N is the sample size andg, cy are two normalizing
constants ensuring integrability to unity. Using Parzessimate

for the joint density, the predicted value for the dependaniable
is given by

Z]'\i1 i - e~ Dx(Z,73)

IE) = SN o

This scheme was used for constructiB@3 regularly sampled
spectrum values covering the range of unidimensienalues de-
fined by its minimum and maximum. This interpolated spectrum
was smoothed with a moving averages operator of lefigthrger
values might have removed narrow peaks and smaller valuekiwo
not lead to smooth enough spectra). Other digital filterolgesnes
may be used as an alternative for moving averages, but iptéis
liminary investigation a parsimonious approach was adhpteis
leading to the selection of a simple smoothing operator.

Then the smoothed interpolated spectrum was explored éor th
occurrence of maxima, with their corresponding numericata
terization. The procedure used is given by the followingste

i) Search for local maxima. ..., is a specified distance thresh-
old measured in sampling interval units, a maximum is lo-
cated atro if Vi € [£0 — Tmaz, To+ Tmaz], Y(z0) > y(x4).
The collection of all maxima found is the spt

ii) For eachp € P the derivatives at the flanks are approximated
asD = y, — yn—1 (the sampling interval is assumed Bs
which is guaranteed by the interpolation procedure) and suc
cessively computed at either side of the analyzed maximum
p.

iii) If D < Ty, whereT), is a pre-specified threshold, it is as-
sumed that the background level has been reached. This is
performed at each side pfdetermining its limitsA and B

(Fig-4).

iv) The peak amplitude and base width are obtained as shown in
Fig-4. Other peak descriptors are also computed.

Screening strategies of this kind have been applied suctigss
for a long time in processing continuous measurements. ¥&mne
ple, the detection and characterization of anomalies erésting
events in airborne electromagnetic data, is very similaxhat is
required in the case of the mass-spectrum for finding meéning
spectral peaks. The above described pre-processing preced
inspired by the one introduced in [9] in the context of geital
prospecting.

Ag Bg Ce

Figure 4: An example of a single peak. The distanc& B is the
peak amplitude and A C's the base width.

3. AMODEL FOR MASS SPECTRA

A simple model of a spectrum in the context of the studied prob
lem is that of a collection of peaks corresponding to the idept



(possibly overlapping), molecule fragments, and a backggaoise.
Most elution peptide profiles seem to follow a gaussian ithigtion
and therefore an obvious first modeling candidate to arcaliyi
describe a spectral peak would be that of a gaussian function

@)

whereA is the peak’s amplitude its location andr a spread fac-
tor. When a collection ofi-peaks is considered, the model is natu-
rally extended as an additive aggregation of the constitpeaks

z—xq )2

gz, Awo,0) = Ae™ e

n _(xfx[“)g
y(az) =Y Aie
=1

where A;, xo; ando; are the corresponding amplitude, location
and spread factor for the individual peaks. However, in neages
asymmetric peaks are experimentally observed and thgesthe:
pends upon the high pressure liquid chromatography (HPb@) a
the type of chromatographic column used. Hence, the spr@ads
rates of decay are not the same at each side of the peak, warich ¢
be described by a model consisting of a collection of asymimet
peaks. Accordingly, the single and multiple peaks modaisstu
into

. Ae_(m;z ? if z < xo
g(z, A, x0,0L,0R) = (a=zaye _ )
Ae " °r otherwise
and
n
y(z) = Zg(x7Ai7-TOi7ULi7URi) (3)
i=1

The spectral background is slightly more complex than a con-
stant intensity level. Usually a baseline is observed insghectra,
which slightly deviates from linear. It can be described dsva
order power polynomial and the simplest non-linear modalldio
be one with a single curvature. A spectrum model containihof a
the previous features would be

y(z) = (az® + bz +¢) + Y §(w, Ai, 20i,0Li,0r:) ()
=1

This model will be used for approximating the observed spect
used in the experiments.

4. EVOLUTIONARY COMPUTATION
TECHNIQUES IN FINDING MODEL
PARAMETERS

The problem of fitting the theoretical model given by Eq-4to a
observed mass spectrum can be approached using many @ptimiz
tion techniques: classical, evolutionary and hybrid. fihst case
deterministic methods like Powell, Fletcher-Reeves orelnberg-
Marquardt could be applied. In the second, techniques like g
netic algorithms, evolution strategies and particle swaptimiza-
tion are typical choices. In this preliminary approach,a@&nalgo-
rithms (GA) and differential evolution (DE) were considerén the
case of genetic algorithms two variants were investigatedsing
real-valued chromosomes, with a fixed length giversby (4 - k),
where3 is the number of coefficients of thznd order polynmo-

mial trend andk is the number of expected spectral peaks (each one

has4 parameters), anid) real-valued chromosomes with variable

length [6], [5]. In this casek is assumed unknown and has to be
estimated during the evolutionary process like the othedehpa-
rameters. In the case of differential evolution only a sérgjtategy
was applied.

Genetic algorithms are the most popular representativdef t
evolutionary computation family of algorithmg][ [3], [1], [2]. In
this paper four types of GAs were considergdfhe standard sim-
ple genetic algorithm as described #.[This algorithm uses non-
overlapping populations and optional elitism and each gt
the algorithm creates an entirely new population of indiaild. ii)

a steady-state genetic algorithm that uses overlappinglatpns.
In this variation, it is specified how much of the populatidnosid
be replaced in each generatidii) The incremental genetic algo-
rithm, in which each generation consists of only one or twib-ch
dren. The incremental GA allow custom replacement methods t
define how the new generation should be integrated into thelpe
tion (for example, a newly generated child could replaced®nt,
replace a random individual in the population, or replacénai+
vidual that is most like it).iv) the 'deme’ genetic algorithm. This
algorithm evolves multiple populations in parallel usingteady-
state algorithm. Each generation the algorithm migratesesof
the individuals from each population to one of the other p@pu
tions. The GA implementation used is the one described ih [16

Differential Evolution [12], [10], [7] is a kind of evolutioary
algorithm working with real-valued vectors, and it is rélaly less
popular than GAs. However, it has proven to be very effedtive
the solution of complex optimization problems. Like GA, kit@mn
strategies and other EC algorithms, it works with popufetiof
individual vectors (real-valued), and evolves them. Maagiants
have been introduced, but the general scheme is as follows:

ALGORITHM 1. General Differential Evolution Scheme

(0) Initialization: Create a populatio® of random vectors in
R", and decide upon an objective functign £ — R and
a strategyS, involving vector differentials.

(1) Choose a target vector from the populatiéne P.

(2) Randomly choose a set of other population vectdrs=
{Z1, X2, ...} with a cardinality determined by strategy

(3) Apply strategysS to the set of vector® U {Z,} yielding a
new vectorz, .

(4) Add = or x;, to the new population according to the value of
the objective functiory and the type of problem (minimiza-
tion or maximization).

(5) Repeat steps 1-4 to form a new population until termamati
conditions are satisfied.

— End of Algorithm —

In particular, DE was applied using the DE/rand/1/exp styat
which proceeds as follows:

ALGORITHM 2. StrategyS = DE/rand/1/exp
Let F' be a scaling factorC, € R be a crossover rate) be
the dimension of the vector$} be the current populationy, =
card(’P) be the population sizej;, i € [1, N,] be the vectors of
P,bp € P bethe population’s best vector w.r.t. the objective func-
tion f andri, 2, r3 be random numbers if0, 1) obtained with a
uniform random generator functiomd() (the vector elements are
Ui, wherej € [0, D))
Then the transformation of each vectgre P is performed by the
following steps:

(1) Initialization:j = (r1 - D), L =0

(2) 177] = 177‘1]' +F- (177“2]' - 177“3.7')

3)j=({+1) modD



@ L=L+1
(5) repeating (1) to (4) untit¢((rnd() < C-)&(L < D)))
— End of Algorithm —

5. EXPERIMENTAL SETTINGS

Two groups of experiments were performed. In the first, the
behaviour of4 genetic algorithms were investigated via a to-
tal of 10,240 constrained and unconstrained (constraints were
placed on the evolved model parameters) experiments in-a dis
tributed computing environment. Distributed and Grid coiimyg
involves coordinating and sharing computing, applicatjodata,
storage, or network resources across dynamic and geogadlghi
dispersed organizations. The use of grid technologies ibaious
choice for many data mining tasks within the knowledge disco
ery process. Condor [15], [13], [14h(t p: / / www. CS. Wi SC.
edu/ condor /) is a specialized workload management system for
compute-intensive jobs in a distributed computing envirent, de-
veloped at the University of Wisconsin-Madison (UW-Madiso
It provides a job queueing mechanism, scheduling policiprpr
ity scheme, resource monitoring, and resource manageriéet.
distributed experiments in this paper were conducted onral@o
pool of the Institute for Information Technology, Natiofdsearch
Council Canada. The GA experimental settings for the firsugr
are reported in Fig.1.

In the second group of experiments, the behaviour of a @iffer
tial evolution algorithm strategy was investigated via @ltof 10
constrained and unconstrained experiments. The DE expetah
settings for this second group are reported in Fig.2.

For both groups of experiments, the raw fithess values wese us
That is, the objective function values were used directlythes
measure of fitness. In these experiments, root mean squered e
ror (RMSE) was used as the objective function, which is one of
many possible measures of difference between the obseaved r
spectrum values and the theoretical spectrum derived frohra
mosome, in the case of the GA algorithms or derived from aovect
in the case of the DE algorithm.

The particular constraints imposed upon both the genegic-al
rithm chromosomes and the differential evolution vectaevBen
the respective algorithms were actually constrained, eperted
in Fig.3. All algorithms were constrained by the same bownda
values, which were determined via the preprocessing thaipes
formed.

6. RESULTS

The application of the preprocessing procedure described i
Section-2 produced the results shown in Table-4. A totdlpdaks
were found and their parameters were roughly estimated.aifie
plitude of the4-th was too small to be considered as representative
of a real peptide and most likely is related with the Yulet3ty ef-
fect (moving averages may generate an irregular oscitiaien if
none exists in the original data) [4]. This fourth peak wadeded,
thus reducing the set t

The distribution of the fithess values for the fixed-lengthn-c
strained genetic algorithm experiments in which the nurobgen-
erations i600 or greater is shown in Fig-5 (left). It is left-skewed
with the mode around80, indicating that in general, the algorithm
tends to produce results with low RMSE values. However gtliger
a small secondary mode arou8l0 suggesting a mixture of two
population of results. When the distribution is segregaecbrd-
ing to the type of GA this behavior can be appreciated momigle
Fig-5 (right) shows boxplots of the corresponding disttidos for
each of the individual GA types. The distribution of the RMSE

Chromosomes were
Genetic algorithm

Termination condition
Optimization direction
Scaling scheme

Linear scaling multiplier
Selection scheme

Score freq. 1

Score freq. 2

Score freq.

Number of generations
Crossover probability
Mutation probability
Population size
Number of populations
Percent replacement
Number replacement

Number of best genomes

Flush frequency
Elitism

Number of offspring
Percent migration
Number migration
Random seeds

Constrained and Unconstrained
Simple, SteadyState,
Incremental, Deme

number of generations
minimization

linear
1.2

Rank, RouletteWheel,

Tournament, Uniform

1
100
1
200 to 1000 by 200
0.60.70.80.9
0.01 0.02 0.04 0.06
50
5
0.25
5
1
0
yes
2
0.1
1
101 8943 98431 84375

Table 1: Experimental settings for the 10,240 genetic algo-

rithm (GA) experiments.

Vectors were

Strategy

Number of Generations
Vector dimension

Size of the population
Control Constant (F)
Crossing Over factord,)
Random seed

Constrained and Unconstrained
DE/rand/1/exp

600

15

100

0.10.20.3

0.40.50.6
319

Table 2: Experimental settings for the10 differential evolution

(DE) algorithm experiments.

model coeff. minimum  maximum
a -0.05 0
b 0 10
c -1200 0
number of peaks 3 3
1 position 232 247
1 amplitude 1 200
107est 0 15
10,ight 0 15
2 position 247 327
2 amplitude 1 6500
200est 0 40
2 Oright 0 40
3 position 343 409
3 amplitude 1 2000
3 0lest 0 40
3 Oright 0 40

Table 3: Model boundary constraints for both the four genetc
and one differential evolution algorithms. Constraints deer-

mined by preprocessing.



xo Spectrum Start End A oL oR
value
241 232.8 232 247 742 1010 6.73
276 6593.9 247 327 6314.2 1545 27.17
375 10179 343 409 678.6 31.79 33.78
501 143.7 499 502 2.8 1754 8.77

Table 4: Results of the preprocessing procedure applied tde
observed spectrum. Start and End refer to the x-values delim
iting the peak. The notation for the other parameters is thatof
Eqg-2.

values for the Deme and the Simple GA have narrower ranges tha
those of the Steady-state and the Incremental algorithnichwiot
only cover a broader range, but have the median andifzend75
quartiles at considerable higher levels. The medians Dibme
and the Simple are both small and comparable, bushe 75 in-
terquartile distance is considerably smaller in the caskeeoDeme,
which also has a very small range Table-5. This results atdic
that in the context of the present problem, the Deme waslglear
the best among the family of genetic algorithms. Indivitiyahe
overall best GA result (i.e. the chromosome with minimum RIS
also corresponds to the Deme.

Alg MinFitness MaxFitness Num. of exp.

ng > 600 wunb ng>600 unb
Deme 95.32 218.97 919.46 768 2560
Simple 95.63 391.14 1286.68 768 2560
Steady-state 96.54 687.85 1430.75 768 2560
Incremental 101.42 748.17 1430.75 768 2560

Table 5: Minimum and maximum fitness per type of genetic
algorithm, broken up into bounded (ng >= 600, where ng is
the number of generations) and unbounded«nb) results, with
their associated number of experiments.

The comparison between the observed and theoretical agextr
cording to the best GA results, as well as the estimated backd
are shown in Fig-6(left). There is a good match (RMSE=32)
and the three spectral peaks are identified. They are shaiwidn
ually with the observed spectrum in Fig-6(right).

In particular, the smallest observed peak was retrievedoRe
ing such peaks is usually a challenging task since they ame ve
close to the background.

The results corresponding to the application of Differalrivo-
lution with and without constraining the model components a
shown in Table-6.

Exp F C; ng Fitness
constrained unconstrained
1 0.2 0.5 600 94.37 69.14
3 0.2 0.6 " 94.43 71.63
4 0.1 0.5 " 94.52 79.60
5 0.3 05 " 95.00 75.40
2 0.2 04 " 95.17 76.87

Table 6: Fitness for the DE experiments, broken up into runs
with constrained and unconstrained vectors.ng = 600, where
ng is the number of generations.F is the DE weighting factor
and Cy is the crossover constant.

Only 5 experiments for each case were performed, all of them

with 600 generations. The controlling parameters F @palo not
cover wide ranges, but some combinations involve low vabfes
F with higher ofCy and conversely. However, the fitness values
obtained for the constrained and unconstrained were qunes
ingly all of the same order, and rather low. If only RMSE (fit-
ness) is considered as model quality measure, then theieques
with unconstrained model parameters seems to have outpperdo
the constrained counterpart (and also all of the GA resuHsyv-
ever, in this casei) negative amplitudes were obtained for some
peaks, andli) the first small peak at the initial part of the observed
spectrum was not retrieved. Instead, the algorithm conabine
gaussians for approximating the second peak (the largestin
plitude). This was due to a numeric effect, since the lardees
of the largest peak affect considerably the mean sum of eduar
differences in comparison with the other two peaks. It isvkmo
that in some cases apparently single spectral peaks mightrbe
ality composed by two or more individual peaks correspogdin
peptides which can not be resolved at the level of precisfaheo
given observations. In this case multi-peak spectral appration
would be a desirable feature of any algorithm, in the senseigf
gesting previously unnoticed peptides. However, if notperty
constrained, these algorithms may produce physicallyaliste
results, like spectral peaks with negative amplitudes ornany
close peaks describing a single observed one. These ekemdit
cate on one hand the important of data preprocessing, agswtle
need of introducing more elaborate constraint handling rance
appropriate model quality measures. In the later case, dbeofi
weighted combinations of different model quality measwagdit-
ness functions, or the formulation of the problem as mujeotive
optimization may lead to more appropriate solutions.

The comparison between the observed and theoretical apectr
according to the best DE results (experiméntwith the estimated
background are shown in Fig-7(left). There is a good matdM$E=
94.37) and the three spectral peaks are identified as well. They are
shown individually in Fig-7(right) with the observed speirh.

Itis interesting to compare the GA and the DE model results ob
tained (Table-7). From the point of view of the fitness w.the
observed spectrum, both approaches perform similariyh Wi
having a slightly smaller value. However, the best GA varian
quired800 generations as opposed to DE, which nee2i£d less.
Moreover, the best GA model emerged from a totaB@f2 experi-
ments as opposed to orilyin the case of DE, indicating further po-
tential for improvement. Another element to consider isgresater
simplicity of DE over GA from the point of view of the number of
algorithm controlling parameters. Both evolutionary cangtion
techniques succeeded in the challenging task of resolviaakgp
which are very close to the background.

7. CONCLUSIONS

Both families of algorithms, GA and DE, were able to corngctl
identify the3 peaks existing in the observed spectrum despite their
relatively large amplitude differences. The fitness of tieoretical
models with respect to the observed data was good. The spread
of the identified peaks were also very accurate and bothigigus
successfully identified the background trend. This allowsaxe
accurate determination of the peptide levels.

The experiments indicate the importance of data preproagss
as well as the need of introducing more elaborate consthaint
dling and more appropriate model quality measures. In ttex la
case, the use of weighted combinations of different modal-qu
ity measures as fitness functions, or the formulation of ttedp
lem as multi-objective optimization may lead to more appiaip
solutions. It was observed that DE obtained its solutionagus
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Figure 5: General characteristics of the results obtained wh Genetic Algorithms (fixed length vectors, constraints ad 600 genera-
tions or more). Left: RMSE distribution. Right: RMSE distri butions according to the type of genetic algorithm.
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Figure 6: Best results obtained with Genetic Algorithms wih fixed length chromosomes and constraints. Left: observedral theo-
retical spectra. Right: observed spectrum and the individal peaks found by the algorithm.
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Figure 7: Best results obtained with Differential Evolution with fixed length vectors and constraints. Left: observed ad theoretical
spectra. Right: observed spectrum and the individual peak$ound by the algorithm.



Alg  Exp Peak 1 Peak 2 Peak 3
GA 8314 < 243,109.72,7.91,1.88 > < 275,6497.22,13.00,24.71 > < 378,730.52,27.10, 18.83 >
DE 1 < 239,80.58,3.43,4.69 > < 275,6498.62,12.64,25.00 > < 376, 734.83, 24.40, 21.52 >

AB,C Fitness ng
GA 8314 -0.0081, 5.99, -841.72 95.32 800
DE 1 -0.0069, 5.01, -643.83 94.37 600

Table 7: Best models found by each type of algorithm (Alg) in garticular experiment (Exp). Each peak is represented as auple
< position, amplitude, oicft, Oright >.
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