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ABSTRACT
A preliminary investigation of cerebral stroke samples injected into
a mass spectrometer is performed from an evolutionary computa-
tion perspective. The detection and resolution of peptide peaks
is pursued for the purpose of automatically and accurately deter-
mining unlabeled peptide quantities. A theoretical peptide peak
model is proposed and a series of experiments are then pursued
(most within a distributed computing environment) along with a
data preprocessing strategy that includesi) a deisotoping step fol-
lowed byii) a peak picking procedure, followed byiii) a series of
evolutionary computation experiments oriented towards the inves-
tigation of their capability for achieving the aforementioned goal.
Results from four different genetic algorithms and one differential
evolution algorithm are reported with respect to their ability to find
solutions that fit within the framework of the presented theoretical
peptide peak model. Both unconstrained and constrained (asdeter-
mined by a course grained preprocessing stage) solution space ex-
periments are performed for both types of evolutionary algorithms.
Good preliminary results are obtained.

Keywords
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1. INTRODUCTION
Stroke is the second leading cause of death and the most com-

mon cause of disability in the world. To relieve the heavy burden
of stroke, we need to understand its mechanisms that will form the
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basis of improved prevention and treatment. Stroke-specific pro-
tein changes may serve as surrogate markers of pharmacodynamic
efficacy, toxicity, or outcome in preclinical and clinical develop-
ment of new medicines. Proteomics platforms that can efficiently
identify and quantify changes in proteins related to disease (e.g.,
stroke) offer great promise for advancing biomedical research and
the development of novel medicines.

Mass spectrometry is an analytical technique used to measure
the mass-to-charge ratio (m/z) of ions. It is most generallyused
to find the composition of a physical sample by generating a mass
spectrum representing the masses of sample components. Thetech-
nique has several applications, including:i) identifying unknown
compounds by the mass of the compound and/or fragments thereof,
ii) determining the isotopic composition of one or more elements
in a compound,iii) determining the structure of compounds by
observing the fragmentation of the compoundiv) quantifying the
amount of a compound in a sample using carefully designed meth-
ods (mass spectrometry is not inherently quantitative),v) studying
the fundamentals of gas phase ion chemistry (the chemistry of ions
and neutrals in vacuum),vi) determining other physical, chemical
or even biological properties of compounds with a variety ofother
approaches.

Two of the most commonly used methods for quantitative pro-
teomics are (i) two-dimensional electrophoresis (2DE) coupled to
either mass spectrometry (MS) or tandem mass spectrometry (MS/MS)
and (ii) liquid chromatography coupled to mass spectrometry (LC-
MS).

In the 2DE-based approach, intact proteins are separated by2DE,
and the abundance of a protein is determined based on the stain in-
tensity of the protein spot on the gel. The identity of the protein
is now generally determined by MS analysis peptides after prote-
olysis of the protein spot. Since its inception in the mid-1970s, the
2DE-based approach has been routinely used for large scale quan-
titative proteomics analysis. The 2DE method, however, is limited
in sensitivity and can be inefficient when analyzing hydrophobic
proteins or those with very high or low mass. In addition, 2DEap-
proach is difficult to automate and has a limited detection capacity
for proteins with extreme ranges in pI values (the isoelectric point
of proteins, which is the pH at which the net charge of the protein
is zero), and for low abundance proteins.

The LC-MS-based approach, on the other hand, can be auto-
mated and can identify proteins with extreme masses and pI values.



This approach is also more sensitive and can detect very low abun-
dant peptide peaks. However, to correctly quantify the low abun-
dant peaks, they need to be properly resolved from the background
”noise”. The LC-MS/MS based approach often uses stable isotope
labeling techniques, e.g. with 15N, 13C, stable isotope labeling
by amino acids in cell culture (SILAC), and isotope-coded affinity
tags (ICAT), to provide relative quantification. While potentially
providing the greatest accuracy, isotopic labeling has some disad-
vantages. Labeling with stable isotopes is expensive, and some
labeling procedures involve complex processes and yield artifacts.

A ”label-free” LC-MS approach is based on the principle that
the MS signal intensity of each peptide in a substantially similar
sample analyzed under identical conditions is proportional to the
abundance of the peptide within the dynamic range of the instru-
ment. Therefore one may evaluate the relative abundance of apep-
tide in different, related samples by analyzing the samplesunder
identical LC-MS conditions and by comparing MS signal intensity
of the same peptide in different LC-MS runs. A disadvantage of
such a label-free approach is that biological samples are usually
very complex, and as a result, overlapping peptide peaks areoften
observed, which may be difficult to resolve. In order to accurately
quantify peptide levels in LC/MS sample, not only do we need to
identify and subtract the background noise but also need to decon-
volve overlapping peaks.

The central dogma of Biology revolves around the idea that DNA
molecules give rise to RNA molecules which give rise to protein
molecules through a very complex and currently not completely
understood process. One aspect that is being tackled, is that of at-
tempting to understand the differences in quantity of protein mole-
cules between different cells or tissues of various organisms. This
problem is important because it has been noted that a lot of the
changes in proteomics data are very subtle, but may lead to large
phenotypic differences.

The purpose of this paper is to evaluate the possibilities ofevolu-
tionary algorithms, in particular, genetic algorithms anddifferential
evolution in the detection and quantification of relevant peaks asso-
ciated with peptides from mass-spectrometry data. The automation
of modeling in the context of the high throughput mass spectrom-
etry equipment will allow extensive data mining with high quality
interpretation, thus facilitating the knowledge discovery process.
The idea is to describe the mass spectrum with a simple mathemati-
cal model, and explore the performance of evolutionary algorithms
in the adjustment of the model parameters. A specific goal is to
decompose the spectrum into its constituent peaks isolatedfrom
the background noise. Such decomposition will allow the indepen-
dent identification and characterization of the peptides present. If
these operations can be performed reliably by an computational al-
gorithm, the high throughput of the mass spectrometry equipment
used for this kind of research could be pipelined and the process
automated. This should be considered a a preliminary step inthat
direction.

2. THE DATA AND ITS PREPROCESSING
Data was collected after one biological sample (containingpep-

tides extracted from brain synapse of a stroke-induced animal) was
injected into a mass spectrometer operating in survey mode.Mass-
Lynx software (available fromhttp://www.waters.com)was
used to generate peak lists for each of the MS survey scans (usually
2, 000−4, 000 per sample). Each list contains three types of infor-
mation: i) mass over charge, which is very accurate with an error
of ±0.05 Daltons,ii) intensity (ion counts) andiii) time, which can
have a high error of±10 min. Fig.1 shows an example of raw mass
spectrometry data for a set of eluting peptides from one sample.

Figure 1: Raw Mass Spectrometry data collected from one bi-
ological sample and represented as an image. Y-axis: Peptide
elution. X-axis: Mass to charge.

Figure 2: Outline of Mass Spectrometry Data Processing. The
current approach focusses on the more accurate determination
of measurements for one sample.

The general overview of the data analysis that was then per-
formed on one sample is described in Fig.2. The first step involves
a deisotoping process, which determines the specific chargeval-
ues for each of the measured ions and removes all of the peaks
with intensity less than150. This threshold was selected due to the
fact that the mass spectrometer would not be able to properlyse-
quence lower abundant peptides. Then a series of heuristicswere
applied to filter the data in order to decrease the complexityof the
later analysis (no data values were altered, only deleted):i) a series
of partitioning steps were performed, leading to a set of partitions
that each represent a measured peptide. ii) the partitions were then
analysed in terms of the number of consecutive missing values –
if more than a threshold were contiguous, then the partitions were
divided. The intention is that if the mass spectrometer did not have
sufficiently high measurements for an extended duration, then the
peptide was probably not eluting, and so it would be safe to con-
sider consecutive partitions as belonging to different peptides at this
stage of processing (they could be merged later). iii) a weighted
mass to charge value was then calculated for each partition,and iv)
a filter was applied in order to remove multiple measurementscol-



lected for the same scan (time) and small partitions. Fig.3 shows
the first three isotopic peaks and their sum, for one of the largest
partitions. The first monoisotopic peak was selected from Fig.3 as
being representative of a spectrum (i.e. small, medium and large
peaks) that could then be more thoroughly investigated using evo-
lutionary computation techniques.
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Figure 3: View of one representative spectrum for the first three
isotopic peaks and their sum as extracted from the raw data
(Fig.1) using the described preprocessing. The spectrum has
been truncated at2, 000, but rises to approx.11, 000.

Numerically the spectrum is given by a collection ofN values
{xi, yi}, wherei ∈ [1, N ]. Usually the differencesxi − xi−1, for
i ∈ [2, N ] are not equal, and the spectrum has to be transformed
into a sequence of regularly sampled values by interpolation. There
are many procedures available for function interpolation,and the
one used here is based on the computation of the best predicted
value in a minimum expected squared error sense. The predicted
value is given by the conditional expectation givenx [8], [11]. For
the general multivariate case in which a dependent variabley is a
function of a vector~x, the conditional expectation is given by

EY | ~X( ~X) =

R∞

−∞
f · f ~XY ( ~X, y)dyR∞

−∞
f ~XY ( ~X, y)dy

wheref ~XY ( ~X, y) is the joint density. In practice, this function
is unknown but it can be approximated using a Parzen estimator. If
distance functions for~X andy are defined as

D ~X (~x, ~xi) =

pX
j=1

�
xj − xij

σj

�2

where~x is an observed case and~xi are a training cases, and

DY (y, yi) =

�
y − yi

σy

�2

then the Parzen approximation is given by

g(~x, y) =
1

Nc ~XcY

NX
i=1

e−DX(~x, ~xi)e−DY (y,yi)

whereN is the sample size andc ~X , cY are two normalizing
constants ensuring integrability to unity. Using Parzen’sestimate

for the joint density, the predicted value for the dependentvariable
is given by

ŷ(~x) =

PN

i=1 yi · e
−DX(~x, ~xi)PN

i=1 e−DX(~x, ~xi)

This scheme was used for constructing303 regularly sampled
spectrum values covering the range of unidimensionalx values de-
fined by its minimum and maximum. This interpolated spectrum
was smoothed with a moving averages operator of length7 (larger
values might have removed narrow peaks and smaller values would
not lead to smooth enough spectra). Other digital filtering schemes
may be used as an alternative for moving averages, but in thispre-
liminary investigation a parsimonious approach was adopted, thus
leading to the selection of a simple smoothing operator.

Then the smoothed interpolated spectrum was explored for the
occurrence of maxima, with their corresponding numeric charac-
terization. The procedure used is given by the following steps:

i) Search for local maxima. Ifτmax is a specified distance thresh-
old measured in sampling interval units, a maximum is lo-
cated atx0 if ∀xi ∈ [x0−τmax, x0+τmax], y(x0) ≥ y(xi).
The collection of all maxima found is the setP

ii) For eachp ∈ P the derivatives at the flanks are approximated
asD = yn − yn−1 (the sampling interval is assumed as1,
which is guaranteed by the interpolation procedure) and suc-
cessively computed at either side of the analyzed maximum
p.

iii) If D ≤ Th, whereTh is a pre-specified threshold, it is as-
sumed that the background level has been reached. This is
performed at each side ofp determining its limitsA andB
(Fig-4).

iv) The peak amplitude and base width are obtained as shown in
Fig-4. Other peak descriptors are also computed.

Screening strategies of this kind have been applied successfully
for a long time in processing continuous measurements. For exam-
ple, the detection and characterization of anomalies or interesting
events in airborne electromagnetic data, is very similar towhat is
required in the case of the mass-spectrum for finding meaningful
spectral peaks. The above described pre-processing procedure is
inspired by the one introduced in [9] in the context of geophysical
prospecting.

Figure 4: An example of a single peak. The distancePB is the
peak amplitude andABCB the base width.

3. A MODEL FOR MASS SPECTRA
A simple model of a spectrum in the context of the studied prob-

lem is that of a collection of peaks corresponding to the peptides



(possibly overlapping), molecule fragments, and a background noise.
Most elution peptide profiles seem to follow a gaussian distribution
and therefore an obvious first modeling candidate to analytically
describe a spectral peak would be that of a gaussian function

g(x,A, x0, σ) = A e−(
x−x0

σ
)2 (1)

whereA is the peak’s amplitude,x0 its location andσ a spread fac-
tor. When a collection ofn-peaks is considered, the model is natu-
rally extended as an additive aggregation of the constituent peaks

y(x) =

nX
i=1

Ai e
−(

x−x0i

σi
)2

whereAi, x0i andσi are the corresponding amplitude, location
and spread factor for the individual peaks. However, in manycases
asymmetric peaks are experimentally observed and their shape de-
pends upon the high pressure liquid chromatography (HPLC) and
the type of chromatographic column used. Hence, the spreadsor
rates of decay are not the same at each side of the peak, which can
be described by a model consisting of a collection of asymmetric
peaks. Accordingly, the single and multiple peaks models turns
into

ĝ(x, A, x0, σL, σR) =

8<: A e
−(

x−x0

σL
)2

if x ≤ x0

A e
−(

x−x0

σR
)2

otherwise
(2)

and

y(x) =

nX
i=1

ĝ(x,Ai, x0i, σLi, σRi) (3)

The spectral background is slightly more complex than a con-
stant intensity level. Usually a baseline is observed in thespectra,
which slightly deviates from linear. It can be described as alow
order power polynomial and the simplest non-linear model would
be one with a single curvature. A spectrum model containing all of
the previous features would be

y(x) = (ax2 + bx + c) +
nX

i=1

ĝ(x,Ai, x0i, σLi, σRi) (4)

This model will be used for approximating the observed spectrum
used in the experiments.

4. EVOLUTIONARY COMPUTATION
TECHNIQUES IN FINDING MODEL
PARAMETERS

The problem of fitting the theoretical model given by Eq-4 to an
observed mass spectrum can be approached using many optimiza-
tion techniques: classical, evolutionary and hybrid. In the first case
deterministic methods like Powell, Fletcher-Reeves or Levenberg-
Marquardt could be applied. In the second, techniques like ge-
netic algorithms, evolution strategies and particle swarmoptimiza-
tion are typical choices. In this preliminary approach, genetic algo-
rithms (GA) and differential evolution (DE) were considered. In the
case of genetic algorithms two variants were investigated:i) using
real-valued chromosomes, with a fixed length given by3 + (4 · k),
where3 is the number of coefficients of the2-nd order polynmo-
mial trend andk is the number of expected spectral peaks (each one
has4 parameters), andii) real-valued chromosomes with variable

length [6], [5]. In this case,k is assumed unknown and has to be
estimated during the evolutionary process like the other model pa-
rameters. In the case of differential evolution only a single strategy
was applied.

Genetic algorithms are the most popular representative of the
evolutionary computation family of algorithms [?], [3], [1], [2]. In
this paper four types of GAs were considered:i) The standard sim-
ple genetic algorithm as described in [?]. This algorithm uses non-
overlapping populations and optional elitism and each generation
the algorithm creates an entirely new population of individuals. ii)
a steady-state genetic algorithm that uses overlapping populations.
In this variation, it is specified how much of the population should
be replaced in each generation.iii) The incremental genetic algo-
rithm, in which each generation consists of only one or two chil-
dren. The incremental GA allow custom replacement methods to
define how the new generation should be integrated into the popula-
tion (for example, a newly generated child could replace itsparent,
replace a random individual in the population, or replace anindi-
vidual that is most like it).iv) the ’deme’ genetic algorithm. This
algorithm evolves multiple populations in parallel using asteady-
state algorithm. Each generation the algorithm migrates some of
the individuals from each population to one of the other popula-
tions. The GA implementation used is the one described in [16].

Differential Evolution [12], [10], [7] is a kind of evolutionary
algorithm working with real-valued vectors, and it is relatively less
popular than GAs. However, it has proven to be very effectivein
the solution of complex optimization problems. Like GA, evolution
strategies and other EC algorithms, it works with populations of
individual vectors (real-valued), and evolves them. Many variants
have been introduced, but the general scheme is as follows:

ALGORITHM 1. General Differential Evolution Scheme

(0) Initialization: Create a populationP of random vectors in
ℜn, and decide upon an objective functionf : ℜn → ℜ and
a strategyS , involving vector differentials.

(1) Choose a target vector from the population~xt ∈ P .
(2) Randomly choose a set of other population vectorsV =

{~x1, ~x2, . . .} with a cardinality determined by strategyS .
(3) Apply strategyS to the set of vectorsV ∪ {~xt} yielding a

new vector~xt′ .
(4) Add ~xt or ~xt′ to the new population according to the value of

the objective functionf and the type of problem (minimiza-
tion or maximization).

(5) Repeat steps 1-4 to form a new population until termination
conditions are satisfied.

— End of Algorithm —

In particular, DE was applied using the DE/rand/1/exp strategy
which proceeds as follows:

ALGORITHM 2. StrategyS = DE/rand/1/exp
Let F be a scaling factor,Cr ∈ ℜ be a crossover rate,D be
the dimension of the vectors,P be the current population,Np =
card(P) be the population size,~vi, i ∈ [1, Np] be the vectors of
P ,~bP ∈ P be the population’s best vector w.r.t. the objective func-
tion f andr1, r2, r3 be random numbers in(0, 1) obtained with a
uniform random generator functionrnd() (the vector elements are
~vij , wherej ∈ [0, D)).
Then the transformation of each vector~vi ∈ P is performed by the
following steps:

(1) Initialization: j = (r1 · D), L = 0
(2) ~vij = ~vr1j + F · (~vr2j − ~vr3j)
(3) j = (j + 1) modD



(4) L = L + 1
(5) repeating (1) to (4) until(¬((rnd() < Cr)&(L < D)))

— End of Algorithm —

5. EXPERIMENTAL SETTINGS
Two groups of experiments were performed. In the first, the

behaviour of4 genetic algorithms were investigated via a to-
tal of 10, 240 constrained and unconstrained (constraints were
placed on the evolved model parameters) experiments in a dis-
tributed computing environment. Distributed and Grid computing
involves coordinating and sharing computing, applications, data,
storage, or network resources across dynamic and geographically
dispersed organizations. The use of grid technologies is anobvious
choice for many data mining tasks within the knowledge discov-
ery process. Condor [15], [13], [14], (http://www.cs.wisc.
edu/condor/) is a specialized workload management system for
compute-intensive jobs in a distributed computing environment, de-
veloped at the University of Wisconsin-Madison (UW-Madison).
It provides a job queueing mechanism, scheduling policy, prior-
ity scheme, resource monitoring, and resource management.The
distributed experiments in this paper were conducted on a Condor
pool of the Institute for Information Technology, NationalResearch
Council Canada. The GA experimental settings for the first group
are reported in Fig.1.

In the second group of experiments, the behaviour of a differen-
tial evolution algorithm strategy was investigated via a total of 10
constrained and unconstrained experiments. The DE experimental
settings for this second group are reported in Fig.2.

For both groups of experiments, the raw fitness values were used.
That is, the objective function values were used directly asthe
measure of fitness. In these experiments, root mean squared er-
ror (RMSE) was used as the objective function, which is one of
many possible measures of difference between the observed raw
spectrum values and the theoretical spectrum derived from achro-
mosome, in the case of the GA algorithms or derived from a vector,
in the case of the DE algorithm.

The particular constraints imposed upon both the genetic algo-
rithm chromosomes and the differential evolution vectors,when
the respective algorithms were actually constrained, are reported
in Fig.3. All algorithms were constrained by the same boundary
values, which were determined via the preprocessing that was per-
formed.

6. RESULTS
The application of the preprocessing procedure described in

Section-2 produced the results shown in Table-4. A total of4 peaks
were found and their parameters were roughly estimated. Theam-
plitude of the4-th was too small to be considered as representative
of a real peptide and most likely is related with the Yule-Slutzky ef-
fect (moving averages may generate an irregular oscillation even if
none exists in the original data) [4]. This fourth peak was excluded,
thus reducing the set to3.

The distribution of the fitness values for the fixed-length, con-
strained genetic algorithm experiments in which the numberof gen-
erations is600 or greater is shown in Fig-5 (left). It is left-skewed
with the mode around180, indicating that in general, the algorithm
tends to produce results with low RMSE values. However, there is
a small secondary mode around250 suggesting a mixture of two
population of results. When the distribution is segregatedaccord-
ing to the type of GA this behavior can be appreciated more clearly.
Fig-5 (right) shows boxplots of the corresponding distributions for
each of the individual GA types. The distribution of the RMSE

Chromosomes were Constrained and Unconstrained
Genetic algorithm Simple, SteadyState,

Incremental, Deme
Termination condition number of generations
Optimization direction minimization
Scaling scheme linear
Linear scaling multiplier 1.2
Selection scheme Rank, RouletteWheel,

Tournament, Uniform
Score freq. 1 1
Score freq. 2 100
Score freq. 1
Number of generations 200 to 1000 by 200
Crossover probability 0.6 0.7 0.8 0.9
Mutation probability 0.01 0.02 0.04 0.06
Population size 50
Number of populations 5
Percent replacement 0.25
Number replacement 5
Number of best genomes 1
Flush frequency 0
Elitism yes
Number of offspring 2
Percent migration 0.1
Number migration 1
Random seeds 101 8943 98431 84375

Table 1: Experimental settings for the 10, 240 genetic algo-
rithm (GA) experiments.

Vectors were Constrained and Unconstrained
Strategy DE/rand/1/exp
Number of Generations 600
Vector dimension 15
Size of the population 100
Control Constant (F) 0.1 0.2 0.3
Crossing Over factor (Cr) 0.4 0.5 0.6
Random seed 319

Table 2: Experimental settings for the10 differential evolution
(DE) algorithm experiments.

model coeff. minimum maximum
a -0.05 0
b 0 10
c -1200 0
number of peaks 3 3
1 position 232 247
1 amplitude 1 200
1 σleft 0 15
1 σright 0 15
2 position 247 327
2 amplitude 1 6500
2 σleft 0 40
2 σright 0 40
3 position 343 409
3 amplitude 1 2000
3 σleft 0 40
3 σright 0 40

Table 3: Model boundary constraints for both the four genetic
and one differential evolution algorithms. Constraints deter-
mined by preprocessing.



x0 spectrum Start End A σL σR

value
241 232.8 232 247 74.2 10.10 6.73
276 6593.9 247 327 6314.2 15.45 27.17
375 1017.9 343 409 678.6 31.79 33.78
501 143.7 499 502 2.8 17.54 8.77

Table 4: Results of the preprocessing procedure applied to the
observed spectrum. Start and End refer to the x-values delim-
iting the peak. The notation for the other parameters is thatof
Eq-2.

values for the Deme and the Simple GA have narrower ranges than
those of the Steady-state and the Incremental algorithms which not
only cover a broader range, but have the median and the25 and75
quartiles at considerable higher levels. The medians for the Deme
and the Simple are both small and comparable, but the25 − 75 in-
terquartile distance is considerably smaller in the case ofthe Deme,
which also has a very small range Table-5. This results indicate
that in the context of the present problem, the Deme was clearly
the best among the family of genetic algorithms. Individually, the
overall best GA result (i.e. the chromosome with minimum RMSE)
also corresponds to the Deme.

Alg MinFitness MaxFitness Num. of exp.
ng ≥ 600 unb ng ≥ 600 unb

Deme 95.32 218.97 919.46 768 2560
Simple 95.63 391.14 1286.68 768 2560
Steady-state 96.54 687.85 1430.75 768 2560
Incremental 101.42 748.17 1430.75 768 2560

Table 5: Minimum and maximum fitness per type of genetic
algorithm, broken up into bounded (ng >= 600, where ng is
the number of generations) and unbounded (unb) results, with
their associated number of experiments.

The comparison between the observed and theoretical spectra ac-
cording to the best GA results, as well as the estimated background
are shown in Fig-6(left). There is a good match (RMSE=95.32)
and the three spectral peaks are identified. They are shown individ-
ually with the observed spectrum in Fig-6(right).

In particular, the smallest observed peak was retrieved. Resolv-
ing such peaks is usually a challenging task since they are very
close to the background.

The results corresponding to the application of Differential Evo-
lution with and without constraining the model components are
shown in Table-6.

Exp F Cf ng Fitness
constrained unconstrained

1 0.2 0.5 600 94.37 69.14
3 0.2 0.6 ” 94.43 71.63
4 0.1 0.5 ” 94.52 79.60
5 0.3 0.5 ” 95.00 75.40
2 0.2 0.4 ” 95.17 76.87

Table 6: Fitness for the DE experiments, broken up into runs
with constrained and unconstrained vectors.ng = 600, where
ng is the number of generations.F is the DE weighting factor
and Cf is the crossover constant.

Only 5 experiments for each case were performed, all of them

with 600 generations. The controlling parameters F andCf do not
cover wide ranges, but some combinations involve low valuesof
F with higher ofCf and conversely. However, the fitness values
obtained for the constrained and unconstrained were correspond-
ingly all of the same order, and rather low. If only RMSE (fit-
ness) is considered as model quality measure, then the experiments
with unconstrained model parameters seems to have outperformed
the constrained counterpart (and also all of the GA results). How-
ever, in this case,i) negative amplitudes were obtained for some
peaks, andii) the first small peak at the initial part of the observed
spectrum was not retrieved. Instead, the algorithm combined two
gaussians for approximating the second peak (the largest inam-
plitude). This was due to a numeric effect, since the large values
of the largest peak affect considerably the mean sum of squared
differences in comparison with the other two peaks. It is known
that in some cases apparently single spectral peaks might bein re-
ality composed by two or more individual peaks corresponding to
peptides which can not be resolved at the level of precision of the
given observations. In this case multi-peak spectral approximation
would be a desirable feature of any algorithm, in the sense ofsug-
gesting previously unnoticed peptides. However, if not properly
constrained, these algorithms may produce physically unrealistic
results, like spectral peaks with negative amplitudes or too many
close peaks describing a single observed one. These elements indi-
cate on one hand the important of data preprocessing, as wellas the
need of introducing more elaborate constraint handling andmore
appropriate model quality measures. In the later case, the use of
weighted combinations of different model quality measuresas fit-
ness functions, or the formulation of the problem as multi-objective
optimization may lead to more appropriate solutions.

The comparison between the observed and theoretical spectra
according to the best DE results (experiment1), with the estimated
background are shown in Fig-7(left). There is a good match (RMSE=
94.37) and the three spectral peaks are identified as well. They are
shown individually in Fig-7(right) with the observed spectrum.

It is interesting to compare the GA and the DE model results ob-
tained (Table-7). From the point of view of the fitness w.r.t.the
observed spectrum, both approaches perform similarly; with DE
having a slightly smaller value. However, the best GA variant re-
quired800 generations as opposed to DE, which needed25% less.
Moreover, the best GA model emerged from a total of3072 experi-
ments as opposed to only5 in the case of DE, indicating further po-
tential for improvement. Another element to consider is thegreater
simplicity of DE over GA from the point of view of the number of
algorithm controlling parameters. Both evolutionary computation
techniques succeeded in the challenging task of resolving peaks
which are very close to the background.

7. CONCLUSIONS
Both families of algorithms, GA and DE, were able to correctly

identify the3 peaks existing in the observed spectrum despite their
relatively large amplitude differences. The fitness of the theoretical
models with respect to the observed data was good. The spreads
of the identified peaks were also very accurate and both algorithms
successfully identified the background trend. This allows amore
accurate determination of the peptide levels.

The experiments indicate the importance of data preprocessing,
as well as the need of introducing more elaborate constrainthan-
dling and more appropriate model quality measures. In the later
case, the use of weighted combinations of different model qual-
ity measures as fitness functions, or the formulation of the prob-
lem as multi-objective optimization may lead to more appropriate
solutions. It was observed that DE obtained its solutions using



Figure 5: General characteristics of the results obtained with Genetic Algorithms (fixed length vectors, constraints and 600 genera-
tions or more). Left: RMSE distribution. Right: RMSE distri butions according to the type of genetic algorithm.

Figure 6: Best results obtained with Genetic Algorithms with fixed length chromosomes and constraints. Left: observed and theo-
retical spectra. Right: observed spectrum and the individual peaks found by the algorithm.

Figure 7: Best results obtained with Differential Evolution with fixed length vectors and constraints. Left: observed and theoretical
spectra. Right: observed spectrum and the individual peaksfound by the algorithm.



Alg Exp Peak 1 Peak 2 Peak 3
GA 8314 < 243, 109.72, 7.91, 1.88 > < 275, 6497.22, 13.00, 24.71 > < 378, 730.52, 27.10, 18.83 >
DE 1 < 239, 80.58, 3.43, 4.69 > < 275, 6498.62, 12.64, 25.00 > < 376, 734.83, 24.40, 21.52 >

A,B,C Fitness ng
GA 8314 -0.0081, 5.99, -841.72 95.32 800
DE 1 -0.0069, 5.01, -643.83 94.37 600

Table 7: Best models found by each type of algorithm (Alg) in aparticular experiment (Exp). Each peak is represented as a tuple
< position, amplitude, σleft, σright >.

fewer computational resources; furthermore, the number ofcon-
trolling parameters is much smaller than those of GA. It was also
noticed that of the four types of GA investigated, the Deme proved
be clearly superior.

The ability to accurately quantify the levels of a peptide isvery
important in order correctly compare its levels in multiplesamples.
To do this, a method capable of identifying the background noise
and also capable of resolving both low abundant and overlapping
peptide peaks was desired. The methods described in the current
paper are potentially valuable since they address most of the prob-
lems. Most of the methods are able to accurately ”mimic” the pro-
files of the peptides being eluted from High Pressure Liquid Chro-
matography. They can identify the background to enable accurate
quantification. However, only one of the methods enabled reso-
lution of very low abundant peptide. Thus, although the methods
need improvement, they are very valuable for accurate quantifica-
tion.

Thus, the algorithms proved to be capable of accurately identi-
fying low abundant peaks in the presence of background noiseand
show great potential in quantifying peptide levels in braintissues
from samples with and without stroke. Further experiments are
necessary, including
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