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ABSTRACT

There are several data based methods in the field of ar-
tificial intelligence which are nowadays frequently used for
analyzing classification problems in the context of medical
applications. As we show in this paper, the application
of enhanced evolutionary computation techniques to clas-
sification problems has the potential to evolve classifiers of
even higher quality than those trained by standard machine
learning methods. On the basis of three medical benchmark
classification problems, namely the Wisconsin and the Thy-
roid data sets taken from the UCI repository as well as the
Melanoma data set prepared by members of the Depart-
ment of Dermatology of the Medical University Vienna, we
document that the enhanced genetic programming based ap-
proach presented here is able to produce better results than
linear modeling methods, artificial neural networks, kNN
classification and also standard genetic programming ap-
proaches.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]|: Problem Solving, Control
Methods, and Search—heuristic methods;

1.2.1 [Artificial Intelligence]: Applications and Expert
Systems—medicine and science

General Terms

Algorithms, Experimentation, Performance
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1. INTRODUCTION

Classification is understood as the act of placing an ob-
ject into a set of categories, based on the object’s properties.
Objects are classified according to an (in most cases hierar-
chical) classification scheme also called taxonomy. Amongst
many other possible applications, examples of taxonomic
classification are biological classification (as for example the
act of categorizing and grouping organisms into species),
medical classification and security classification (where it is
often necessary to classify objects or persons for deciding
whether a problem might arise from the present situation or
not).

A statistical classification algorithm is supposed to take
feature representations of objects and map them to a special,
predefined classification label. Such classification algorithms
are designed to learn (i.e. to approximate the behavior of)
a function which maps a vector of object features into one
of several classes; this is done by analyzing a set of input-
output examples (“training samples”) of the function. The
basic steps can be summarized as follows: After training
the algorithm using a set of training samples, the algorithm
should be able to classify a new, unknown object into one of
the predefined classes by analyzing its measured features.
Since statistical classification algorithms are supposed to
“learn” such functions, we are dealing with a specific subarea
of Machine Learning and, more generally, Artificial Intelli-
gence. There are several approaches that are nowadays used
for solving data mining and, more specifically, classification
problems. The most common ones are (as for example de-
scribed in [11]) decision tree learning, instance-based learn-
ing, inductive logic programming (such as using Prolog, e.g.)
and reinforcement learning.

The task of a classification algorithm in the context of
patient classification is to find a mathematical description
that models underlying classification rules; this means that
the diagnosis can be predicted by considering a set of other
measured features (for example blood parameter values). Of



course, any data based classification algorithm can be ap-
plied to any given classification problem.

The application of data based machine learning techniques
for learning classifiers is one of the major topics not only in
computer science in general, but also especially in medical
data mining. When it comes to automatically classifying pa-
tients into those which are possibly suffering from a certain
disease and those which are healthy, one often has to face
the problem that special tests (such as blood analysis, e.g.)
produce high costs of time and money. This is why one has
to seek for hidden relationships between the symptoms of a
certain disease and other features which are much easier to
measure.

In this paper we present a classification algorithm based
on genetic programming (GP) [7] using a structure iden-
tification framework [18] originally designed for timeseries
analysis, described in Section 2.1, in combination with an
enhanced, hybrid selection scheme [1] (as explained in Sec-
tion 2.2). This GP approach has been implemented as a part
of the HeuristicLab [16], a framework for prototyping and
analyzing optimization techniques for which both generic
concepts of evolutionary algorithms and many functions to
evaluate and analyze them are available.

The results obtained using this enhanced GP based iden-
tification approach are compared to those achieved by meth-
ods that are nowadays standard techniques in machine learn-
ing, namely linear regression modeling (Lin), (artificial) neu-
ral networks (NN) and k-nearest-neighbor (kNN) classifi-
cation; detailed descriptions of these methods, theoretical
background and actual variants and applications of these
techniques can be found in [9], [4] and [15]. We also com-
pare these results to those achieved using conventional GP
techniques.

The comparison of the methods mentioned is done on the
basis of three medical benchmark classification problems:
The Wisconsin and the Thyroid data sets taken from the
UCI Repository! as well as the Melanoma data set prepared
by members of the Department of Dermatology of the Med-
ical University Vienna. As we document in Section 3, the
enhanced GP method presented here outperforms all other
classification methods used in terms of classification accu-
racy on test data.

2. GP-BASED CLASSIFICATION IN MED-
ICAL DIAGNOSTICS

2.1 TheGPBased Structureldentification Ap-
proach

2.1.1 General Remarks

Preliminary work for the approach presented in this pa-
per was done for the project “Specification, Design, and
Implementation of a Genetic Programming Approach for
Identifying Nonlinear Models of Mechatronic Systems” as a
part of a strategical project at the Johannes Kepler Univer-
sity Linz, Austria, focusing on system identification meth-
ods for mechatronic systems. It was successfully shown (see
for instance [18]) that methods of GP are suitable for de-
termining an appropriate mathematical representation of a
physical, mechatronical system; especially the NO, and soot
emissions of Diesel engines were investigated in this context

"http://www.ics.uci.edu/ mlearn/

yielding satisfying models (at least for NO,). The meth-
ods implemented for this project have been used for devel-
oping a GP-based statistical classification algorithm. This
algorithm works on a set of training examples with known
properties [Xi...X,]; one of these properties (X:) has to
represent the membership information with respect to the
underlying taxonomy. In the context of medical applica-
tions, this target property gives the information about the
respective patient’s diagnosis (as “deseased” vs. ‘“not de-
seased” or “malign” vs. “benign”, e.g.). On the basis of the
training examples, the algorithm tries to evolve (or, as one
could also say, to “learn”) a solution, i.e. a formula, that
represents a function which maps a vector of object features
into one of the given classes. In other words, each instance
of the classification problem to be solved is interpreted as
an instance of an optimization problem; a solution is found
by a heuristic optimization algorithm.

The goal of the implemented GP classification process is
to produce an algebraic expression from a database contain-
ing the measured results of the experiments to be analyzed.
Thus, the GP algorithm works with solution candidates that
are tree structure representations of symbolic expressions.

2.1.2 Solution Candidate Representation Using Hy-
brid Tree Structures

The selection of the library functions is an important part
of any GP modeling process [5] because this library should
be able to represent a wide range of systems; Table 1 gives
an overview of the function set as well as the terminal nodes
used for the classification experiments documented in this
paper. As the reader can see in Table 1, mathematical func-
tions and terminal nodes are used as well as boolean op-
erators for building complex arithmetic expressions. There
are in fact no structural restrictions for the use of boolean
blocks in formulae; of course, [Then/Else] and boolean ex-
pressions have to be connected to [IF] nodes, but there are
no other restrictions regarding the use of boolean blocks
within mathematical expressions. Thus, the concept of de-
cision trees is included in this approach together with the
standard structure identification concept that tries to evolve
nonlinear mathematical expressions. An example showing
the structure tree representation of a combined formula in-
cluding arithmetic as well as logical functions is displayed
in Figure 1.

2.1.3 Evaluation of Classification Models

There are several possible functions that can serve as fit-
ness functions within the GP process. For example, the
ratio of misclassifications (using optimal thresholds) or the
area under the corresponding ROC curves ([19], [3]) could be
used. Another function frequently used for quantifying the
quality of models is the R? function that takes into account
the sum of squared errors as well as the sum of squared tar-
get values; an alternative, the so-called adjusted R? function,
is also utilized in many applications.

Still, we have decided to use a variant of the squared er-
rors function for estimating the quality of a classification
model. There is one major difference of this modified mean
squared errors function to the standard implementation of
this function: The errors of predicted values that are lower
than the lowest class value or greater than the greatest class
value do not have a totally quadratic, but partially only
linear contribution to the fitness value. To be a bit more



Table 1: Nodes set for GP based classification.

Functions
Name Arity Description
+ 2 Addition
- 2 Subtraction
* 2 Multiplication
/ 2 Division
E* 1 Exponential Function
IF 2 If [Argl] then return [Then] branch,
otherwise return [Else] brach
Then/Else 2 Combined Node for [Then] and [Else] branch
<, > 2 Less or equal, greater or equal
&&, || 2 Logical AND, logical OR
Terminal nodes
[c*x Varx] Value of attribute X multiplied with coefficient ¢
D A constant double value D

-13s7

Figure 1: An exemplary hybrid structure tree.

precise: Given N samples with original classifications o; di-
vided into n classes ci, ..., cn (with c¢1 being the lowest and
cn the greatest class value), the fitness value F of a classi-
fication model producing the estimated classification values
e; 1s evaluated as follows:

vie[l,N] : (ei < Cl) = fi= (Oi — Cl)2+ | c1 — €; |7 (1)
(a1 <ei<cn)=fi=(e;i — 02')27 (2)
(62‘ > Cn) = fz = (Oi - Cn)2+ | Cn — € | (3)
1 N
F= N;ﬁ (4)

The reason for this is that values that are greater than the
greatest class value or below the lowest value are anyway
classified as belonging to the class having the greatest or
the lowest class number, respectively; using a standard im-
plementation of the squared error function would punish a
formula producing such values more than necessary.

2.1.4 Finding Appropriate Class Thresholds

Of course, a mathematical expression alone does not yet
define a classification model; thresholds are used for divid-

ing the output into multiple ranges, each corresponding to
exactly one class. These regions are defined before starting
the training algorithm in static range selection (SRS) [14],
which brings along the difficulty of determining the appro-
priate range boundaries ahead of time. In the classification
framework documented in this paper we have therefore used
dynamic range selection (DRS) which attempts to overcome
this problem by evolving the range thresholds along with
the classification models. The thresholds are chosen so that
the sum of ratios of misclassifications for all given classes is
minimized (on the training data, of course).

2.2 Introduction of an Enhanced Selection
Scheme in the GP Process

In the context of our structure identification approach
used for solving classification problems, the standard GP
process (basically the procedure described in [7]) is extended
by an enhanced selection scheme. Instead of using stan-
dard implementations of the genetic algorithm as underly-
ing GP algorithm, a new generic evolutionary algorithm,
the SASEGASA [1], is applied. This hybrid GA uses an en-
hanced selection model which is designed to directly control
genetic drift within the population by advantageous self-
adaptive selection pressure steering. Additionally, this new
selection model enables to detect and combat premature
convergence which is generally quite a critical issue in GAs.
A very essential question about the general performance of
GAs and especially GP is, whether or not good parents are
able to produce children of comparable or even better fit-
ness. For GAs, this property is not so easy to guarantee
and for GP it is a matter of principle that many crossover
and mutation results cause counterproductive solution can-
didates.

In order to overcome this drawback, the basic idea of the
new selection model which we have called offspring selection
(cf. Figure 2) is to consider not only the fitness of the parents
in order to produce a child for the ongoing evolutionary pro-
cess. Additionally, the fitness value of the evenly produced
child is compared with the fitness values of its own parents.
Basically the child is accepted as a candidate for the further
evolutionary process if and only if the reproduction opera-
tor was able to produce a child that could outperform its
better parent. Using the number of children that have to
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Figure 2: Embedding the new offspring selection
principle into a GA or GP.

be created in order to generate sufficiently many successful
descendants, the so called selection pressure is calculated.
This value can for example be used for further analysis of
the execution of the GA or the GP process at hand, but also
as a termination criterion by letting the algorithm automat-
ically stop its execution as soon as the selection pressure
exceeds a predefined upper limit.

For further details about the more specific parameters and
functioning of offspring selection the interested reader is re-
ferred to [1] or [2].

This strategy guarantees that evolution is continued mainly
with crossover results that were able to mix the properties
of their parents in an advantageous way which is a very
essential aspect for the preservation of essential genetic in-
formation stored in many individuals (which might not be
the fittest in the sense of individual fitness). As elaborate
test series have shown (see for example [18] [17] or [1]), the
results obtained for various different optimization problems
using the SASEGASA were significantly better than those
produced by standard GA implementations.

3. EMPIRICAL TEST RESULTS
3.1 Classification Methods Used

For comparing GP based classification with other ma-
chine learning methods, the following techniques for train-
ing classifiers were examined: Genetic programming (en-
hanced approach as described in Section 2), linear modeling,
neural networks and the k-nearest-neighbor method. The
benchmark problems analyzed are the data sets Wisconsin,
Melanoma and Thyroid.

3.1.1 GP based training of Classifiers

We have used the following parameter settings for our GP
test series:

e Population size: 1000
e Mutation rate: 10%

e Selection scheme: SASEGASA selection incorporating
offspring selection

e Selection operators: Roulette selection in combination
with random selection

e Termination criteria:

— Max. number of generations: 1000; not reached,
all executions were terminated via the

— Maximum selection pressure: 555 (as described in
Section 2.2, details can be found in [1] and [2])

e Functions set: All functions as described in Section 2.1

In the case of the Wisconsin data set, the results retrieved
using this enhanced GP (EGP) classification algorithm were
compared to those obtained using standard GP techniques.
In [14], for example, recent results for several classification
benchmark problems are documented; the Wisconsin data
set is also analyzed using standard GP as well as three
other GP based classification variants (POPE-GP, DecMO-
GP and DecMOP-GP).

3.1.2 Linear modeling

Given a data collection including m input features storing
the information about N samples, a linear model is defined
by the vector of coefficients 0;.. ,,. For calculating the vec-
tor of modeled values e using the given input values matrix
u1...m, these input values are multiplied with the correspond-
ing coefficients and added:

6:u1...7n*0 (5)

The coefficients vector can be computed by simply applying
matrix division. For conducting the test series documented
here we have used the matrix division function provided by
MATLAB:

theta = InputValues \ TargetValues;

If a constant additive factor is to be included into the model
(i.e., the coefficients vector), this command has to be ex-
tended:

r = size(InputValues,1);
theta = [InputValues ones(r,1)] \ TargetValues;

Theoretical background of this approach can be found in

[9].
3.1.3 Neural Networks

For training neural network (NN) models, three-layer feed-
forward neural networks with one output neuron were cre-
ated using the Levenberg-Marquardt training method. The-
oretical background and details can be found in [12] (Chap-
ter 11, “Neural Networks”), [10], [8] or [6].

We have trained networks with 5 neurons in the hidden layer
(referred to as “NN” in the test series documentation in
Section 3.2) as well as networks with 10 hidden neurons (re-
ferred to as “NN2” in the test series documentation); the
number of iterations of the training process was set to 300.
In the context of analyzing the benchmark problems used
here, higher numbers of nodes or iterations almost always
lead to overfitting (i.e., a better fit on the training data, but
worse test results).

The NN training framework used to collect the results re-
ported in this paper is the NNSYSID20 package, a neural net-
work toolbox for MATLAB implemented by Magnus Ngr-
gaard at the Technical University of Denmark [13].



3.1.4 kNN Classification

Unlike other data based modeling methods based on lin-
ear models, neural networks or GP, k-nearest-neighbor clas-
sification works without creating any explicit models. Dur-
ing the training phase, the data are simply collected; when
it comes to classifying a new, unknown sample Znew, the
sample-wise distance between xpc, and all other training
samples Zirqin 18 calculated and the classification is done
on the basis of those k training samples (xyn) showing the
smallest distances from Zynew.-

The distance between two samples is calculated as fol-
lows: First, all features are normalized by subtracting the
respective mean values and dividing the remaining samples
by the respective variables’ variances. Given a data ma-
trix x including m features storing the information about N
samples, the normalized values Xynorm are calculated as

l’(’L,j) - % Zi\f:1 l’(i, k)
var(z(i,1...N)) (©6)

vz'E[l.,'rn]VjE[l,N] : xnor'rn(i7j) -

where the variance var of a given variable x storing N values
is calculated as

N
> (zi-1)?

i=1

with Z denoting the mean value of x.

Then, on the basis of the normalized data, the distance be-
tween two samples a and b, d(a, b), is calculated as the mean
squared variable-wise distance:

n

d(a, b) = % Z (ano'rm(i) - b'n,or'm(i))2 (8)

i=1

where n again is the number of features stored for each sam-
ple.

In the context of classification, the numbers of instances
(of the k nearest neighbors) are counted for each given class
and the algorithm automatically predicts that class that is
represented by the highest number of instances (included in
xnn). In the test series documented in this paper we have
applied weighting to kNN classification: The distance be-
tween Tnew and znyn is relevant for the classification state-
ment, the weight of nearer samples is higher than that of
samples that are “further” away from Tnew-

There is a lot of literature that can be found for kNN clas-
sification; very good explanations and compact overviews of
kNN classification (including several possible variants and
applications) are for example given in [4] and [15].

3.2 Results

All three data sets were investigated via 10-fold cross-
validation. This means that each original data set was di-
vided into 10 disjoint sets of (approximately) equal size.
Thus, 10 different pairs of training (90% of the data) and
test data sets (10% of the data) can be formed and used for
testing the classification algorithm. For the Wisconsin and
the Melanoma data set we give the percentages of correct
classifications for each partition and each modeling method
tested. In the case of the Thyroid data set, the samples
are not equally distributed to the three given classes; this is
why we give the percentages of correct classifications for the
Thyroid problem for each class separately.

The Wisconsin as well as the Thyroid are parts of the UCI
Machine Learning Repository® and also incorporated in the
KEEL data set collection?; preprocessed versions of all data
can be accessed in via the KEEL homepage®.

Table 2: Percentual correct classification rates for
the classifiers produced for the 10-fold CV partitions

of the Wisconsin data set.
Evaluation on training data

Part. | Lin | NN | NN2 | kNN | EGP

0 [ 97.88 [ 100.00 [ 100.00 [ - 98.37
1 | 97.88 | 99.18 | 100.00 | - 97.56
2 | 9756 | 99.83 [ 100.00 | - 99.02
3 | 9821 | 99.83 [ 100.00 | - 98.86
4 | 97.88 | 100.00 | 100.00 | - 97.06
5 | 97.56 | 100.00 | 100.00 | - 98.37
6 | 9756 | 99.34 [ 100.00 | - 98.21
7 | 9739 | 99.67 | 100.00 | - 98.05
8 | 97.88 | 100.00 | 100.00 | - 97.56
9 | 97.56 | 99.34 | 100.00 | - 98.21

[avg. | 97.74 | 99.69 | 99.98 | - [ 98.08 |

Evaluation on test data
Part. Lin | NN | NN2 | kNN | EGP

0 94.12 92.64 | 86.76 | 85.29 | 95.59
1 98.53 | 92.75 | 94.12 | 100.00 | 98.53
2 94.12 98.52 | 89.70 | 95.59 | 98.53
3 94.12 94.12 | 89.70 | 89.70 | 94.12
4 95.65 92.75 | 94.12 95.65 | 97.14
5 94.12 94.12 | 92.64 | 94.12 | 98.53
6 98.53 | 97.14 | 98.53 | 98.53 | 95.59
7 100.00 | 97.14 | 100.00 | 97.14 | 100.00
8 97.14 | 91.30 | 92.64 | 98.53 | 95.59
9 94.12 95.59 | 98.53 | 94.12 | 97.10

[ avg. | 96.05 [ 94.59 | 93.70 | 94.86 | 97.07

Table 3: Average correct classification rates (given
as percentual values) for the classifiers produced for
the Wisconsin data set.

| Algorithm | Training | Test |

Lin 97.74 96.05

NN 99.69 94.59

NN2 99.98 93.70

kNN - 94.86
StandardGP 98.98 93.82
POPE — GP 99.24 95.08
DecMO — GP 99.40 95.19
DecMOP — GP 99.27 95.60

[SASEGASA—GP | 98.08 | 97.07 |

2http: //sci2s.ugr.es/keel/

$Unfortunately, we had to realize that obviously this page
has been relaunched and that the data are only partially
accessible (at least on April 7, 2006). Therefore, the data are
at the moment only available as raw data collections via the
download section of the UCI Machine Learning repository:
http://www.ics.uci.edu/"mlearn/databases.



3.2.1 Wisconsin

The Wisconsin data set is a part of the UCI Machine
Learning Repository; in short, it represents medical mea-
surements which were recorded while investigating patients
potentially suffering from breast cancer. The number of fea-
tures recorded is 9, the file version we have used contains
683 recorded examples (by now, 699 examples are already
available since the data base is updated regularily). A de-
tailed description of the problem can be found on the KEEL
homepage; the best results published using various classifiers
(the best ones using problem specific methods achieving up
to 98.7% accuracy on the training data and 98.5% on the
test data) can be found there, too.

In Table 2 we give the percentages of correct classifications
for each class evaluated on training data and on test data, re-
spectively. The following training methods have been used:
Linear modeling ( “Lin”), neural networks ( “NN”: 5 hid-
den nodes, “NN2”7: 10 hidden nodes), kNN classification
(“kNN”, k = 3) and enhanced GP ( “EGP”).

An overview of the average percentages of correct clas-
sification for each method tested is given in Table 3. Ad-
ditionally, we have compared the results to those achieved
using other GP implementations documented in [14], namely
“Standard GP”, “POPE-GP”, “DecMO-GP” and “DecMOP-
GP”.

3.2.2 Melanoma

The Melanoma data set represents medical measurements
which were recorded while investigating patients potentially
suffering from skin cancer. It contains 1311 examples for
which 30 features have been recorded; it has been provided
to us by Prof. Michael Binder from the Departement of
Dermatology at the Medical University Vienna, Austria.

In Table 4 we give the percentages of correct classifications
for each class evaluated on training data and on test data, re-
spectively. The following training methods have been used:
Linear modeling ( “Lin”), neural networks ( “NN”: 5 hid-
den nodes, “NN2”7: 10 hidden nodes), kNN classification
(“kNN”, k = 3) and enhanced GP (“EGP”. An overview
of the average percentages of correct classification for each
method tested is given in Table 5.

3.2.3 Thyroid

The Thyroid data set represents medical measurements
which were recorded while investigating patients potentially
suffering from hypotiroidism. A detailed description of the
problem can be found on the KEEL homepage®. In short,
the task is to determine whether a patient is hypothyroid or
not. Three classes are formed: normal (not hypothyroid),
hyperfunction and subnormal functioning; a good classifier
has to be significantly better than 92% simply because 92
percent of the patients are not hyperthyroid. In total, the
data set contains 7200 samples.

As already mentioned, the samples of the Thyroid data
set are not equally distributed to the three given classes; in
fact, 166 samples belong to class ‘1’ (‘subnormal function-
ing’), 368 samples are classified as ‘2’ (‘hyperfunction’), and
the remaining 6666 samples belong to class ‘3’ (‘normal, not
hypothyroid’). This is why we give the percentages of cor-
rect classifications for the Thyroid problem for each class
separately. For the sake of readability we do not state the
results for every partition, every class and every method; in
the Tables 6 and 7 we give the percentages of correct classifi-

Table 4: Percentual correct classification rates for
the classifiers produced for the 10-fold CV partitions

of the Melanoma data set.
Evaluation on training data

Part. | Lin | NN [ NN2 | kNN | EGP

0 93.64 | 97.20 | 99.91 97.29
1 92.37 | 99.40 | 98.13 - 95.51
2 94.06 | 99.91 | 99.91 - 96.36
3 93.13 | 98.30 | 98.64 - 96.36
4 93.72 | 96.77 | 98.55 - 96.27
5 94.06 | 99.49 | 97.28 - 96.36
6 94.74 | 99.66 | 100.00 - 97.12
7 92.45 | 98.30 | 99.91 - 96.19
8 93.22 | 98.89 | 98.47 - 95.59
9 93.72 | 98.38 | 99.74 - 96.19
avg. | 93.51 | 98.63 | 99.05 - 96.24

Evaluation on test data
Part. | Lin | NN | NN2 |kNN | EGP

0 88.54 | 92.36 | 93.12 | 97.70 | 95.42
1 90.83 | 96.94 | 93.89 | 96.94 | 98.47
2 92.36 | 95.41 | 90.07 | 93.12 | 96.18
3 93.89 | 93.12 | 90.07 | 88.54 | 93.13
4 89.39 | 96.21 | 93.93 | 87.12 | 91.60
5 93.89 | 95.41 | 96.94 | 94.65 | 96.95
6 93.12 | 90.07 | 91.60 | 93.89 | 93.13
7 96.18 | 96.94 | 92.36 | 96.18 | 96.18
8 96.94 | 95.41 | 96.94 | 94.65 | 96.95
9 89.31 | 91.60 | 90.07 | 93.12 | 96.18

avg. | 92.45 | 94.35 | 92.90 | 93.59 | 95.42

cations for each class in terms of average accuracy, standard
deviation, minimum and maximum values for the methods
tested on training data and on test data, respectively.

The following training methods have been used: Linear mod-
eling, neural networks (“Variant 17: 5 hidden nodes, “Vari-
ant 2”7: 10 hidden nodes), kNN classification (kK = 5) and
enhanced GP.

4. DISCUSSION

As documented in the Tables 2 until 7 it was able to
show that for all three medical benchmark data sets the
results achieved using the enhanced GP approach presented
in this paper are - when evaluated on test data - better
than those achieved applying linear regression, neural net-
works, neighborhood classification or standard genetic pro-
gramming. Even though other methods achieve better fit
and correct classification rates on the training data, using
the GP based classification method described here yields the
best results when it comes to classifying test samples, which
is much more important than classifying training samples
correctly.

Evaluated on the first data collection, the Wisconsin data
set, neural networks are able to approximate the given data
best showing a almost perfect fit (99.69% and 99.98% cor-
rect classifications, respectively) while enhanced GP is only
able to produce classifiers with an average 98.09% classifica-
tion accuracy. But when it comes to testing new, unknown
data, the EGP method performs best; while the evaluation
of the EGP method yields less than 3% test error, all other



Table 5: Average percentual correct classification
rates for the classifiers produced for the Melanoma

data set.
[ Algorithm | TrainingError | TestError ]

Lin 93.51 92.45
NN 98.63 94.35
NN2 99.05 92.90
kNN - 93.59

[ EGP | 96.24 [ 9542 |

Table 6: Summary of training results for the Thyroid
data set: correct classifications (given as percentual
values) for the 10-fold CV partitions.

Evaluation of Linear Model Classifiers

| Classl | Class2 | Class3

Avg 33.60 22.96 99.08
Std.Dev. 1.51 3.22 0.15
Min 31.33 19.22 98.78
Maz 35.81 30.47 99.28
Evaluation of NN Classifiers (Var. 1)

| Classl | Class2 | Class3

Avg 91.47 94.15 99.24
Std.Dev. 4.82 4.12 0.27
Min 82.78 84.62 98.82
Mazx 97.39 99.07 99.63
Evaluation of NN Classifiers (Var. 2)

| Classl | Class2 | Class3

Avg 93.73 96.10 99.50
Std.Dev. 2.56 1.01 0.14
Min 91.21 94.34 99.27
Maz 97.76 97.93 99.70

Evaluation of enhanced GP Classifiers

| Classl | Class2 | Class3

Avg 93.72 96.68 99.46
Std.Deuv. 3.19 3.42 0.30
Min 90.26 88.17 98.80
Mazx 98.68 100.00 99.83

methods perform significantly worse with average test errors
ranging from 6.18% (standard GP) to 3.95% (linear model-
ing).

The evaluation of the classification method investigated
using the Melanoma data set shows similar results:
While neural networks show a training error of less than
1.5%, the training error rate of the EGP method is more
than twice as high (3.76%); only linear modeling performs
worse (only 93.51% correct classification on training data).
The test phase again shows that genetic programming meth-
ods are able to perform better than classical machine learn-
ing methods: The test error of the EGP method is 4.58%
whereas neural networks produce 5.65% and 7.1% false clas-
sifications, respectively, and linear regression is also able to
classify only 92.45% of the test samples correctly. Only kNN
classification (5.65% test error) is able to perform almost as
well, but still not quite as well as EGP.

Table 7: Summary of test results for the Thyroid
data set: correct classifications (given as percentual
values) for the 10-fold CV partitions.

Evaluation of Linear Model Classifiers

| Classl | Class2 | Class3
Avg 33.39 22.23 99.05
Std.Dev. 12.47 6.87 0.41
Min 11.11 10.26 98.62
Max 56.25 30.00 99.84

Evaluation of NN Classifiers (Var. 1)
| Classl | Class2 | Class3

Avg 84.93 91.01 98.68
Std.Dev. 6.11 6.11 0.83
Min 75.00 83.33 97.45
Mazx 94.44 100.00 99.55

Evaluation of NN Classifiers (Var. 2)

| Classl | Class2 | Class3
Avg 85.40 92.46 97.91
Std.Dev. 8.28 6.31 2.70
Min 73.68 80.56 90.40
Mazx 94.44 100.00 99.40

Evaluation of kNN Classifiers

| Classl | Class2 | Class3
Avg 75.00 32.52 99.42
Std.Dev. 14.36 21.60 0.67
Min 52.63 8.88 97.61
Maxzx 88.89 82.05 99.87

Evaluation of enhanced GP Classifiers

| Classl | Class2 | Class3
Avg 88.45 93.09 99.40
Std.Dev. 7.87 6.75 0.43
Min 75.00 80.00 98.65
Max 100.00 100.00 100.00

The most challenging data set investigated is the Thyroid
data set. As can be seen in Table 6, the linear modeling
method is not able to produce satisfying classifiers. Neural
networks are trained showing rather good fit on the train-
ing data: 91.47% (and 93.73%, respectively) of the training
samples belonging to class 1 can be reconstructed correctly,
94.15% (96.68%) of class 2 and more than 99% of the train-
ing samples classified as “not hyperthyroid”. EGP produces
classifiers that are quite as good for class 1 and even a little
bit better for classes 2 and 3 evaluated on the training data.
As documented in Table 7, EGP obviously outperforms the
other methods investigated significantly: kNN classification
(with k = 5), for example, is on the average only able to cor-
rectly detect 32.52% of the test samples originally classified
as ‘2’ NN classifiers show lower correct classification rates
then EGP. EGP yields best classifiers for the classes 1 and
2, only for class ‘3" kNN performs slightly better (99.42%
correct classification opposed to 99.40% achieved by EGP).



5. CONCLUSION

In this paper we have presented an enhanced genetic pro-
gramming method that was successfully used for investigat-
ing machine learning problems in the context of medical clas-
sification. The approach works with hybrid formula struc-
tures combining logical expressions (as used for example in
decision trees) and classical mathematical functions; the en-
hanced selection scheme originally successfully applied for
solving combinatorial optimization problems using genetic
algorithms was also applied yielding high quality results.

As documented in the detailed test results summary, this
genetic programming based classification approach outper-
forms classical machine learning algorithms frequently used
for solving classification problems, namely linear regression,
neural networks and neighborhood based classification.

The results achieved for the medical data collections are
very satisfying and make the authors believe that an appli-
cation in a real-world framework in the context of medical
data analysis using the techniques presented here is strongly
recommended .
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