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ABSTRACT
Motif discovery is a general and important problem in bioinformat-
ics, as motifs often are used to infer biologically important sites
in bio-molecular sequences. Many problems in bioinformatics are
naturally cast in terms of sequences, and distance measuresfor se-
quences derived from edit distance is fundamental in bioinformat-
ics.

Geometric Crossover is a representation-independent definition
of crossover based on a distance on the solution space. Usinga
distance measure that is tailored to the problem at hand allows the
design of crossovers that embed problem knowledge in the search.

In this paper we apply this theoretically motivated operator to
motif discovery in protein sequences and report encouraging ex-
perimental results.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]: Miscel-
laneous

General Terms
Geometric Crossover, Motif Discovery, Biopolymers

1. INTRODUCTION
Motifs, often modeled as short regular expressions, are a way to

describe homologous relationships between proteins or functional
sites in proteins, DNA and RNA. Prosite is a hand curated database
of such motifs foundin proteins, with cross-references to the Swiss-
Prot annotated database of proteins [6, 2]. Often such a motif can
highlight important characteristic regions of proteins with similar
function and common ancestral background. Also, motifs areeasy
to interpret – a biologist may immediately see the importantaspects
of a region in protein, RNA or DNA sequences.

The automatic discovery of conserved motifs under different pat-
tern models has received considerable attention during thelast two
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decades. Rigoutsos et al. [14] give a survey of motif discovery
algorithms in relation with their own works. Although new motifs
for several biological problems are now often presented as statis-
tical models with much resemblance to Hidden Markov Models,
the automatic generation of biological motifs remains an active re-
search area. A new motif that can replace the need of the statistical
profile is always welcome.

The problem of motif discovery has been studied with more tra-
ditional techniques in many years, and there exist good algorithms
for data mining, for example Splash [3]. These algorithms work
by primarily finding motifs expressed within a positive set by ap-
plying measures like support and information content, and setting
some fixed parameters on the shape and expected number of non-
wildcards in the patterns. For these algorithms search-time is de-
pending on chosen parameters defining the looks of the pattern.
They also tend to become expensive when the number of sequences
are high – resulting in an increased number of potential patterns to
explore.

The mentioned algorithms work well for pattern discovery, but
applying Evolutionary Algorithms (EA) potentially allowsus to
search the pattern space without making any prior assumptions on
the compositions of the patterns (other than those implied by the
EA operators). Also, an EA or other heuristics might be used to im-
prove motifs found by fast approximate heuristics simply byseed-
ing the population with motifs from such algorithms.

EAs have been applied to motif discovery and related problems
at a few occasions. However most such applications do not pay
much attention to the underlying structure of the problem. Re-
cently Heddad et al. did some work on protein targeting (which is
related to protein motif discovery), using a very general and elab-
orate grammatical GP system [5]. Other researchers have usually
performed some kind of pre-shaping of the training sets. Some
strategies for pre-shaping include pre-calculated alignments of pos-
itive samples [15], selection of particularly difficult sequences as
negative examples [7] or relatively small numbers of randomly gen-
erated sequences as negative samples [15].

An inconclusive attempt to compare the performance of listsand
trees as representations for motif discovery have been performed
by Seehuus et al. [17], where the authors indicated that their ex-
periments seemed to favor a linear genome. Also, a linear genome
have been used to discover motifs with better classificationperfor-
mance than those found in the manually curated Prosite database
for a couple of families [16, 6].

Geometric Crossovers (GC) are representation- and problemin-
dependent recombinative operators for EAs that are defined using
a distance measure relating to the solution representation[8]. In-
formally, a geometric crossover generates offspring that lies on a



shortest path between two parents. The formal definition of ge-
ometric crossover can be used to design new crossover operators
specific to non-standard representations, by using distance mea-
sures meaningful for the specific representation as a guide [10].
Geometric crossover generalizes many existing search operators
for the major representations used in EAs, such as binary strings
and real vectors [8], permutations [10], syntactic trees [9] and se-
quences [11]. In particular, for sequences the geometric defini-
tion of crossover applied to edit distance becomes a homologous
crossover that requires alignment of the contents before exchange
of genetic material [13].

To be effective, a crossover operator must embed problem knowl-
edge in the search. This can be achieved by basing the crossover
operator on a distance measure that is meaningful for the problem
at hand. Moraglio et al. [9] suggested a rule of thumb: the dis-
tance chosen should make the resulting fitness landscape “smooth”
in some statistical sense, so that low distance between two solu-
tions are correlated with low difference in fitness. Naturally, this is
only a general rule-of-thumb that needs to be validated on specific
problems. In this paper we test this hypothesis on a motif discov-
ery problem, by discovering motifs to discriminate betweenprotein
families. We model our motifs as fixed length sequences, and as-
sume that a mutation based on the edit distance move previously
used by Seehuus et al. [17] is a good mutation.

In section 2 we outline the geometric framework for crossover
operators, and define a homologous crossover for edit distance.
Section 3 describes the motif discovery problem and experimen-
tal setting, and section 4 presents results from experiments and a
discussion of these. Finally we give some concluding remarks and
outlines of future directions in section 5.

2. GEOMETRIC CROSSOVER FOR
BIOINFORMATICS PROBLEMS

In this section, we report the basic ideas behind the geometric
framework, then we describe the specific case of edit distances,
sequences and homologous crossover.

2.1 Geometric Preliminaries
Formally, the termmetric denotes any function that conforms

to the axioms of identity, symmetry and triangular inequality. A
simple connected graph is naturally associated to a metric space
via its path metric: the distance between two nodes in the graph is
the length of a shortest path between the nodes. Similarly, an edge-
weighted graph with strictly positive weights is naturallyassociated
to a metric space via aweighted path metric.

In a metric space(S, d), a closed ball is the set of the form
B(x; r) = {y ∈ S | d(x, y) ≤ r} wherex ∈ S andr is a positive
real number called the radius of the ball. Aline segment(or closed
interval) is the set of the form[x; y] = {z ∈ S | d(x, z)+d(z, y) =
d(x, y)} wherex, y ∈ S are called extremes of the segment. Met-
ric ball and metric segment generalize the familiar notionsof ball
and segment in the Euclidean space to any metric space through
distance redefinition. These generalized objects look quite differ-
ent under different metrics. Notice that a metric segment does not
coincide to a shortest path connecting its extremes (geodesic) as
in an Euclidean space. In general, there may be more than one
geodesic connecting two extremes; the metric segment is theunion
of all geodesics.

We assign a structure to the solutionsetby endowing it with a
notion of distanced. M = (S, d) is therefore a solutionspaceand
L = (M, g) is the corresponding fitness landscape, whereg is the
fitness function overS. Notice thatd is arbitrary and need not have
any particular connection or affinity with the problem at hand.

2.2 Definition of geometric operators
The following definitions of mutation and crossover arerepresentation-

independentand arefunctions of the metricassociated with the
search space being based on the notions of metric ball and metric
segment.

DEFINITION 1. Geometricǫ-mutation
A unary operator is a geometricǫ-mutation operator under the

metricd if ǫ is the smallest radius of the ball centered in the parent
so to include all offspring.

DEFINITION 2. Geometric crossover
A binary operator is a geometric crossover under the metricd if

all offspring are in the segment between its parents.

DEFINITION 3. Uniform geometric crossover
The uniform geometric crossoverUX under the metricd is the

geometric crossover underd that uniformly picks offspring in the
segments between the parents.

2.3 Geometric crossover, fitness landscape and
problem knowledge

Geometric operators are defined in terms of the distance measure
associated with the search space. However, the search space, e.g.
the set of possible solutions to the problem at hand and the con-
nectivity structure among them, does not come with the problem
itself. The problem consists of the objective function to minimize
(or maximize), and a description of how to evaluate candidate so-
lutions. It does not give any structure on the solution set.

Creating a structure over the solution set is part of the design of
the search algorithm, and it is a designer’s choice. The designer
could, in principle, pick any structure over the solution set, but
choosing a structure randomly would decouple the problem from
the structure of the search space. Consequently the search operators
defined over such a structure would turn the search into something
very close to random search.

In order to embed problem knowledge in the search, the connec-
tivity structure of the fitness landscape has to be chosen well, and
the resulting distance associated with the search space should be
“natural” for the problem at hand. The designer can put problem
knowledge in the landscape by studying the structure of the ob-
jective function of the problem and choose a neighborhood struc-
ture such that specific conditions that “couple” distance between
solutions and their fitness values are satisfied. Once this isdone
problem knowledge can be exploited by search operators to per-
form better than random search,even if the search operators are
problem-independent.The fitness landscape built in this manner
can be viewed as a knowledge interface between the problem and a
problem-independent search algorithm.

As previously mentioned, we expect geometric operators to per-
form well on landscapes with a “smooth trend”. Landscape smooth-
ness, in various forms, is a principle that has been discovered many
times in different context and has been confirmed in many empiri-
cal studies with many neighborhood search meta-heuristics[12].

A smooth landscape can be obtained indirectly, without having
specific knowledge on the fitness landscape by using the follow-
ing well-established operational practice: if one has a good muta-
tion operator, and can build a crossover based on this, the resulting
crossover is likely to be good [9]. This is because the mutation op-
erator creates a neighborhood structure over the search space. If
a particular mutation works well on a problem, the associated fit-
ness landscape is likely to be smooth. Thus, if we build a crossover
which uses the structure associated with such a mutation, weare



likely to obtain a good crossover because of the “smooth land-
scape” of the mutation operator. Since geometric crossovers can
be constructed in such a way, the geometric crossover associated
with a good mutation might be expected to be good.

2.4 Sequences, edit distance and alignments
Theedit distancebetween two sequences is defined as the min-

imum number of edit moves (insertion, deletion and replacement)
needed to transform one sequence in to the other. Edit distances are
metrics [4]. The edit distance between two sequences is a measure
of their syntactic dissimilarity.

An alignmentof two sequencesu andv is the pair of sequences
u′ andv′ of the same length obtained by inserting the minimum
number of place-holder characters “-” in u andv so as the place-
holder display necessary insertions and deletions in the transfor-
mation under edit distance. Ifu = “banana” andv = “ananas” a
possible alignment is the pair of sequencesu′ = “banana-” and
v′ = “-ananas”. Thescore of an alignment is the number of
aligned characters that are different in the two sequences.Given
two sequences there may be more than one optimal alignment. It
is well known that the score of an optimal alignment between two
sequences equals their edit distance [4].

2.5 Edit-mutation and its homologous crossover
The edit distance mutation is defined as a random edit move,

at a random position in the sequence. First a random positionin
the sequence is chosen uniformly, then the character at the selected
position is either deleted, replaced by a random character from the
alphabet, or a random character is inserted at this positionof the
string.

DEFINITION 4 (MASK-BASED HOMOLOGOUS CROSSOVER).
homologous crossover follows the following steps:

1. LetQ be the set of all optimal alignments of two sequences
u andv under simple edit distance. Homologous crossover
picks a random optimal alignmentq ∈ Q with a given proba-
bility distribution overQ. Letu′ andv′ be the two sequences
aligned with gaps according toq.

2. Letl be the length ofq andm be a mask drawn from{0, 1}
with a given probability distribution.m specifies for each
position ofq from which parent to copy the corresponding
character to produce an aligned offspringw′

3. The actual offspringw is obtained by removing the dashes
fromw′.

An example of a one point crossover is:

EXAMPLE 1.
m 0000111
u′ banana-
v′ -ananas

The given mask and alignment yields the childbananas, and
for m̄, anana.

An optimal alignment, and thus a homologous crossover, can
be computed efficiently using aO(|u||v|) dynamic programming
algorithm [4].

THEOREM 1. All mask-based homologous crossover operators
are geometric crossovers under edit distance.

THEOREM 2. Every stringw in the segment between two strings
u and v under edit distance is reachable by mask-based homolo-
gous crossover applied to the parent sequencesu andv.

Theorem 1 states that homologous crossover is geometric crossover
under edit distance. Theorem 2 states that any geometric crossover
under edit distance takes the form of homologous crossover.Proofs
for the theorems are given by Moraglio et al. [11].

3. MOTIF DISCOVERY PROBLEM AND
EXPERIMENTAL SETTINGS

In this section we describe the motif discovery problem, selected
datasets and experiments performed.

3.1 Correlation was used as fitness
We model the motif discovery problem as a supervised learning

problem, with two classes of data – one positive (the in family sam-
ple) and one negative (the rest of the database). The goal is to find a
motif that is a good discriminator between the positive and negative
dataset.

When a candidate motif is found in a protein string this is counted
as a true positive, if the protein sequence belongs to the current fam-
ily. Otherwise it is counted as a false positive. We havep positive
samples andn negative samples.Tp denotes the true positives and
Fp the false positives. ThenTn = n − Fp is the number of true
negatives andFn = p − Tp is the false negatives.

It is important that our fitness measure is constructed in such
a way that high fitness represents high classification quality. The
failure-rate or accuracy of the classifier will not suffice, as the size
of the positive set is a small fragment of the negative set (one fifth
during training, and often less than a percent in the test-set.) Any
hypothesis that don’t match any of the negative samples willhave a
very high accuracy on this problem. The Matthews correlation co-
efficient is a measure that captures the classifiers ability to separate
the datasets, and its use as a fitness measure was inspired by other
works [7]. The fitness is then calculated according to equation 1

C =
Tp ∗ Tn − Fn ∗ Fp

p

(Tn + Fn)(Tn + Fp)(Tp + Fn)(Tp + Fp)
(1)

3.2 Simple regular expressions model patterns
We represented motifs as sequences. As alphabet, we used a

simple pattern model, that modelsidentical patterns from the set
(Σ ∪ .)∗, whereΣ is the twenty amino acid residues and. denotes
a match with any character (a wildcard.)1

3.3 Selected problems was previously found to
be hard

For our experiments, we selected six protein families from the
Prosite database described in table 1. These were selected amongst
a set of 44 protein families used in a previously published article,
and we selected six families that seemed to be problematic for GP
[16]. The six different problems all have more than 200 proteins
in-family, and they also have imperfect models in Prosite2 [6].

3.4 Experimental setup was a ten-fold cross
validation on each family

For each of the six selected protein families, we labeled allpro-
teins in the family as positive and all other proteins in the Swiss-
Prot database as negative. For most families there existed proteins
that were labeled as partial members of the families. These proteins
were excluded from the study.

1These patterns are from the same pattern space as explored bythe
Teiresias algorithm, as discussed earlier in this paper.
2Values taken from Prosite Release 19.14.



Table 1: Protein families and the number of proteins in them
Accession Number Name In family
PS00097 Carbamoyl Transferase 406
PS50076 Dna J 510
PS51007 Cytochrome C 307
PS00198 4Fe-4S-Ferredoxin 462
PS50888 HelixLoopHelix 395
PS50222 EF Hand 919

For each of the families we ran a 10-fold cross-validation ex-
periment for two different crossover operators and mutation only,
totalling 180 experiments. The first crossover operator tested was a
two-point geometric crossover based on the homologous crossover
defined in section 2.5 (TPG), which is analogous to the standard
two-point crossovers for binary GAs. The other was the previ-
ously used two-point crossover (TP) operator, which is computed
by swapping random substrings within the genomes. This allows
us to measure the quality of classifiers evolved by the two different
operators on the entire Swiss-Prot database for these data.

We used a generational EA for the experiments, where the entire
population was changed for each iteration. Except from changing
the type of crossover (and turning it off entirely in the mutation-
only experiments), we used the same settings through all exper-
iments. We used tournament selection with 4 individuals in the
tournament. 70% of the population was created using the crossover
operator, and the rest was created by mutation. No mutation was
performed on individuals produced from crossover. The mutation
operator based on the edit-move was used with both crossovers.
Each experiment was allowed to run for 50 generations, with no
other stopping criteria.

The initial population was initialized by generating random pat-
terns of length 5, where each position was selected from the al-
phabet including the wildcard symbol. We might speculate that
we would have seen better performance if we had used random
substrings or patterns derived from substrings that existed in the
positive set, but we did not pursue this.

3.5 Suffix trees accellerated searching
To accelerate the evaluation of the population we used general-

ized suffix trees, and approximate search in these [4]. Some trial
measurements showed that for random queries of length ten with
the specified model, counting hits in suffix trees was faster than the
boost regular expression library3 when the number of queries was
larger than two hundred (data not shown.)

Building a suffix tree of the entire set of negatives (consisting
of close to 160000 different protein sequences) to test the motifs
was not feasible. Instead, for each generation, we extracted a small
sample of the negative data four times larger than the positive set,
and built a suffix tree from these sequences (this is suggested in, for
example, Banzhaf et al. [1])

4. RESULTS AND DISCUSSIONS

4.1 Homologous crossover seem better during
training

Figure 1 shows the median of the maximum values found dur-
ing training, for each generation. Figure 2 shows the population
averages over all ten runs and all six families.

Some interesting differences in behavior is shown by figure 2.
Although the maximum fitness always seem to be comparable in
3Available fromhttp://www.boost.org/

values, for most of the runs the population means shows different
behavior. In figure 2 TPG always has much higher population av-
erage than TP.

Even though the medians of the maximum values on the training
data are often higher for the runs using TPG, note that sometimes
the minimum value for the TP runs is as good as or better than
the minimum value for TPG. Also the quantiles are overlapping
much, so no conclusions can be made on expected performance
differences of the two operators.

4.2 TP found a biologically significant pattern
for the Ferredoxin-family

When studying the final results in table 2, it is clear that we are
unable to conclude if one operator is better than the other asthe
classification performance of the motifs found are similar over all
six families over all ten runs.

Also, an investigation of the discovered motifs for the experi-
ments on the ferredoxin family, reveals that the motifs withbest
generalizing performance was found by TP in six of the ten runs,
with perfect classification on training and correlation 0.86 on the
test set :C..C..C...C In comparison, notice the similarities
with the 4Fe-4S-Ferredoxin motif from Prosite database:
C.{P}C..C{CP}..C[PEG] In light of our simplified pattern model,
this result could be considered optimal.

The length of the motif and the fact that it is a good classifieris an
indicator to the biological significance of the motif, and comparing
it to the Prosite motif for the same family, show that biologists agree
on the main features of the motif. In comparison the TPG was only
able to discover fragments of this motif in the form of a suffixof
the motif,C...C on nine out of ten runs, and the mutation operator
discover similar motifs (although a longer suffix is discovered more
often.) This might be attributed simply to that if we were choosing
motifsC..P andC..C as parents, the space of possible offsprings
from TP would contain e.g.C..C..C as a possible child and it
is not very unlikely either. On the other hand, it is impossible to
create such a solution from the two given parents with TPG.

It is noticeable that edit mutation alone have stable high perfor-
mance, and often surpasses the results from the other two algo-
rithms on the test set (see table 2).

4.3 Overfitting is accredited to unseen
negative samples

When comparing the results on training and testing given in table
2, it seems that we experience substantial overfitting for all but the
results for TP on the Ferredoxin-family.

Overfitting is often attributed to learning “noise” in the data, due
to the complexity, or flexibility, of the model. Consideringour very
simple models, this might be surprising. To get a good explanation
to how this might have happened in our experiments, we need to
look at our selection of negative training samples.

During evolution we only looked at a fraction of the negative
samples. For a protein family with 200 different protein sequences,
50 times 4 times 200 was extracted from Swiss-Prot, which yields
maximum 40 000 proteins, or less than 25% of the negative data.

In this case it might be likely that motifs occurring in many
positive samples also occur in the unseen data in the Swiss-Prot
database - and therefore contributing to the observed overfitting.

5. CONCLUDING REMARKS
In this paper we used the geometric framework to motivate the

general hypothesis that homologous crossover and edit mutation
are likely to be good genetic operators for bioinformaticalproblems
because such problems are naturally cast in terms of sequences and
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Figure 1: Maximum values. Medians plotted for 10 independent runs, with 0 and 100 percent sample quantiles. Circles are results
for TPG, crosses are results for TP. Quantiles for TPG are plotted with a solid line, TPs with dashes.
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Figure 2: Average population fitness. Medians with 0 and 100 percent sample quantiles. Circles are results for TPG, crosses are
results for TP. Quantiles for TPG are plotted with a solid line, TPs with dashes.



Table 2: Measured correlation coefficients on training setsand test sets for evolved classifiers found by TP, TPG and edit-mutation
only.

TP TPG Mut
Family Value Training Testing Training Testing Training Testing

Max 0.996 0.65 0.99 0.60 0.99 0.65
Carbamoyl Median 0.99 0.57 0.99 0.56 0.99 0.56

Min 0.94 0.28 0.65 0.11 0.95 0.28
Max 0.92 0.24 0.93 0.59 0.93 0.41

Dna J Median 0.90 0.23 0.91 0.23 0.92 0.23
Min 0.62 0.11 0.67 0.15 0.65 0.15
Max 0.81 0.11 0.98 0.42 0.98 0.42

Cytochrome Median 0.80 0.10 0.98 0.36 0.97 0.36
Min 0.79 0.10 0.63 0.33 0.59 0.10
Max 1.0 0.91 0.99 0.42 0.99 0.44

Ferredoxin Median 0.998 0.87 0.81 0.13 0.96 0.39
Min 0.74 0.11 0.79 0.13 0.80 0.13
Max 0.62 0.11 0.60 0.10 0.67 0.41

HLH Median 0.50 0.07 0.52 0.06 0.59 0.08
Min 0.48 0.05 0.49 0.04 0.48 0.05
Max 0.67 0.19 0.68 0.19 0.67 0.28

EF Hand Median 0.62 0.15 0.67 0.19 0.66 0.19
Min 0.48 0.13 0.65 0.15 0.48 0.13

homologous crossover and edit mutation are based on edit distance
between sequences that is fundamental in bioinformatics.

We tested this hypothesis on the specific case of motif discov-
ery problem. As a reference, we compared TPG, a homologous
crossover that aligns the contents before segments are exchanged,
with TP, a non-homologous crossover that randomly exchangeseg-
ments. We found TPG to be slightly better than the non-homologous
crossover during training, but no general conclusions can be made
from the performance on the test sets. Interestingly, experiments
show that TPG is a much less disruptive operator than TP, and this
opens up the possibility to seed the initial population withgood
candidate patterns computed with some quick heuristics as raw ma-
terial for the crossover.

Surprisingly we found that edit mutation seems to perform bet-
ter alone than when coupled with crossovers, both homologous
and non-homologous. This corroborates our initial assumption that
the fitness landscape of motifs under edit distance has a “smooth”
trend and that edit distance is a meaningful space for motif discov-
ery. Second, it hints that our rule-of-thumb, that a “smooth” fitness
landscape leads to a successful geometric crossover, somehow does
not fully apply in this case. The homologous crossover associated
with the same fitness landscape as edit mutation works well, but not
as well as edit mutation alone. This does not directly contradict the
“good mutation, good crossover” hypothesis, because homologous
crossover still is good. However, it begs an explanation. Wewill
in later work explore homologous crossover and edit mutation on
other bio-informatical problems to see whether this is an isolated
anomaly or a more general phenomenon.

Even though we note that our two operators find similar pat-
terns and overfits, the geometric crossover have some properties
that makes it a better choice, especially the indications ofreduced
destructiveness (consistently high population average) and the pos-
sibility to seed the population with candidate patterns. A selection
scheme that discovers and highlight the difficult samples, might re-
duce the overfitting observed during training.

As we found a motif that might be seen as biologically meaning-
ful for only one of the families, we might also speculate thatour
fitness measure might not be optimal for discovery of biologically
relevant sites.
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