Geometric Crossover for Supervised Motif Discovery

*
Rolv Seehuus
Norwegian University of Science and Technology
Department of Computer and Information
Science
7-9 Sem Selandsv
7042 Trondheim
NORWAY

rolv.seehuus@idi.ntnu.no

ABSTRACT

Motif discovery is a general and important problem in biomfiat-
ics, as motifs often are used to infer biologically impottaites
in bio-molecular sequences. Many problems in bioinforonzatire
naturally cast in terms of sequences, and distance medsuiss
quences derived from edit distance is fundamental in biomét-
ics.

Geometric Crossover is a representation-independentititefin

of crossover based on a distance on the solution space. Esing

distance measure that is tailored to the problem at handatioe
design of crossovers that embed problem knowledge in thretsea

In this paper we apply this theoretically motivated operdto
motif discovery in protein sequences and report encougagi:
perimental results.

Categories and Subject Descriptors

1.2.8 [Problem Solving, Control Methods, and Search Miscel-
laneous

General Terms
Geometric Crossover, Motif Discovery, Biopolymers

1. INTRODUCTION

Motifs, often modeled as short regular expressions, areyaava
describe homologous relationships between proteins atifural
sites in proteins, DNA and RNA. Prosite is a hand curatedodesta
of such motifs foundin proteins, with cross-referencefito3wiss-
Prot annotated database of proteins [6, 2]. Often such & oaoti
highlight important characteristic regions of proteinghagimilar
function and common ancestral background. Also, motifeasy
to interpret — a biologist may immediately see the imporésptects
of a region in protein, RNA or DNA sequences.

The automatic discovery of conserved motifs under diffepait-
tern models has received considerable attention duringtéwo
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decades. Rigoutsos et al. [14] give a survey of motif disgove
algorithms in relation with their own works. Although new tif®

for several biological problems are now often presentedatss
tical models with much resemblance to Hidden Markov Models,
the automatic generation of biological motifs remains aivace-
search area. A new motif that can replace the need of thetstati
profile is always welcome.

The problem of motif discovery has been studied with more tra
ditional techniques in many years, and there exist goodidfgas
for data mining, for example Splash [3]. These algorithmskwo
by primarily finding motifs expressed within a positive sgtdp-
plying measures like support and information content, aitirg
some fixed parameters on the shape and expected number of non-
wildcards in the patterns. For these algorithms search-tarde-
pending on chosen parameters defining the looks of the patter
They also tend to become expensive when the number of sesgienc
are high — resulting in an increased number of potentiabpagtto
explore.

The mentioned algorithms work well for pattern discovenyt b
applying Evolutionary Algorithms (EA) potentially allowss to
search the pattern space without making any prior assungptio
the compositions of the patterns (other than those impliethb
EA operators). Also, an EA or other heuristics might be usecht
prove motifs found by fast approximate heuristics simplysbgd-
ing the population with motifs from such algorithms.

EAs have been applied to motif discovery and related problem
at a few occasions. However most such applications do not pay
much attention to the underlying structure of the probleme- R
cently Heddad et al. did some work on protein targeting (Wlisc
related to protein motif discovery), using a very general alab-
orate grammatical GP system [5]. Other researchers hawlyisu
performed some kind of pre-shaping of the training sets. &om
strategies for pre-shaping include pre-calculated algmsof pos-
itive samples [15], selection of particularly difficult aegnces as
negative examples [7] or relatively small numbers of raniyagen-
erated sequences as negative samples [15].

An inconclusive attempt to compare the performance of fints
trees as representations for motif discovery have beemneefl
by Seehuus et al. [17], where the authors indicated that &xei
periments seemed to favor a linear genome. Also, a lineasrgen
have been used to discover motifs with better classificat@nfor-
mance than those found in the manually curated Prosite alsdab
for a couple of families [16, 6].

Geometric Crossovers (GC) are representation- and proiblem
dependent recombinative operators for EAs that are defiaied) u
a distance measure relating to the solution representf&jorin-
formally, a geometric crossover generates offspring tiestdn a



shortest path between two parents. The formal definitionesf g
ometric crossover can be used to design new crossover operat
specific to non-standard representations, by using distamea-
sures meaningful for the specific representation as a gudidp [
Geometric crossover generalizes many existing searchatoper
for the major representations used in EAs, such as binaingstr
and real vectors [8], permutations [10], syntactic treésaffl se-
quences [11]. In particular, for sequences the geometfinice
tion of crossover applied to edit distance becomes a horoalbg
crossover that requires alignment of the contents befochamge
of genetic material [13].

To be effective, a crossover operator must embed problemlkno
edge in the search. This can be achieved by basing the carssov
operator on a distance measure that is meaningful for thago
at hand. Moraglio et al. [9] suggested a rule of thumb: the dis
tance chosen should make the resulting fitness landscammtiin
in some statistical sense, so that low distance between @ s
tions are correlated with low difference in fitness. Natiyrahis is
only a general rule-of-thumb that needs to be validated exifip
problems. In this paper we test this hypothesis on a motéodis
ery problem, by discovering motifs to discriminate betwpestein
families. We model our motifs as fixed length sequences, and a
sume that a mutation based on the edit distance move préyious
used by Seehuus et al. [17] is a good mutation.

In section 2 we outline the geometric framework for crossove
operators, and define a homologous crossover for edit distan
Section 3 describes the motif discovery problem and exparim
tal setting, and section 4 presents results from expersnand a
discussion of these. Finally we give some concluding resharid
outlines of future directions in section 5.

2. GEOMETRIC CROSSOVER FOR
BIOINFORMATICS PROBLEMS

In this section, we report the basic ideas behind the geamnetr
framework, then we describe the specific case of edit disgnc
sequences and homologous crossover.

2.1 Geometric Preliminaries

Formally, the termmetric denotes any function that conforms
to the axioms of identity, symmetry and triangular inedyaliA
simple connected graph is naturally associated to a mgieces
via its path metric the distance between two nodes in the graph is
the length of a shortest path between the nodes. Similarkydge-
weighted graph with strictly positive weights is naturallsociated
to a metric space viawaeighted path metric

In a metric spacdsS,d), a closed ballis the set of the form
B(z;r) ={y € S|d(z,y) < r}wherez € S andr is a positive
real number called the radius of the ballliAe segmentor closed
interval) is the set of the forrx; y] = {z € S | d(z, 2)+d(z,y) =
d(z,y)} wherez,y € S are called extremes of the segment. Met-
ric ball and metric segment generalize the familiar notiohball
and segment in the Euclidean space to any metric space throug
distance redefinition. These generalized objects looledqifter-
ent under different metrics. Notice that a metric segmessdmt
coincide to a shortest path connecting its extrengendesit as

2.2 Definition of geometric operators

The following definitions of mutation and crossover exgresentation-
independentand arefunctions of the metri@ssociated with the
search space being based on the notions of metric ball anmitmet
segment.

DEFINITION 1. Geometrice-mutation

A unary operator is a geometricmutation operator under the
metricd if e is the smallest radius of the ball centered in the parent
so to include all offspring.

DEFINITION 2. Geometric crossover
A binary operator is a geometric crossover under the metiic
all offspring are in the segment between its parents.

DEFINITION 3. Uniform geometric crossover

The uniform geometric crossoverX under the metricl is the
geometric crossover undetthat uniformly picks offspring in the
segments between the parents.

2.3 Geometric crossover, fithness landscape and
problem knowledge

Geometric operators are defined in terms of the distanceureas
associated with the search space. However, the search, gpgce
the set of possible solutions to the problem at hand and the co
nectivity structure among them, does not come with the prabl
itself. The problem consists of the objective function taimize
(or maximize), and a description of how to evaluate candidat
lutions. It does not give any structure on the solution set.

Creating a structure over the solution set is part of thegtest
the search algorithm, and it is a designer’s choice. Thegdesi
could, in principle, pick any structure over the solution, dmit
choosing a structure randomly would decouple the problem fr
the structure of the search space. Consequently the sqaecdtors
defined over such a structure would turn the search into $onget
very close to random search.

In order to embed problem knowledge in the search, the cennec
tivity structure of the fitness landscape has to be choseh arel
the resulting distance associated with the search spacgdshe
“natural” for the problem at hand. The designer can put bl
knowledge in the landscape by studying the structure of the o
jective function of the problem and choose a neighborhonatst
ture such that specific conditions that “couple” distancevben
solutions and their fitness values are satisfied. Once thisrige
problem knowledge can be exploited by search operatorsrto pe
form better than random searatven if the search operators are
problem-independentThe fitness landscape built in this manner
can be viewed as a knowledge interface between the probldra an
problem-independent search algorithm.

As previously mentioned, we expect geometric operatorgte p
form well on landscapes with a “smooth trend”. Landscapeathro
ness, in various forms, is a principle that has been diseoverany
times in different context and has been confirmed in many empi
cal studies with many neighborhood search meta-heurigtitis

A smooth landscape can be obtained indirectly, withoutigavi

in an Euclidean space. In general, there may be more than onespecific knowledge on the fitness landscape by using thewfollo

geodesic connecting two extremes; the metric segment isrioa
of all geodesics.

We assign a structure to the solutisaetby endowing it with a
notion of distancel. M = (S, d) is therefore a solutioapaceand
L = (M, g) is the corresponding fitness landscape, wieisethe
fithess function ove$. Notice thatd is arbitrary and need not have
any particular connection or affinity with the problem at tian

ing well-established operational practice: if one has adgoata-
tion operator, and can build a crossover based on this, sudtirey
crossover is likely to be good [9]. This is because the marabip-
erator creates a neighborhood structure over the searcle.spia
a particular mutation works well on a problem, the assodiéite
ness landscape is likely to be smooth. Thus, if we build astreer
which uses the structure associated with such a mutatiorgreve



likely to obtain a good crossover because of the “smooth-land
scape” of the mutation operator. Since geometric crossovan

be constructed in such a way, the geometric crossover assdci
with a good mutation might be expected to be good.

2.4 Sequences, edit distance and alignments

The edit distancebetween two sequences is defined as the min-
imum number of edit moves (insertion, deletion and repla&in
needed to transform one sequence in to the other. Edit detaare
metrics [4]. The edit distance between two sequences is aurea
of their syntactic dissimilarity.

An alignmentof two sequences andw is the pair of sequences
u' andv’ of the same length obtained by inserting the minimum
number of place-holder characters’in u andv so as the place-
holder display necessary insertions and deletions in #mestor-
mation under edit distance. 4f = “banana” andv = “ananas” a
possible alignment is the pair of sequeneés= “banana-" and
v “-ananas”. Thescore of an alignment is the number of
aligned characters that are different in the two sequenGagen
two sequences there may be more than one optimal alignment. |
is well known that the score of an optimal alignment betweem t
sequences equals their edit distance [4].

2.5 Edit-mutation and its homologous crossover

The edit distance mutation is defined as a random edit move,
at a random position in the sequence. First a random position
the sequence is chosen uniformly, then the character aetbeted
position is either deleted, replaced by a random characdier the
alphabet, or a random character is inserted at this posificghe
string.

DEFINITION4 (MASK-BASED HOMOLOGOUS CROSSOVER
homologous crossover follows the following steps:

1. Let@ be the set of all optimal alignments of two sequences
u and v under simple edit distance. Homologous crossover
picks a random optimal alignmeate @ with a given proba-
bility distribution overQ. Letu’ andv’ be the two sequences
aligned with gaps according t@.

. Let! be the length off andm be a mask drawn frorf0, 1}
with a given probability distribution.m specifies for each
position ofg from which parent to copy the corresponding
character to produce an aligned offspring

. The actual offspringv is obtained by removing the dashes
fromw’.

An example of a one point crossover is:

m 0000111
ExAMPLE 1. 4/ banana-
v’ -ananas

The given mask and alignment yields the cHildnanas, and
for m, anana.

An optimal alignment, and thus a homologous crossover, can
be computed efficiently using @(|u||v|) dynamic programming
algorithm [4].

THEOREM 1. All mask-based homologous crossover operators
are geometric crossovers under edit distance.

THEOREM 2. Every stringw in the segment between two strings
u and v under edit distance is reachable by mask-based homolo-
gous crossover applied to the parent sequencasad v.

Theorem 1 states that homologous crossover is geometssarer
under edit distance. Theorem 2 states that any geometssaver
under edit distance takes the form of homologous crossévenfs
for the theorems are given by Moraglio et al. [11].

3. MOTIF DISCOVERY PROBLEM AND
EXPERIMENTAL SETTINGS

In this section we describe the motif discovery problemecteld
datasets and experiments performed.

3.1 Correlation was used as fithess

We model the motif discovery problem as a supervised legrnin
problem, with two classes of data — one positive (the in faisaim-
ple) and one negative (the rest of the database). The gadiiita
motif that is a good discriminator between the positive aggltive
dataset.

When a candidate motif is found in a protein string this isrted
as atrue positive, if the protein sequence belongs to thermifiam-
ily. Otherwise it is counted as a false positive. We hayositive
samples and negative sampled’p denotes the true positives and
F'p the false positives. Thefin = n — F'p is the number of true
negatives and'n = p — T'p is the false negatives.

It is important that our fitness measure is constructed ith suc
a way that high fitness represents high classification qudlihe
failure-rate or accuracy of the classifier will not suffice the size
of the positive set is a small fragment of the negative set (dth
during training, and often less than a percent in the test-sey
hypothesis that don’t match any of the negative sampleswailé a
very high accuracy on this problem. The Matthews corretatio-
efficient is a measure that captures the classifiers abilisgparate
the datasets, and its use as a fithess measure was inspiréteby o
works [7]. The fitness is then calculated according to equati

TpxTn — Fnx Fp
/(Tn+ Fn)(Tn+ Fp)(Tp + Fn)(Tp + Fp)

@)

3.2 Simpleregular expressions model patterns

We represented motifs as sequences. As alphabet, we used a
simple pattern model, that modetientical patterns from the set
(X U .)*, whereX is the twenty amino acid residues andenotes
a match with any character (a wildcard.)

3.3 Selected problems was previously found to
be hard

For our experiments, we selected six protein families from t
Prosite database described in table 1. These were selectetat
a set of 44 protein families used in a previously publisheitlay
and we selected six families that seemed to be problematiGfo
[16]. The six different problems all have more than 200 prote
in-family, and they also have imperfect models in Préqi&.

3.4 Experimental setup was a ten-fold cross
validation on each family

For each of the six selected protein families, we labelegraH
teins in the family as positive and all other proteins in thasS-
Prot database as negative. For most families there existeelips
that were labeled as partial members of the families. Thesteips
were excluded from the study.

1These patterns are from the same pattern space as explotieel by
Teiresias algorithm, as discussed earlier in this paper.

2V/alues taken from Prosite Release 19.14.



Table 1: Protein families and the number of proteins in them

Accession Number Name In family
PS00097 Carbamoyl Transferase 406
PS50076 DnaJ 510
PS51007 Cytochrome C 307
PS00198 4Fe-4S-Ferredoxin 462
PS50888 HelixLoopHelix 395
PS50222 EF Hand 919

For each of the families we ran a 10-fold cross-validation ex
periment for two different crossover operators and mutatioly,
totalling 180 experiments. The first crossover operatdetewas a
two-point geometric crossover based on the homologousaves
defined in section 2.5 (TPG), which is analogous to the standa
two-point crossovers for binary GAs. The other was the previ
ously used two-point crossover (TP) operator, which is astexb
by swapping random substrings within the genomes. Thisvallo
us to measure the quality of classifiers evolved by the twierint
operators on the entire Swiss-Prot database for these data.

We used a generational EA for the experiments, where theeenti
population was changed for each iteration. Except from giman
the type of crossover (and turning it off entirely in the miaa-
only experiments), we used the same settings through aérexp
iments. We used tournament selection with 4 individualshia t
tournament. 70% of the population was created using thesoves
operator, and the rest was created by mutation. No mutatam w
performed on individuals produced from crossover. The trara
operator based on the edit-move was used with both crossover
Each experiment was allowed to run for 50 generations, with n
other stopping criteria.

The initial population was initialized by generating randpat-
terns of length 5, where each position was selected from lthe a
phabet including the wildcard symbol. We might speculat th
we would have seen better performance if we had used random
substrings or patterns derived from substrings that ekistehe
positive set, but we did not pursue this.

3.5 Suffix trees accellerated searching

To accelerate the evaluation of the population we used géner
ized suffix trees, and approximate search in these [4]. Somle t
measurements showed that for random queries of length tign wi
the specified model, counting hits in suffix trees was fasi@n the
boost regular expression libratwhen the number of queries was
larger than two hundred (data not shown.)

Building a suffix tree of the entire set of negatives (conmsist
of close to 160000 different protein sequences) to test tbfsn
was not feasible. Instead, for each generation, we exttacsenall
sample of the negative data four times larger than the pesiet,
and built a suffix tree from these sequences (this is sughestéor
example, Banzhaf et al. [1])

4. RESULTS AND DISCUSSIONS

4.1 Homologous crossover seem better during
training
Figure 1 shows the median of the maximum values found dur-
ing training, for each generation. Figure 2 shows the pdjmia
averages over all ten runs and all six families.
Some interesting differences in behavior is shown by figure 2
Although the maximum fitness always seem to be comparable in

3Available fromht t p: / / www. boost . or g/

values, for most of the runs the population means showsréiffe
behavior. In figure 2 TPG always has much higher population av
erage than TP.

Even though the medians of the maximum values on the training
data are often higher for the runs using TPG, note that somesti
the minimum value for the TP runs is as good as or better than
the minimum value for TPG. Also the quantiles are overlagpin
much, so no conclusions can be made on expected performance
differences of the two operators.

4.2 TP found a biologically significant pattern
for the Ferredoxin-family

When studying the final results in table 2, it is clear that we a
unable to conclude if one operator is better than the othé¢hes
classification performance of the motifs found are simileercall
six families over all ten runs.

Also, an investigation of the discovered motifs for the ekpe
ments on the ferredoxin family, reveals that the motifs viigst
generalizing performance was found by TP in six of the tersrun
with perfect classification on training and correlation®dh the
test set :C.. C.. C... CIn comparison, notice the similarities
with the 4Fe-4S-Ferredoxin motif from Prosite database:

C. {P}C.. C{CP}. . ([ PEQ Inlight of our simplified pattern model,
this result could be considered optimal.

The length of the motif and the fact that itis a good classi§ien
indicator to the biological significance of the motif, andrgzaring
it to the Prosite motif for the same family, show that biokigiagree
on the main features of the motif. In comparison the TPG wés on
able to discover fragments of this motif in the form of a suffix
the motif,C. . . Con nine out of ten runs, and the mutation operator
discover similar motifs (although a longer suffix is disc@gmore
often.) This might be attributed simply to that if we were okimg
motifsC. . PandC. . Cas parents, the space of possible offsprings
from TP would contain e.gC. . C. . C as a possible child and it
is not very unlikely either. On the other hand, it is impofsito
create such a solution from the two given parents with TPG.

It is noticeable that edit mutation alone have stable higifope
mance, and often surpasses the results from the other twe alg
rithms on the test set (see table 2).

4.3 Overfitting is accredited to unseen
negative samples

When comparing the results on training and testing giveabitet
2, it seems that we experience substantial overfitting idvudlthe
results for TP on the Ferredoxin-family.

Overfitting is often attributed to learning “noise” in thetdadue
to the complexity, or flexibility, of the model. Consideringr very
simple models, this might be surprising. To get a good exgilan
to how this might have happened in our experiments, we need to
look at our selection of negative training samples.

During evolution we only looked at a fraction of the negative
samples. For a protein family with 200 different proteinsenges,
50 times 4 times 200 was extracted from Swiss-Prot, whiclilyie
maximum 40 000 proteins, or less than 25% of the negative data

In this case it might be likely that motifs occurring in many
positive samples also occur in the unseen data in the Swigs-P
database - and therefore contributing to the observed tiragfi

5. CONCLUDING REMARKS

In this paper we used the geometric framework to motivate the
general hypothesis that homologous crossover and edittionita
are likely to be good genetic operators for bioinformatfrablems
because such problems are naturally cast in terms of seggiand
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Table 2: Measured correlation coefficients on training setand test sets for evolved classifiers found by TP, TPG and edihutation

only.
TP TPG Mut
Family Value | Training Testing| Training Testing| Training Testing
Max 0.996 0.65 0.99 0.60 0.99 0.65
Carbamoyl | Median 0.99 0.57 0.99 0.56 0.99 0.56
Min 0.94 0.28 0.65 0.11 0.95 0.28
Max 0.92 0.24 0.93 0.59 0.93 0.41
DnaJ Median| 0.90 0.23 0.91 0.23 0.92 0.23
Min 0.62 0.11 0.67 0.15 0.65 0.15
Max 0.81 0.11 0.98 0.42 0.98 0.42
Cytochrome| Median 0.80 0.10 0.98 0.36 0.97 0.36
Min 0.79 0.10 0.63 0.33 0.59 0.10
Max 1.0 0.91 0.99 0.42 0.99 0.44
Ferredoxin | Median| 0.998 0.87 0.81 0.13 0.96 0.39
Min 0.74 0.11 0.79 0.13 0.80 0.13
Max 0.62 0.11 0.60 0.10 0.67 0.41
HLH Median| 0.50 0.07 0.52 0.06 0.59 0.08
Min 0.48 0.05 0.49 0.04 0.48 0.05
Max 0.67 0.19 0.68 0.19 0.67 0.28
EF Hand Median| 0.62 0.15 0.67 0.19 0.66 0.19
Min 0.48 0.13 0.65 0.15 0.48 0.13

homologous crossover and edit mutation are based on etdihdes
between sequences that is fundamental in bioinformatics.

We tested this hypothesis on the specific case of motif discov
ery problem. As a reference, we compared TPG, a homologous
crossover that aligns the contents before segments arareyet,
with TP, a non-homologous crossover that randomly exchaage
ments. We found TPG to be slightly better than the non-hogumie
crossover during training, but no general conclusions eamade
from the performance on the test sets. Interestingly, éxyets
show that TPG is a much less disruptive operator than TP tdad t
opens up the possibility to seed the initial population vwgthod
candidate patterns computed with some quick heuristicavasta-
terial for the crossover.

Surprisingly we found that edit mutation seems to perforita be
ter alone than when coupled with crossovers, both homokgou
and non-homologous. This corroborates our initial assionphat
the fitness landscape of motifs under edit distance has adtrho
trend and that edit distance is a meaningful space for misiifos-
ery. Second, it hints that our rule-of-thumb, that a “smbdéithess
landscape leads to a successful geometric crossover, santeles
not fully apply in this case. The homologous crossover aateat
with the same fitness landscape as edit mutation works wetlhdi
as well as edit mutation alone. This does not directly calittahe
“good mutation, good crossover” hypothesis, because hagoaols
crossover still is good. However, it begs an explanation. wile
in later work explore homologous crossover and edit mutabio
other bio-informatical problems to see whether this is atated
anomaly or a more general phenomenon.

Even though we note that our two operators find similar pat-
terns and overfits, the geometric crossover have some piegper
that makes it a better choice, especially the indicationzdficed
destructiveness (consistently high population average}ize pos-
sibility to seed the population with candidate patterns.efestion
scheme that discovers and highlight the difficult sampleghtre-
duce the overfitting observed during training.

As we found a motif that might be seen as biologically meaning
ful for only one of the families, we might also speculate that

fithess measure might not be optimal for discovery of biaatly
relevant sites.
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