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ABSTRACT
Breast cancer is one of the main causes of death in women
and early diagnosis is an important means to reduce the
mortality rate. The presence of microcalcification clusters
are primary indicators of early stages of malignant types of
breast cancer and its detection is important to prevent the
disease. This paper uses a procedure for the classification of
microcalcification clusters in mammograms using sequential
Difference of Gaussian filters (DoG) and a Genetic Algo-
rithm (GA) for feature selection. We found that the use
of Genetic Algorithms (GAs) for selecting the features from
microcalcifications and microcalcification clusters that will
be the inputs of a feedforward Neural Network (NN) results
mainly in improvements in overall accuracy, sensitivity and
specificity of the classification.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and Neural Nets

General Terms
algorithms, experimentation

Keywords
microcalcifications classification, feature selection, genetic
algorithms, evolutionary neural networks, mammography,
computer-aided diagnosis

1. INTRODUCTION
Breast cancer is one of the main causes of death in women

and early diagnosis is an important means to reduce the
mortality rate. Mammography is one of the most common
techniques for breast cancer diagnosis, and microcalcifica-
tions are one among several types of objects that can be
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detected in a mammogram. Microcalcifications are calcium
accumulations typically 100 microns to several mm in diam-
eter, and they sometimes are early indicators of the pres-
ence of breast cancer. Microcalcification clusters are groups
of three or more microcalcifications that usually appear in
areas smaller than 1 cm2, with a probability of becoming a
malignant lesion.

However, the predictive value of mammograms is rela-
tively low, compared to biopsy. This low sensitivity [6] is
caused by the low contrast between the cancerous tissue and
the normal parenchymal tissue, the small size of microcal-
cifications and possible deficiencies in the image digitaliza-
tion process. The sensitivity may be improved having each
mammogram checked by two or more radiologists, with the
consequence of making the process inefficient by reducing
the individual productivity of each specialist. A viable al-
ternative is replacing one of the radiologists by a computer
system, giving a second opinion [1], [18].

A computer system intended for microcalcification detec-
tion in mammograms may be based on several methods, like
wavelets, fractal models, support vector machines, mathe-
matical morphology, bayesian image analysis models, high
order statistic, fuzzy logic, etc. The method we selected
for this work is the Difference of Gaussian Filters (DoG).
DoG filters are adequate for the noise-invariant and size-
specific detection of spots, resulting in a DoG image. This
DoG image represents the microcalcifications if a threshold-
ing operation is applied to it. The use of DoG for detection
of potential microcalcifications has been addressed success-
fully by Dengler, Behrens and Desaga [5] and Ochoa [14].

In [16], we previously developed a procedure that applies a
sequence of Difference of Gaussian Filters, in order to maxi-
mize the amount of detected probable individual microcalci-
fications (signals) in the mammogram, which are later clas-
sified in order to detect if they are real microcalcifications
or not. Finally, microcalcification clusters are identified and
also classified in order to determine which ones are malig-
nant and which ones are benign. Both classifiers were simple
feedforward NNs.

Neural networks (NNs) have been successfully used for
classification purposes in medical applications, including the
classification of microcalcifications in digital mammograms.
Unfortunately, for a NN to be successful in a particular do-
main, its architecture, training algorithm and the domain
variables selected as inputs must be adequately chosen. De-
signing a NN architecture is a trial-and-error process; several



parameters must be tuned according to the training data
when a training algorithm is chosen and, finally, a classifi-
cation problem could involve too many variables (features),
most of them not relevant at all for the classification process
itself.

Genetic algorithms (GAs) may be used to address the
problems mentioned above, helping to obtain more accurate
NNs with better generalization abilities. GAs have been
used for searching the optimal weight set of a NN, for de-
signing its architecture, for finding its most adequate para-
meter set (number of neurons in the hidden layer(s), learning
rate, etc.), among others tasks. Exhaustive reviews about
evolutionary artificial neural networks (EANNs) have been
presented by Yao [19] and Balakrishnan and Honavar [2]. In
particular, this paper describes the use of GAs for select-
ing the most relevant features extracted from individual mi-
crocalcifications, and from microcalcification clusters, that
will become the inputs of two simple feedforward NNs for
the classification of microcalcifications and microcalcifica-
tion clusters in digital mammograms respectively, expecting
to improve its accuracy. We compare this approach to fea-
ture selection with the one we used in [16], which was based
on a forward sequential search, sequentially adding inputs to
the NN while its error decreases, and stopping when it starts
to increase. The GA provides a broader, parallel search in
the feature space, simultaneously managing a population of
features subsets.

The rest of this document is organized as follows. In the
second section, the mammography database we selected for
this study is described. In the third section, the methodol-
ogy is discussed. The fourth section deals with the experi-
ments and the main results of this work. Finally, in the fifth
section, the conclusions are presented, and some comments
about future work are also made.

2. THE MAMMOGRAPHY DATABASE
There are several mammography databases publicly avail-

able for research purposes, and the most known of them are
the mammography database from the Mammographic Im-
age Analysis Society (MIAS) [17], the Digital Database for
Screening Mammography (DDSM) from the University of
South Florida [9] and the Nijmegen digital mammography
database.

The mammograms used in this project were provided by
The Mammographic Image Analysis Society (MIAS). The
MIAS is an organization of UK research groups interested
in the understanding of mammograms. The MIAS data-
base contains 322 images, all medio-lateral (MLO) view,
digitized with a scanning microdensitometer (Joyce-Loebl,
SCANDIG3) with resolutions of 50 microns/pixel and 200
microns/pixel. In this work, the images with a resolution of
200 microns/pixel were used. The data has been reviewed
by a consultant radiologist and all the abnormalities have
been identified and marked. The truth data consists of the
location of the abnormality and the radius of a circle which
encloses it.

The abnormalities represented in the database include
calcifications, circumscribed masses, spiculated masses, ill-
defined masses, architectural distortions and asymmetry. Sev-
eral normal cases are also included. From the totality of
the database, only 25 images contain microcalcifications.
Among these 25 images, 13 cases are diagnosed as malig-
nant and 12 as benign. Some related works have used this
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Figure 1: Diagram of the proposed procedure.

same database [4], [7], [10], [13].

3. METHODOLOGY
The general procedure receives digital mammograms as

input, and it is conformed by five stages: pre-processing,
detection of potential microcalcifications (signals), classifi-
cation of signals into real microcalcifications, detection of
microcalcification clusters and classification of microcalcifi-
cation clusters into benign and malignant. The diagram of
the proposed procedure is shown in Figure 1. This procedure
is similar to the one we developed in [16], except that in this
case, we experiment with the use of GAs for selecting the
most relevant features that are expected to improve the ac-
curacy of the classification process. As end-products of the
procedure, we obtain two feedforward NNs for classifying
microcalcifications and microcalcifications clusters respec-
tively, which in this case, are products of the evolutionary
approaches that are proposed. These networks have an ade-
quate number of inputs for receiving the subsets of features
that maximize the overall accuracy of the classification.

3.1 Pre-processing



This stage has the aim of eliminating those elements in
the images that could interfere in the process of identifying
microcalcifications. A secondary goal is to reduce the work
area only to the relevant region that exactly contains the
breast.

The procedure receives the original images as input. First,
a 3x3 median filter is applied in order to eliminate the back-
ground noise, keeping the significant features of the images.
The output is the filtered image. The size of the mask was
chosen empirically, trying to avoid the loss of local detail.

Next, binary images are created from each filtered image,
where each pixel in the binarized image is determined by
a window centered in the corresponding pixel in the origi-
nal image. If the mean gray level of the window is below
a certain threshold (established empirically) a zero value is
placed in the binary image; otherwise, a unitary value is
placed. After observing the histograms of the mean gray
level corresponding to windows of sizes 8x8, 16x16, 32x32
and 64x64, it was observed that the histograms correspond-
ing to windows of sizes 8x8 and 16x16 were bimodal, and
the visual selection of a threshold was easier. The selected
size for this window was 16x16 and the threshold was set
to 15. The manual selection of the binarization threshold is
allowed by the small size of the data set used in this work.
For larger and diverse mammography sets, an automated
procedure for the selection of this threshold is proposed as
future work.

In this stage, the binarized images are intended solely
for helping the automatic cropping procedure to delete the
background marks and the isolated regions, so the image
will contain only the region of interest. The result of this
stage is a smaller image, with less noise.

3.2 Detection of potential microcalcification
(signals)

The main objective of this stage is to detect the mass
centers of the potential microcalcifications in the image (sig-
nals). The pre-processed image of the previous stage is the
input of this procedure. The optimized difference of two
gaussian filters (DoG) is used for enhancing those regions
containing bright points. A gaussian filter is obtained from
a gaussian distribution, and when it is applied to an im-
age, eliminates high frequency noise, acting like a smooth-
ing filter. A DoG filter is built from two simple gaussian
filters. These two smoothing filters must have different vari-
ances. When two images, obtained by separately applying
each filter, are subtracted, then an image containing only
the desired frequency range is obtained. The DoG filter is
obtained from the difference of two gaussian functions, as it
is shown in equation (1), where x and y are the coordinates
of a pixel in the image, k is the height of the function and
σ1 and σ2 are the standard deviations of the two gaussian
filters that construct the DoG filter.

DoG(x, y) = k1e
(x2+y2)/2σ2

1
− k2e

(x2+y2)/2σ2

2 (1)

The resultant image after applying a DoG filter is globally
binarized, using an empirically determined threshold. In
Figure 2, an example of the application of a DoG filter is
shown. A region-labeling algorithm allows the identification
of each one of the points (defined as high-contrast regions de-
tected after the application of the DoG filters, which cannot
be considered microcalcifications yet). Then, a segmenta-
tion algorithm extracts small 9x9 windows, containing the
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DoG Binarized ImageOriginal Image

Figure 2: Example of the application of a DoG filter
(5x5, 7x7).

region of interest whose centroid corresponds to the centroid
of each point. The size of the windows is adequate for con-
taining the signals, given that at the current resolution of
200 microns, the potentially malignant microcalcifications
(whose diameter is typically 100 microns to several mm)
have an area of 5x5 pixels on average [15].

In order to detect the greater possible amount of points,
six gaussian filters of sizes 5x5, 7x7, 9x9, 11x11, 13x13 and
15x15 are combined, two at a time, to construct 15 DoG fil-
ters that are applied sequentially. Each one of the 15 DoG
filters was applied 51 times, varying the binarization thresh-
old. The points obtained by applying each filter are added
to the points obtained by the previous one, deleting the re-
peated points. The same procedure is repeated with the
points obtained by the remaining DoG filters. All of these
points are passed later to three selection procedures.

These three selection methods are applied in order to
transform a point into a signal (potential microcalcification).
The first method performs selection according to the object
area, choosing only the points with an area between a prede-
fined minimum and a maximum. For this work, a minimum
area of 1 pixel (0.0314 mm2) and a maximum of 77 pixels
(3.08 mm2) were considered. The second methods performs
selection according to the gray level of the points. Study-
ing the mean gray levels of pixels surrounding real identified
microcalcifications, it was found they have values in the in-
terval [102, 237] with a mean of 164. For this study, we set
the minimum gray level for points to be selected to 100. Fi-
nally, the third selection method uses the gray gradient (or
absolute contrast, the difference between the mean gray level
of the point and the mean gray level of the background).
Again, studying the mean gray gradient of point surround-
ing real identified microcalcifications, it was found they have
values in the interval [3, 56] with a mean of 9.66. For this
study, we set the minimum gray gradient for points to be
selected to 3. The result of these three selection processes
is a list of signals (potential microcalcifications) represented
by their centroids.

3.3 Classification of Signals into Real Micro-
calcifications

The objective of this stage is to identify if an obtained sig-
nal corresponds to an individual microcalcification or not.
With this in mind, a set of features are extracted from the
signal, related to their contrast and shape. From each signal,
47 features are extracted: seven related to contrast, seven
related to background contrast, three related to relative con-
trast, 20 related to shape, six related to the moments of the
contour sequence and the first four Hu invariants. These
features are shown in Table 1.



Table 1: Summary of features extracted from the signals (potential microcalcifications).
Signal contrast Maximum gray level, minimum gray level, median gray level, mean gray level,

standard deviation of the gray level, gray level skewness, gray level kurtosis
Background contrast Background maximum gray level, background minimum gray level, background

median gray level, background mean gray level, standard deviation of the
background gray level, background gray level skewness, background gray level
kurtosis.

Contrast Absolute contrast, relative contrast, proportional contrast.
Shape features Area, convex area, background area, perimeter, maximum diameter, minimum

diameter, equivalent circular diameter, fiber length, fiber width , curl, circularity,
roundness, elongation1, elongation2, eccentricity, aspect ratio, compactness1,
compactness2, compactness3, solidity.

Contour sequence CSM1, CSM2, CSM3, CSM4, mean radii, standard deviation of radii.
moments
Invariant geometric IM1, IM2, IM3, IM4.
moments

In order to process signals and accurately classify the real
microcalcifications, we decided to use NNs as classifiers. In
the first section, we mentioned that one of the difficulties of
working with conventional feedforward NNs is that a classifi-
cation problem could involve too many variables (features),
and most of them may not be relevant at all for the classifica-
tion process itself. In [16], we used a method which consisted
of two feature selection processes [11]: the first process at-
tempts to delete the features that present high correlation
with other features, and the second process uses a deriva-
tion of the forward sequential search algorithm, which is a
sub-optimal search algorithm, adding features to a NN while
the error is decreasing and stopping when it increases again.
After these processes were applied, only three features were
selected and used for classification: absolute contrast (the
difference between the mean gray levels of the signal and
its background), standard deviation of the gray level of the
pixels that form the signal and the third moment of contour
sequence. Moments of contour sequence are calculated using
the signal centroid and the pixels in its perimeter, and are
invariant to translation, rotation and scale transformations
[8].

Expecting to achieve greater accuracy in the classifica-
tion, we use a different method, this being based on a GA
for selecting features. The chromosomes of the individuals
in the GA contain 47 bits, one bit for each extracted feature,
and the value of the bit determines whether that feature will
be used in the classification or not [3]. The individuals are
evaluated by constructing and training a feedforward NN
(with a predetermined structure), and the number of inputs
of this NN is determined by the subset of features to be
included, coded in the chromosome. The accuracy of each
network is used to determine the fitness of each individual.
When the GA stops either because the generations limit has
been reached or because improvements on the evaluation of
the best individual has not been observed during five con-
secutive generations, we obtain the NN with the best per-
formance in terms of the overall accuracy, and the subset of
features that are relevant for the classification.

3.4 Detection of Microcalcification Clusters
During this stage, the microcalcification clusters are iden-

tified. The detection and posterior consideration of every

microcalcification cluster in the images may produce better
results in a subsequent classification process, as shown in
[16]. Because of this, an algorithm for locating microcal-
cification cluster regions where the quantity of microcalci-
fications per cm2 (density) is higher, was developed. This
algorithm keeps adding microcalcifications to their closest
clusters at a reasonable distance until there are no more mi-
crocalcifications left or if the remaining ones are too distant
for being considered as part of a cluster. Every detected
cluster is then labeled.

3.5 Classification of Microcalcification Clus-
ters into Benign and Malignant

This stage has the objective of classifying each cluster in
one of two classes: benign or malignant. This information
is provided by the MIAS database.

From every microcalcification cluster detected in the mam-
mograms in the previous stage, a cluster feature set is ex-
tracted. The feature set is constituted by 30 features: 14
related to the shape of the cluster, six related to the area
of the microcalcifications included in the cluster and ten re-
lated to the contrast of the microcalcifications in the cluster.
These features are shown in Table 2.

In order to process microcalcification clusters and accu-
rately classify them into benign or malignant, we decided
again to use NNs as classifiers. In order to determine which
ones of the 30 extracted features from the clusters are rel-
evant for their classification, the first method we used in
[16] was performed in this work. This method consisted
of two feature selection processes [11]: the first process at-
tempts to delete the features that present high correlation
with other features, and the second process uses a derivation
of the forward sequential search algorithm, which is a sub-
optimal search algorithm, adding features to a NN while the
error is decreasing and stopping when it increases again. Af-
ter these processes were applied, only three cluster features
were selected for the classification process: minimum diam-
eter, minimum radius and mean radius of the clusters. The
minimum diameter is the maximum distance that can exist
between two microcalcifications within a cluster in such a
way that the line connecting them is perpendicular to the
maximum diameter, defined as the maximum distance be-
tween two microcalcifications in a cluster. The minimum



Table 2: Summary of features extracted from the microcalcification clusters.
Cluster shape Number of calcifications, convex perimeter, convex area, compactness,

microcalcification density, total radius, maximum radius, minimum radius,
mean radius, standard deviation of radii, maximum diameter, minimum diameter
mean of the distances between microcalcifications, standard deviation of the
distances between microcalcifications.

Microcalcification Total area of microcalcifications, mean area of microcalcifications,
Area standard deviation of the area of microcalcifications, maximum area of the

microcalcifications, minimum area of the microcalcifications, relative area.
Microcalcification Total gray mean level of microcalcifications, mean of the mean gray levels
Contrast of microcalcifications, standard deviation of the mean gray levels of microcalcifications,

maximum mean gray level of microcalcifications, minimum mean gray level of
microcalcifications, total absolute contrast, mean absolute contrast, standard deviation
of the absolute contrast, maximum absolute contrast, minimum absolute contrast.

radius is the shortest of the radii connecting each microcal-
cification to the centroid of the cluster and the mean radius
is the mean of these radii.

Trying to improve the accuracy in the classification of
the microcalcification clusters, we also applied GAs to the
feature selection task. The chromosomes of the individuals
in this GA contain 30 bits, one bit for each extracted fea-
ture from the clusters, and the value of the bit determines
whether that feature will be used in the classification or not.
The individuals are evaluated by constructing and training
a feedforward NN, where the number of inputs of the NN is
determined by the subset of features to be included, which
is coded in the chromosome. For solving nonlinearly separa-
ble problems, it is recommended at least one hidden layer in
the network, and according to Kolmogorov’s theorem [12],
and considering the number of inputs (n), the hidden layer
contains 2n+1 neurons. The output layer has only one neu-
ron. The accuracy of each network is used to determine the
fitness of each cluster. When the GA is stopped either be-
cause the generations limit has been reached or because an
improvement on the evaluation of the best individual has
not been observed during five consecutive generations, we
obtain the NN with the best performance (in terms of the
overall accuracy) and the subset of cluster features that are
the most relevant for the classification.

4. EXPERIMENTS AND RESULTS
All the programs were written in MATLAB Version 7.0.0.19920

(R14), and executed on a PC with a single 2.1 GHz Intel
Pentium IV processor with 1 Gb of memory. The following
subsections explain the experimentation and results of every
stage of the study.

4.1 From Pre-processing to Feature Extrac-
tion

As it was mentioned in the previous section, only 25 im-
ages from the MIAS database contain microcalcifications.
Among these 25 images, 13 cases are diagnosed as malignant
and 12 as benign. Three images were discarded because the
positions of the microcalcifications clusters, marked in the
additional data that comes with the database, were outside
the boundaries of the breast. So, only 22 images were fi-
nally used for this study, and they were passed through the
pre-processing stage first (application of a 3x3 median filter,
binarization and trimming).

In the second phase, six gaussian filters of sizes 5x5, 7x7,
9x9, 11x11, 13x13 and 15x15 were combined, two at a time,
to construct 15 DoG filters that were applied sequentially.
Each one of the 15 DoG filters was applied 51 times to the
pre-processed images, varying the binarization threshold in
the interval [0, 5] in increments of 0.1. The points obtained
by applying each filter were added to the points obtained by
the previous one, deleting the repeated points. The same
procedure was repeated with the points obtained by the re-
maining DoG filters. These points passed through the three
selection methods for selecting signals (potential microcal-
cification), according to region area, gray level and the gray
gradient. The result was a list of 1,242,179 signals (potential
microcalcifications) represented by their centroids.

The additional data included with the MIAS database
define, with centroids and radii, the areas in the mammo-
grams where microcalcification clusters are located. It is
supposed that signals within these areas are mainly micro-
calcifications, but there are many signals that lie outside
the marked areas. With these data and the support of ex-
pert radiologists, all the signals located in these 22 mammo-
grams were pre-classified into microcalcification, and not-
microcalcifications. From the 1,242,179 signals, only 4,612
(0.37%) were microcalcifications, and the remaining 1,237,567
(99.63%) were not. Because of this imbalanced distribu-
tion of examples of each class, an exploratory sampling was
made. Several samplings with different proportions of each
class were tested and finally we decided to use a sample of
10,000 signals, including 2,500 real microcalcifications in it
(25%).

After the 47 microcalcification features were extracted
from each signal, the first method for feature selection, based
on the forward sequential search, reduced the relevant fea-
tures to only three: absolute contrast, standard deviation of
the gray level of the signal and the third moment of contour
sequence. A transactional database was obtained, contain-
ing 10,000 signals (2500 of them being real microcalcifica-
tions randomly distributed) and three features describing
each signal. For using the second approach, using the GA,
the original transactional database with all the 47 features
were used.

4.2 Classification of Signals into Microcalcifi-
cations

For testing the first feature selection method, based on the
forward sequential search, a simple feedforward NN with



three inputs (corresponding to the three features selected
by this method: absolute contrast, standard deviation of
the gray level and the third moment of contour sequence)
was trained and tested. The architecture of this NN con-
sisted of three inputs, seven neurons in the hidden layer and
one output. All the units had the sigmoid hyperbolic tan-
gent function as the transfer function. The data (input and
targets) were scaled in the range [-1, 1] and divided into
ten non-overlapping splits, each one with 90% of the data
for training and the remaining 10% for testing. A ten-fold
crossvalidation trial was performed; that is, the NN was
trained ten times, each time using a different split on the
data and the averages of the overall performance, sensitiv-
ity and specificity were reported. These results are shown in
Table 3 on the row “FSS”, representing the NN that had the
best performance in terms of overall accuracy (percentage
of correctly classified microcalcifications). The sensitivity
(percentage of true positives or correctly classified microcal-
cifications) and specificity (percentage of true negatives or
correctly classified objects that are not microcalicifications)
of this NN are also shown.

Also, a GA was combined with NNs to select the features
to train them, as described earlier. The GA had a popula-
tion of 50 individuals, each one with a length of l = 47 bits,
representing the inclusion (or exclusion) of each one of the 47
features extracted from the signals. We used a simple GA,
with gray encoding, stochastic universal sampling selection,
single-point crossover, fitness based reinsertion and a gener-
ational gap of 0.9. The probability of crossover was 0.7 and
the probability of mutation was 1/l, where l is the length
of the chromosome (in this case, 1/l = 1/47 = 0.0213).
The initial population of the GA was always initialized uni-
formly at random. All the NNs constructed by the GA are
feedforward networks with one hidden layer. All neurons
have biases with a constant input of 1.0. The NNs are fully
connected, and the transfer functions of every unit is the
sigmoid hyperbolic tangent function. The data (input and
targets) were normalized to the interval [-1, 1]. For the tar-
gets, a value of “-1” means “not-microcalcification” and a
value of “1” means “microcalcification”. For training each
NN, backpropagation was used, only one split of the data
was considered (90% for training and 10% for testing) and
the training stopped after 20 epochs. The GA ran for 50
generations, and the results of this experiment are shown in
Table 3 on the row “GA”.

Table 3: Average sensitivity, specificity and over-
all accuracy of two NNs applied in the classifica-
tion of individual microcalcifications, with features
(inputs) selected using the method of forward se-
quential search (FSS) and using a Genetic Algorithm
(GA)

Method Sensitivity (%) Specificity (%) Overall (%)
FSS 76.21 81.92 81.33
GA 83.33 94.87 95.40

The best solution found is a NN with 23 inputs (five re-
lated to the contrast of the signal, four related to the back-
ground contrast, two related to the relative contrast, seven
related to the shape, four moments of the contour sequence

and only one of the invariant geometric moments), corre-
sponding to 48.94% of the original 47 extracted features.
All the NNs coded in the chromosomes of the final popula-
tion of the GA use 20.02 inputs on average, that is, the NNs
with the best performance need only 42.60% of the original
47 features extracted from the microcalcifications.

4.3 Microcalcification Clusters Detection and
Classification

The process of cluster detection and the subsequent fea-
ture extraction phase generates another transactional data-
base, this time containing the information of every micro-
calcification cluster detected in the images. A total of 40
clusters were detected in the 22 mammograms from the
MIAS database that were used in this study. According
to MIAS additional data and the advice of expert radiol-
ogists, 10 clusters are benign and 30 are malignant. The
number of features extracted from them is 30, but after the
two feature selection processes already discussed in previous
sections, the number of relevant features we considered rel-
evant was three: minimum diameter, minimum radius and
mean radius of the clusters, which were previously defined.

As in the stage of signal classification, a simple feedfor-
ward NN with three inputs (corresponding to the three fea-
tures from the clusters selected by the processes suggested
by Kozlov [11]) was trained and tested. The architecture of
this NN had three inputs, seven neurons in the hidden layer
and only one output. The sigmoid hyperbolic tangent func-
tion was used as the transfer function for every neuron. The
data (input and targets) were scaled in the range [-1, 1] and
divided into ten non-overlapping splits, each one with 90%
of the data for training and the remaining 10% for testing.
A ten-fold crossvalidation trial was performed; that is, the
NN was trained ten times, each time using a different split
on the data and the averages of the overall performance,
sensitivity and specificity were reported. These results are
shown in Table 4 on the row “FSS”, representing the NN
that had the best performance in terms of overall accuracy
(percentage of correctly classified clusters). The sensitivity
(percentage of true positives or correctly classified malig-
nant clusters) and specificity (percentage of true negatives
or correctly classified benign clusters) of this NN are also
shown.

A GA was also used to select the features for training
ANNs, as described earlier. In this case, the transactional
database containing the 30 features extracted from the clus-
ters was used. The GA had a population of 50 individuals,
each one with a length of l = 30 bits, representing the inclu-
sion (or exclusion) of each one of the 30 features extracted
from the clusters. We used a simple GA, with gray en-
coding, stochastic universal sampling selection, single-point
crossover, fitness based reinsertion and a generational gap
of 0.9. The probability of crossover was 0.7 and the prob-
ability of mutation was 1/l = 1/30 = 0.0333. The initial
population of the GA was initialized uniformly at random.
All the NNs constructed by the GA are feedforward net-
works with one hidden layer. All neurons have biases with
a constant input of 1.0. The NNs are fully connected, and
the transfer functions of every neuron is the sigmoid hyper-
bolic tangent function. The data (input and targets) were
normalized to the interval [-1, 1]. For the targets, a value
of “-1” means that the cluster is “benign” and a value of
“1” means “malignant”. For training each NN, backpropa-



gation was used, considering 10 splits of the data as in the
previous experiment (90% for training and 10% for testing)
and the training stopped after 20 epochs. The GA ran for
50 generations, and the results of this experiment are shown
in Table 4 on the row “GA”.

Table 4: Average sensitivity, specificity and over-
all accuracy of two NNs applied in the classification
of microcalcification clusters, with features (inputs)
selected using the method of the forward sequential
search (FSS) and using a Genetic Algorithm (GA)

Method Sensitivity (%) Specificity (%) Overall (%)
FSS 53.85 88.89 77.50
GA 100.00 100.00 100.00

The best solution has 9 inputs, corresponding to 30% of
the original cluster feature set (five features related to the
shape of the cluster, one related to the area of the micro-
calcifications and three related to the contrast of the mi-
crocalcifications). On average, the chromosomes of the last
generation coded 14.03 inputs, that is, the NNs with the
best performance only receive 46.76% of the original fea-
tures extracted from the microcalcification clusters.

5. CONCLUSIONS AND FUTURE WORK
This paper presented a comparison of two methods for fea-

ture selection from individual microcalcifications and micro-
calcification clusters in mammograms, for their classification
using a feedforward NN. The first method uses two feature
selection processes [11]: the first process attempts to delete
the features that present high correlation with other fea-
tures, and the second process uses a derivation of the forward
sequential search algorithm, which is a sub-optimal search
algorithm, adding features while the error is decreasing and
stopping when it increases again. The second method uses
a GA for selecting the most relevant features in order to
improve the accuracy, evolving a population of NNs with
different subsets of the features as inputs.

We found that the use of GAs combined with NNs greatly
improves the overall accuracy, the specificity and the sensi-
tivity of the classification, when signals are classified. The
best solution found is a NN with 23 inputs, corresponding to
23 extracted features (five related with the contrast of the
signal, four related with the background contrast, two re-
lated with the relative contrast, seven related to the shape,
four moments of the contour sequence and only one of the
invariant geometric moments). We found also that all the
NNs coded in the chromosomes of the final population of
the GA use 20.02 inputs on average; that is, the NNs with
the best performance need only 42.60% of the original 47
original features.

In the case of the classification of microcalcification clus-
ters, we observed that the use of a GA greatly improved the
overall accuracy, the sensitivity and the specificity, achieving
values of 100%. The best solution has 9 inputs, correspond-
ing to 9 extracted features from the clusters (five related
to the shape of the cluster, one related to the area of the
microcalcifications and three related to the contrast of the
microcalcifications). On average, the best NNs architectures

receive 14.03 inputs on average, that is, they only receive
46.76% of the 30 original cluster features as inputs. Never-
theless, only 40 microcalcification clusters were detected in
the 22 mammograms used in this study. The test sets used
in the ten-fold crossvalidation trial were very small and in
some splits, all the examples belonged to only one of the
two classes so either sensitivity or specificity could not be
calculated. These splits were ignored in the calculation of
the respective mean.

As future work, it would be useful to include and process
other mammography databases, in order to have more exam-
ples and produce transactional feature databases more bal-
anced and complete, and test also how different resolutions
could affect system effectiveness. Some of the parameters
that were empirically set in this work (like the binarization
threshold in the pre-processing stage) need to be determined
via automated procedures when dealing with other larger
mammographic databases. The size of the gaussian filters
could be adapted depending on the size of the microcalcifi-
cations to be detected and the resolution of images. The cor-
respondence between the spatial frequency of the image and
the relation σ1/σ2 has to be thoroughly studied. Different
new features could be extracted from the microcalcifications
in the images and tested also.

In this study, simple GAs and NNs were used, and more
sophisticated versions of these methods could produce better
results. The use of real valued chromosomes, chromosomes
with indirect representation (metaheuristics, NN construc-
tion rules, etc.) are other approaches that could give differ-
ent results. The inclusion of simple backpropagation train-
ing in the EANNs have consequences of longer computation
times, so alternatives to backpropagation should be tested
in order to reduce time costs.

5.1 Acknowledgments
This research was supported in part by the Instituto Tec-

nológico y de Estudios Superiores de Monterrey (ITESM)
under the Research Chair CAT-010 and the National Coun-
cil of Science and Technology of Mexico (CONACYT) under
grant 41515.

6. REFERENCES
[1] I. Anttinen, M. Pamilo, M. Soiva, and M. Roiha.

Double reading of mammography screening films: one
radiologist or two? Clin. Radiol., 48:414–421, 1993.

[2] K. Balakrishnan and V. Honavar. Evolutionary design
of neural architectures. a preliminary taxonomy and
guide to literature. Technical Report CS TR 95-01,
Iowa State University, Department of Computer
Sciences, 1995.
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