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ABSTRACT
We present a novel evolutionary computing based approach
to medical image segmentation. Our method complements
the image-pixel integration power of deformable shape mod-
els with the high-level control mechanisms of genetic al-
gorithms (GA). Specifically, the GAs alleviate typical de-
formable model weaknesses pertaining to model initializa-
tion, deformation parameter selection, and energy functional
local minima through the simultaneous evolution of a large
number of models. Furthermore, we constrain the evolu-
tion, and thus reduce the size of the search-space, by using
statistically-based deformable models whose deformations
are intuitive (stretch, bulge, bend) and driven in-terms of
principal modes of variation of a learned mean shape. We
demonstrate our work through the application to segmen-
tation of the corpus callosum (CC) in mid-sagittal brain
magnetic resonance images (MRI).

Categories and Subject Descriptors
I.4.6 [Image Processing and Computer Vision]: Seg-
mentation

General Terms
Algorithms

Keywords
Genetic algorithms, deformable models, segmentation, med-
ical imaging

1. INTRODUCTION
Medical image segmentation remains a daunting task, but

one whose solution will allow for the automatic extraction of
important structures, organs and diagnostic features, with
applications to computer-aided diagnosis, statistical shape
analysis, and medical image visualization. Several classifica-
tions of segmentation techniques exist including edge, pixel,
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and region-based techniques, in addition to clustering, graph
theoretic, and model correlation-based approaches [32, 24,
28]. However, the unreliability of traditional purely pixel
based methods in the face of shape variation and noise has
caused recent trends to focus on incorporating prior-knowledge
about the location, intensity, and shape of the target anatomy
[13]. One method that has been of particular interest to
meeting these requirements is deformable models due to
their inherent smoothness properties and ability to fit ill-
defined boundaries, compared to say region-growing approaches.

Deformable models for medical image segmentation gained
popularity since the 1987 introduction of snakes by Ter-
zopoulos et al [29, 16]. In addition to physics-based ex-
plicit deformable models [20, 21], geometry-based implicit
implementations also attracted attention [22, 3, 26]. Sev-
eral techniques were proposed to improve segmentation re-
sults by controlling model deformations [4, 31]. However,
with only smoothness and image-based constraints on their
deformations these models were highly susceptible to signif-
icant gradient noise, and local minima (Figure 1).

In many applications, prior knowledge about object shape
variability is available or can be obtained by studying a
training set of shape examples. This allows only feasible
deformations to be produced through the incorporation of
shape knowledge [7, 8, 17, 30, 11]. However, these methods
often used globally calculated statistics which don’t gener-
alize to specific locations, and scales on the model. Con-
sequently, the deformations are constrained to be global in
nature and, hence, can not adapt to local variations in shape
which are often of high interest. Moreover, the deformations
themselves are un-intuitively defined and as such it is not
clear what deforming along a particular mode of global vari-
ation will accomplish (whether it will bulge, stretch, or bend
the shape).

However, there are many main issues common to these
deformable model-based techniques. The first is that the
model still needs to be initialized to some optimal target
area of an image, with some shape, orientation, and scale.
Secondly, the deformations they exhibit are boundary based,
non-intuitive, do not follow the geometry of the object, are
not properly spatially constrained, and their extent is not
spatially localized (to a location or scale). These prob-
lems motivate the use of the hierarchical regional princi-
pal component analysis [10] (HRPCA) of a medial based
shape representation, in combination with GA driven defor-
mations to obtain: intuitive deformations (via medial-based
shape rep.), that are statistically-based and spatial localized
(via HRPCA), with automatic parameter setting and robust



Figure 1: (top) The corpus callosum is the band of
nerve fiber tissue connecting the left and right hemi-
spheres of the brain (bottom) Incorrect progress of
a snake (red) segmenting the CC in an MRI image.
Leaking occurs due to weak edge strength and in-
correct parameter setting. Both of these problems
are addressed by our proposed method.

model initialization (via GA).
The fitting of deformable models to image data is typically

performed through the minimization of a particular energy
functional or some higher-level, for example user driven, con-
trol process [13].

Energy-functional minimization can be carried out in a
variety of ways. One solution is to perform explicit differ-
entiation using the Euler-Lagrange where each new applica-
tion requiring a modified energy functional must be accom-
panied by one such derivation. Subsequently, the roots of
the derivative (minima/maxima of the functional) can be lo-
cated using Newton’s method, or some modification thereof.
However, as the number of variables increases these meth-
ods become to expensive to compute and must, therefore,
be approximated. One such technique based on a first-order
derivative estimate is gradient descent. Common amongst
these root-finding methods is that as the number of depen-
dant variables (shape, location, scale, orientation, etc.) in-
creases as does the complexity of the search space, which
often increases the amount of local minima and requires the
calculation of an increasingly large number of derivatives
(Figure 2).

What is, therefore, required is a method that avoids calcu-
lating or estimating the energy functionals derivative, while
allowing the exploration of the search space in a manner that
still converges towards an optimal solution. Thus retaining
speed by avoiding gradient calculations, allowing the explo-
ration to be carried out from a variety of initial locations,
and enabling it be done in a way that reflects the learned
variations of shape in terms of bends, bulges and stretches.
GA are an example of one such method.

Our proposed method utilizes prior knowledge to produce
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Figure 2: Example of single parameter deformable
model with local minima. The circular deformable
model’s only parameter is its radius r. The energy
function F (r) is minimal for the circle with darkest
average intensity. The input image is shown in (a)
with the darkest outmost boundary representing the
global minima. In (b) traditional deformable models
are initialized at a single point shown in red while
GA-based statistical deformable models are initial-
ized at multiple locations (green) and perform mu-
tations on r. In (c) the GA converges to the global
minima (darkest), while the deformable model gets
stuck in a less dark local minima.

feasible deformations while also controlling the scale and lo-
cation of these deformations. Moreover, through the use of
GAs we solve the initialization problem, improve resistivity
to local minima, and allow the optimization of highly cus-
tomizable energy functionals while avoiding costly derivative
estimations. Thus allowing us to explore a high-degree of si-
multaneous solutions in a highly-multivariate search-space,
while decomposing the shape deformations into intuitive and
localized constituents (bulge, bend, and stretch) that render
the results more interpretable by clinicians (e.g. how much
bend was needed in a particular part to fit to the new patient
anatomy).

Other works have used GAs to drive traditional deformable
models [1, 2, 18]. However, their lack of statistical con-
straints forces the reliance on traditional energy functionals
that incorporate internal smoothness constraints. In [15]
GAs were used with statistically-based Active Shape Mod-
els (ASMs) (section 1.2), where the parameter space consists
of possible ranges of values for the pose and shape parame-
ters of the model. The objective function to be maximized
reflects the similarity between the gray levels related to the
object in the search stage and those found from training.

In what follows we develop our method for medical image
segmentation using GAs to drive statistically-based, con-
trolled (location/scale) and intuitive (bend, bulge, and stretch),
deformations towards optimal solutions of a problem-specific
energy functional. We begin with a summary of how clas-
sical deformable models optimize their energy functionals
(section 1.1) then describe how statistical shape constraints
can be added to restrict segmentation (section 1.2). We
describe how to obtain statistically constrained and intu-
itive deformations (section 1.3), resulting in a shape repre-
sentation that allows for statistically constrained deforma-
tion types at specific locations and scales. In section 1.4
we present an overview of GAs. Finally, we detail how we



employ GAs to drive our statistically based deformations
in section 2, present results in section 3, and conclude in
section 4.

1.1 Classical Deformable Shape Models
Classical deformable shape models [29], are represented as

a dynamic 2D parametric contour v (s, t) = (x (s, t) , y (s, t)),
where s ∈ [0, 1] traverses the contour, t denotes time, and
v is deformed to fit to image data by minimizing an energy
term ξ,

ξ (v (s, t)) = α (v (s, t)) + β (v (s, t)) . (1)

that depends on both the shape of the contour and the image
data I(x, y) reflected via the internal and external energy
terms, α (v (s, t)) and β (v (s, t)), respectively.

The internal energy term is given as

α (v (s, t)) =

1�
0

w1 (s) ����
∂v (s, t)

∂s
����
2

+ w2 (s) ����
∂2v (s, t)

∂s2
����
2

ds.

(2)
Whereas the external energy term is given as

β (v (s, t)) =

1�
0

w3 (s) P (v (s, t)) ds. (3)

The weighting functions w1 and w2 control the tension and
flexibility of the contour, respectively, and w3 controls the
influence of image data. wi’s can depend on s but are
typically set to different constants. For the contour to be
attracted to image features, the function P (v (s, t)) is de-
signed such that it has minima where the features have max-
ima. For example, for the contour to be attracted to high
intensity changes (high gradients) we can choose

P (v (s, t)) = P (x (s, t) , y (s, t)) =
−‖∇ [Gσ ∗ I (x (s, t) , y (s, t))]‖

(4)

where Gσ ∗I denotes the image convolved with a smoothing
(e.g. Gaussian) filter with a parameter σ controlling the
extent of the smoothing (e.g. variance of Gaussian).

Traditionally, the dynamic contour v that minimizes the
energy ξ must, according to the calculus of variations [9], sat-
isfy the vector-valued partial differential (Euler-Lagrange)
equation

µ (s) ∂2
v

∂t2
+ γ (s) ∂v

∂t
− ∂

∂s �w1
∂v

∂s � + ∂2

∂s2 �w2
∂2

v

∂s2 �
+w3∇P (v (s, t)) = 0

(5)

where µ (s) and γ (s) are mass and damping densities, re-
spectively. Solving for ∂v

∂t
yields a first-order iterative op-

timization method. Though other optimizations have been
explored using simulated physical dynamics [12], or more
recently GAs [1, 2, 18].

1.2 Statistically Constrained Deformations
In order to constrain the deformations according to some

learned shape variation, a training set of shapes in different
configurations must be collected. The training set is typi-
cally created by labelling corresponding landmark points in
each shape example. A classical approach is to perform prin-
cipal component analysis (PCA) on the boundary points of a
training set to obtain a point distribution model (PDM)[7].

The PDM describes the average positions of the land-
marks, the main modes of variation of landmark positions,

and the amount of variation each mode explains. To empha-
size how our method differs from the traditional statistical
methods used with GAs in [15] we summarize the steps in-
volved in generating a PDM and the use of ASMs for image
segmentation.

First to construct the PDM L landmarks are chosen to
describe the training shapes [5]. After global PCA an object
shape is represented by the sum of a mean shape and a linear
combination of, say t, principal components, i.e.,

x = x̄ + Pb (6)

where x is the vector of landmark coordinates, x̄ is the
mean shape, P is the matrix of principal components, b is
a vector of weighting parameters, also called shape parame-
ters. x and x̄ are each of length 2L. P is 2L × t and b is a
vector of length t.

Constraining the entries of b to ± a few standard de-
viations along each principle component ensures deformed
shapes lie in the Allowable Shape Domain (ASD).

ASMs find the proposed movement of the landmarks of a
current shape estimate to new and better locations, which
requires a model of gray level information (image data). The
model can be obtained by examining the intensity profiles
at each landmark and normal to the boundary created by
the landmark and its neighbors. Then the intensity profiles
are used to derive a normalized intensity difference (gra-
dient, or derivative) profile giving invariance to the offsets
and uniform scaling of the gray levels [6]. With L land-
marks representing each shape, N training shapes, and N
training images, they derive N profiles for each landmark,
one from each image, and calculate the mean profile for each
landmark using

ȳj =
1

N

N�
i=1

yij (7)

where yij is the normalized derivative profile for the jth

landmark in the ith image and ȳj is the mean normalized
derivative profile for the jth landmark.

Given a new image, the basic idea is to start with an initial
estimate, then examine the neighborhood of the landmarks
aiming at finding better locations for the landmarks. The
shape and the pose of the current estimate are hence changed
to better fit the new locations of the landmarks while pro-
ducing in the process a new acceptable or allowable shape.

The pose parameters are first found by aligning the cur-
rent estimate to the new proposed shape. The remaining
landmark position modifications generally span 2L-dimensions,
whereas the shape variations obtained from the model are
only t-dimensional. A least-squares solution can be used to
solve the following equation for the changes in shape param-
eters db (with orthonormal column of P we have PT P = I)

dx = Pdb ⇒ db = (PT P)−1PT dx = PT dx (8)

where dx is a vector containing the remaining landmark
position modifications, db is a vector of changes in the shape
parameters, and P is the matrix of principal components.

Finally, the shape variations are limited to obtain an ac-
ceptable or allowable shape within the ASD by applying the
constraints on the shape parameters. They obtain new es-
timates and re-iterate until approximate convergence (when
the parameter changes are insignificant).



However, a significant drawback of this approach is that
the result of varying the weight of a single variation mode
generally causes all the landmark positions to change. In
other words, although the original PDM model produces
feasible shape deformations only, a desirable trait, it gen-
erally produces global deformations over the entire object.
In the next section we detail how HRPCA can be used to
obtain localized deformations describing variation of specific
anatomical regions, and allowing finer control over the de-
formation process.

1.3 Statistically Constrained Localized and In-
tuitive Deformations using HRPCA

We use our multi-scale (hierarchical) and multi-location
(regional) PCA method introduced in [10] on our publicly
available training set of medial shape profiles computed us-
ing 51 mid-sagittal CC images provided in citeshenton1992.
We will first give an overview of medial shape profiles and
then proceed to describe how HRPCA can be applied.

Medial-axis based 2D shape representations enable such
deformations by describing the object’s shapes in terms of
an axis positioned in the middle of the object along with
thickness values assigned to each point on the axis that im-
ply the shape of the boundary. We therefore describe the
shapes as a mapping x : R → R

4. The domain of which
is a parameter m that traverses the medial axis. We use a
single primary medial axis. Though secondary medial axes
are needed to represent more complex structures. The range
of the mapping consists of 4 scalar values for each m, called
medial profiles. These are a length profile L(m), an orien-
tation profile R(m), a left (with respect to the medial axis)
thickness profile T l(m), and a right thickness profile T r(m),
where m = 1, 2, ..., N , N is the number of medial nodes,
and nodes 1 and N are the terminal nodes. The length
profile represents the distances between consecutive pairs of
medial nodes, and the orientation profile represents the an-
gles between segments connecting consecutive pairs of me-
dial nodes. The thickness profiles represent the distances
between medial nodes and their corresponding boundary
points on both sides of the medial axis (Figure 3-bottom).
Corresponding boundary points are calculated by computing
the intersection of a line passing through each medial node
in a direction normal to the medial axis, with the boundary
representation of the object. Example medial profiles are
shown in Figure 3-top.

These profiles are rotation- and translation-invariant and
capture intuitive measure of shape: length, orientation, and
thickness. Altering these profiles produces intuitive, con-
trolled deformations: stretching, bending, and bulging, re-
spectively.

Here the principal component analysis is a function of the
location, scale, and type of shape profile (length, orientation,
or thickness) (Figure 4). Hence we obtain an average medial
sub-profile, the main modes of variation, and the amount of
variation each mode explains for each location, scale, and
shape profile type.

Global PCA becomes a special case of HRPCA by speci-
fying loc = 1 and scl = N , where N is the number of shape
variables covering the whole extent of the object. Hence we
obtain N modes of variation of length N . Whereas, loc = l
and scl = s will produce s×1 values, say thickness values for
the Tr profile, and, as such, result in an s×s covariance ma-
trix for the s modes of variation of length s. Consequently,
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Figure 3: Top: Example medial shape profiles used
to reconstruct the CC. Middle: Anatomically la-
beled CC shape reconstruction resulting from the
medial profiles. Bottom: Details of outlined recon-
struction showing medial profiles shape representa-
tion. Medial nodes shown in black, left and right
boundary nodes shown in dark and light gray, re-
spectively. xm, xl

m and xr
m are the mth medial, left

boundary and right boundary nodes, respectively.
L(m), R(m), T l(m) and T r(m) are the length, orienta-
tion, left and right thickness profile values, respec-
tively (adapted from [10]).

we can now generate a statistically feasible stretch, bend, or
bulge deformation at a specific location and scale in terms
of the corresponding main modes of variation.

Generally with HRPCA, for a single deformation, loca-
tion, and scale specific PCA we obtain the following model
of medial profile variations,

pdls = p̄dls + Mdlswdls (9)
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Figure 4: Hierarchical regional principal component
analysis is a function of the deformation (d), location
(l), and scale (s) (Adapted from [10]).

where p is the shape profile, d is the deformation profile
type, l and s are the location and scale values, p̄dls is the
average medial profile, Mdls describes the main variation
modes, and wdls are weights of the variation modes and are
typically limited to ±3 standard deviations.

Note that for any shape profile type multiple variation
modes can be activated by setting the corresponding weight-
ing factors to non-zero values. Since each variation mode
acts at a certain location and scale we obtain

pd = p̄d +
�

l

�
s

Mdlswdls. (10)

In summary, varying the weights of one or more of the
variation modes alters the length, orientation, or thickness
profiles and generates, upon reconstruction, statistically fea-
sible stretch, bend, or bulge deformations at specific loca-
tions and scales.

1.4 Genetic Algorithms
GAs are a special form of local search that models our

own understanding of evolution. In essence a number of si-
multaneous agents (the population) each having an encoded
state (the chromosome) perform a random walk (mutations)
around the search space, while forming new solutions from
combinations of existing solutions (crossover) and, thus, ad-
justing and refocusing the efforts of the search on exception-
ally good areas once located. A few important choices are
made during any application of genetic algorithms, involving
how to encode the population (binary, integer, decimal, etc),
how to mutate the population (mutate all genes, some genes,
etc), how to select the parents for crossovers (roulette wheel,
tournament selection), how to perform those crossovers (uni-
form, single-point), and finally what fitness function to use
for evaluation. Though these choices seem complex, in sit-
uations where the energy functional has hundreds or even
thousands of dependent variables and parameters these few
choices can yield nearly-optimal values for all variables and
parameters concerned.

2. METHODS
In this work we use GAs to solve the typical initialization,

local minima and parameter sensitivity problems associated
with traditional energy-minimization techniques. Moreover,
the medial shape representation provides an intuitive way
to synthesize/control deformations, while HRPCA enables
localized statistics thereby localizing the variations and de-
formations to specific anatomical regions of a shape (Figure
3-middle).

Here we describe our representation of individuals, our en-
coding of the model into chromosomes (deformation weights)
to be optimized, our method of mutating (deforming) the
model, our selection and crossover methods, and our fitness
function (energy functional to minimize).

2.1 Population Representation
In medical image segmentation using GAs, the individuals

forming the population represent potential shapes of the tar-
get structure, each having some level of accuracy measured
by the fitness function (section 2.6). Consequently, we re-
quire a shape representation consistent across models and
capable of intuitive mutations. One straightforward way of
representing shapes is using boundary nodes (section 1.1).
However, intuitive aspects of shape variation (such as bend-
ing, thickness, and elongation) can not be easily captured
and, therefore, not properly represented in the mutations,
selection and crossover phases. We require a shape represen-
tations that allows us to describe and control the shape de-
formations intuitively and in-terms of our calculated shape
statistics. Consequently, we represent each individual by its
associated stretching, bending and thickness profiles along
with its global orientation, base location, and scale (section
1.3).

2.2 Encoding the Weights for GA
We use chromosomes to represent a set of all the weights

of the principal components as obtained from the HRPCA,
where each gene represents a weight for a particular defor-
mation, location, scale and mode of variation (Figure 5-top).

In total there are
4�

d=1

N�

lc=1

N−lc+1�

sc=1

sc�

w=1

1 weights available for

mutation since for each of the four deformations, d, we have
N = 27 different locations, but for each location, lc, we can
only have up to N − lc + 1 scales, sc, each of which has sc
weights for the sc principle components. (Figure 4). In our
application this adds up to 14616 dependent variables for
our model, which motivates the use of GAs to search the
highly-multivariate space.

2.3 Mutations
In order to somewhat guide the solution in the right di-

rection, and, thereby, facilitate faster initial convergence, we
start by constraining the mutations to the affine transfor-
mation parameters: base-node position (translation values)
(tx, ty), model orientation angle θ, and scale values (sx, sy)
(Figure 5-top). Since our initial shape is the mean CC (ob-
tained by setting all weights to zero) it can be expected to
provide a reasonably strong fitness value when an accept-
able position, orientation, and scale are set. In essence, we
eliminate the possibility of getting a low score for a good
location, scale and orientation, simply because of a bad ran-
dom shape mutation.

With an adequate location, scale, and orientation ob-
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Figure 5: Segmenting an anatomical structure
amounts to finding the optimal set of shape param-
eters. In our GA implementation (section 2.1) we
represent each shape as a chromosome with genes
encoding affine and statistical shape deformation pa-
rameters (top). Mutation (section 2.3) is performed
by altering the weights of the HRPCA (middle).
Crossover amounts to swapping a set of weights be-
tween two individuals (bottom).

tained we allow the mutations to begin including shape de-
formations (Figure 5-mid). Dynamic mutation of a single
gene amounts to altering the corresponding weight by sam-
pling it from a uniform random variable under the constraint
that the total weight lie within ±2 standard deviations of
the corresponding mode of variation (square root of the ex-
plained variance obtained in HRPCA). Modifying a weight
will change the medial profiles and hence the reconstructed
shape boundary (section 2.6.1).

During the initial phases of the evolution each member of
the population undergoes a random deformation with global
scale, and at random amplitudes set in multiples of the cor-
responding standard deviations. Thus resulting in a new
shape. The initial constraint to global deformations is well-
suited for our statistical deformations as localized deforma-
tions (say bulging the splenium in Figure 3-middle) will not
help until an acceptable global fit is obtained. Consequently,
after a particular number of generations has passed, we allow
the deformations to begin varying in both position and scale
to include at first larger deformations (those corresponding
to an entire anatomical region, and, hence, a primary area
of variation) then smaller deformations which surmount to
small variations in local regions.

2.4 Selection
Genetic algorithms require a method of determining which

members of a generation will reproduce, and which will sur-
vive. We use roulette wheel selection, where each member i
of a population P has a probability of selection equal to

Pselection(i) = Fit(i)/
�
j∈P

Fit(j) (11)

to randomly select members for reproduction, where Fit(i)
is the fitness function (Section 2.6). We also employ an “eli-

tist” strategy under-which the best member of the popula-
tion is always maintained, and the weakest are replaced by
the new individuals resulting from the crossover operation.

2.5 Crossover
Genetic algorithms use crossover to combine the informa-

tion from two existing “parents” into a single “offspring”,
that contains genes from each parent. We used uniform
crossover, which makes an independent random decision for
each gene whereunder both parents have an equal probabil-
ity of making the contribution (Figure 5-bottom).

2.6 Fitness
Our fitness function is specifically designed for segmen-

tation of the corpus callosum, though as noted in section
1 the use of GAs allow us to easily adapt the function to
any given task including both prior shape and image-based
knowledge; something traditional deformable models do not
allow for. For example, we have adopted the fitness func-
tion Fit(i) to consider mean image intensity, edge strength,
standard deviation, and anatomical size of the CC.

Fit(i) = αS(i) + β

�
1 − e �−E(i)

χ ��
+φ

�
1 − e �−µ(i)

ϕ �� + δe �−σ(i)
ε � (12)

where

S(i) =
|Ωinternal|

$
(13)

E(i) =
1

|Ωcontour|

�
Ωcontour

‖∇I‖ (14)

µ(i) =
1

|Ωinternal|

�
Ωinternal

I (15)

σ(i) = ���� 1

|Ωinternal|

�
Ωinternal

(I − µ(i))2 (16)

|Ωinternal| is the area enclosed by the reconstructed bound-
ary (section 2.6.1), |Ωcontour| is the length of the bound-
ary, and $, η are the average size and standard deviation
of the CC learned from the training set, respectively. I is
the image, and χ, ε, ϕ are learned edge strength, standard
deviation, and mean intensity. Hence, S(i) represents the
shape’s area, E(i) the average gradient magnitude at the
shape’s boundary, µ(i) the image intensity enclosed by the
shape’s boundary, σ(i) standard deviation. Finally, α, β, φ,
and δ are scalar weights controlling the importance of each
term in the segmentation process. For all experiments in
this paper α = 0.1, β = 0.05, φ = 0.80, and δ = 0.05, and
parameter learning is performed using leave-one-out valida-
tion.

2.6.1 Shape Reconstruction for Fitness Calculation
In order to evaluate the fitness, the boundary of the CC

shape must be reconstructed from the set of affine parame-
ters and medial profiles specified by the shape weights. To
reconstruct the object’s shape given its set of medial pro-
files, we calculate the positions of the medial and boundary
nodes from a known reference node at location x1 = (tx, ty).
The next node at position x2 = x1 + v1 is specified using
an offset vector v whose angle is specified by the orientation



Figure 6: Two example segmentation results pro-
gressing left to right, showing fittest individual after
automatic initialization (left), global deformations
(middle), and local deformations (right).

profile plus the base angle θ, and length is specified by the
stretch profile scaled by (sx, sy). The corresponding bound-
ary nodes xl

2 and xr
2 (Figure 3) are then orthogonal to the

medial axis, at a distance specified by the thickness profile
scaled by (sx, sy). This process is repeated recursively, gen-
erating x3 = x2+v2, and so on. For details see [10]. Finally,
with the medial profiles of Figure 3-top, for example, as an
input we reconstruct the corpus callosum (CC) structure in
Figure 3-middle.

3. RESULTS
We validate our method through the segmentation of the

corpus callosum, which is the largest white-matter tract in
the human brain. Specifically, it serves as the primary means
of communication between the two cerebral hemispheres and
mediates the integration of cortical processes from opposite
sides of the brain. The presence of morphological differences
in the corpus callosum in schizophrenics has been the subject
of intense investigation [25]. The corpus callosum may also
be involved in Alzheimer’s disease [23], mental retardation
[19], and other disorders.

Table 1: Error comparison between statistical-based
deformations with a hand-crafted schedule, and our
GA based models. Error ε = (S∪M − S∩M)/M is
used, where S and M denote the area enclosed
within the result of the automatic segmentation and
the manual expert delineation, respectively.

Error mean median min max std

Hand-
crafted

0.1834 0.1706 0.1095 0.4526 0.0576

GA 0.1719 0.1501 0.0732 0.5464 0.0868

We present qualitative as well as quantitative results of
the fully-automatic segmentation of 46 corpus callosum in
mid-sagittal magnetic resonance images [27] using our GA
driven, statistically-constrained deformable models (Figures
6, 7). We compare our results to those previously obtained
in [14], where statistically-constrained, physically-based de-
formations are controlled by a CC specific hand-crafted sched-
ule and initialization method (Table 1). Here our use of GAs
enabled us to obtain superior accuracy without depending
on an application-specific schedule, which strongly empha-
sizes the extendability of our method.
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Figure 7: Plot of generation number versus fitness
of the best individual.

4. CONCLUSIONS
We have developed a novel segmentation technique by ad-

dressing the main concerns associated with both traditional
and statistical-based deformable models. Firstly, by using
GAs to solve the initialization, local minima and parame-
ter sensitivity problems associated with traditional energy-
minimization techniques. Secondly, our medial shape repre-
sentation provides a powerful way to synthesize and analyze
deformations thus decomposing deformations into different
types that are intuitively controlled and are more easily com-
municated to medical experts than boundary based defor-
mations. Finally, our use of HRPCA enables localized statis-
tics thereby localizing the variations and deformations to
specific anatomical regions that render the results more in-
terpretable by clinicians and enable regional statistical anal-
ysis.

Furthermore, we have demonstrated how GAs can be com-
bined with constrained shape deformations to effectively
explore the search space of a complex energy functional,
thereby incorporating prior-knowledge into the solution while
retaining multiple simultaneous searches of the space. In
essence, we have constrained the random-walks of the GA
to lie within the allowable shape domain thus greatly reduc-
ing the search space traditionally associated with deformable
models.

Our method is also extendible to other segmentation prob-
lems. Specifically, given a training set of shapes for a dif-
ferent anatomical structure, one can perform skeletoniza-
tion followed by medial profile extraction and, subsequently,
HRPCA. Further, the components of the fitness functions
presented here can apply to other anatomical structures,
with possible minor modifications as the application war-
rants them. Nevertheless other terms can easily be added
related to texture, colour or other image features. Finally,
we are working on extending these ideas to 3D, where the
genes become the weights of 3D shape representation pa-
rameters.

Though other works have used GAs to drive deformable
models [1, 2, 18, 15]. To the best of our knowledge, no
works have combined GAs with statistical-based deforma-
tions in a way that yields intuitively constrained deforma-
tions, nor have they employed fitness functions as well-suited
to the problem domain. Furthermore, by comparison our
method retains speed by avoiding gradient calculations, al-
lows search space exploration to be carried out from a vari-
ety of initial locations, and enables it be done in a way that
intuitively reflects the learned variations of shape (bends,
bulges and stretches).
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