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ABSTRACT 
This paper describes the novel application of an evolutionary 

algorithm to discriminate Parkinson’s patients from age-matched 

controls in their response to simple figure-copying tasks. The 
reliable diagnosis of Parkinson’s disease is notoriously difficult to 

achieve with misdiagnosis reported to be as high as 25% of cases. 

The approach described in this paper aims to distinguish between 
the velocity profiles of pen movements of patients and controls to 

identify distinguishing artifacts that may be indicative of the 

Parkinson’s symptom bradykinesia. Results are presented for 12 
patients with Parkinson’s disease and 10 age-match controls.  An 

algorithm was evolved using half the patient and age-matched 

control responses, which was then successfully used to correctly 
classify the remaining responses. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 

Methods, and Search—heuristic methods; 

I.2.1 [Artificial Intelligence]: Applications and Expert 

Systems—medicine and science 

General Terms 
Algorithms, Measurement, Experimentation. 

Keywords 
Parkinson’s disease, evolutionary algorithms, Cartesian genetic 

programming. 

1. INTRODUCTION 
Parkinson Disease (PD) is a common, chronic, progressive 

neurodegenerative brain disease, afflicting about 1 person in 

1000, and about 1 person in 100 over the age of 60. The disease 
sets in insidiously, and in most patients progresses relentlessly, on 

average within 10 years, to a state of total physical incapacitation. 

The symptoms usually start on one side of the body 
(hemiparkinsonism) but later spread to the other side. About 80% 

of patients suffer from idiopathic Parkinson disease for which no 

cause is known. However, the diagnosis of idiopathic PD is based 
on clinical features which can have poor sensitivity with about 

25% of patients diagnosed with the disease actually having other 

conditions [11].  Considerable research is being conducted to 
improve the diagnosis of the condition, but most studies to date 

are reliant on laboratory-based experimentation. 

The authors are concerned with developing a non-invasive 

computer-based test that can be conducted in the clinical 

environment and the doctor’s surgery, using commonly available 
computing peripherals.  Work to date by the authors on such a 

computer-based assessment using figure-copying tasks has 

generated promising results. However, it is clear the identification 
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and quantification of the symptoms of Parkinson’s disease is a 

non-trivial problem that is highly dependent on many factors 
relating to the patient’s physical as well as medical condition.    

This paper reports the application of an evolutionary algorithm to 
classify patients’ responses to such a figure copying task with far 

greater accuracy than has previously been possible. 

Section 2 describes the authors’ previous approach to the 

assessment of Parkinson’s disease using a conventional figure 
copying task, Section 3 describes the implementation of the 

evolutionary algorithm. Results for Parkinson’s patients and age 
matched controls are presented in Section 4.  Conclusions and 

further work are then discussed in Section 5. 

2. COMPUTER-BASED ASSESSMENT OF 

PARKINSONS DISEASE 
Parkinson Disease has three main symptoms: Tremor, Rigidity and 

Bradykinesia: 

Parkinsonian tremor is an involuntary rhythmically alternating 
contraction of agonist and antagonist muscles, and is especially 

prominent at rest, and decreases, or ceases, during active 

movement. The frequency of this tremor usually lies between 3–8 
cycles/sec (Hz) and is most evident, and often starts first, in the 

extremities (fingers, hands, legs), but the head, lips and tongue are 

usually also affected. 

The rigidity of Parkinson disease is a stiffness of the skeletal 

muscles and joints due to increased muscle tone. It is revealed by 

the presence of a rhythmically jerking (‘cogwheel’) resistance 
offered by an extremity to passive movement. Rigidity can affect 

all the musculature of the body. 

Bradykinesia is the core disabling feature of Parkinson disease. It 
consists of difficulty, slowness (bradykinesia proper) or virtual 

inability (akinesia) in initiating and executing movements or 

modifying ongoing motor activity. Poverty of spontaneous 
movement (hypokinesia), loss of normal associated movements, 

masked facial expression and sudden ‘freezing’ in the middle of a 

motor performance are all part of the disturbance. 

The aim of this work is to devise a computer-based system that is 

capable of measuring these symptoms to aid diagnosis and inform 

administration of medication. 

2.1 Data acquisition 
The computer-based assessment comprises two parts: data 

acquisition and data processing.  Data acquisition stage is the 
digitization of the patient’s drawing in attempting a conventional 

figure-copying task, termed here, the task domain. Once the 

patient’s response has been acquired in digital form, data 
processing is applied to extract and quantify the symptoms of 

interest, in this case tremor and bradykinesia. 

One of the aims of this work is to preserve, as far as possible, a 

conventional writing environment. This will avoid unnecessary 

distress to the patient, while allowing comparison with other 
traditional tests. To help achieve this aim, a commercially 

available digitizing tablet with stylus interface was employed.  
The study described here used a Wacom tablet, which has the 

advantage of utilizing a stylus with ball point refills, that can be 

used in the same way as conventional ball-point pen on standard 

paper, thus reproducing a conventional “pen and paper” 

environment (Figure 1).  

 

 

Figure 1. Figure copying task using a conventional 

digitizing tablet. 

2.2 Task domain 
The patient’s response to the task presented is a drawing activity 
that is digitized in real-time as a set of x-y co-ordinate pairs giving 

information about pen position. In addition, information regarding 

pen pressure and pen tilt is provided. The present study uses only 
the positional information. 

The task domain is particular to the test being conducted and 

hence the neurological condition of interest.  The object of a task 
domain is to accentuate those symptoms of the neurological 

disorder to be evaluated.  The figure required to be copied by the 

patient is placed on the digitizing tablet in printed form and 
covered with a sheet of tracing paper on which the patient traces a 

copy.  The experimental protocol required patients to trace the 

shape as fast as they could.  Patients were asked to attempt the 
figure-copying task at least three times, although this was often 

dictated by the condition of the individual. 

The geometric shape presented for the patient to copy in this study 
is based on the Archimedes spiral (Figure 2a), which is commonly 

used in assessing tremor in Parkinson’s patients [2].  To make the 

shape useful for assessing bradykinesia, it was modified, replacing 
the smooth spiral with pentagon-like edges as shown in Figure 2b.  

The justification for making this modification is that by 

introducing a sequential aspect, the change from drawing one 
edge to another will provide a focus at which symptoms of 

bradykinesia may be observed [1]. 

 

 

         (a)              (b) 

Figure 2. Archimedes spiral (a) as inspiration for the task 

domain shape to be copied (b) 



2.3 Measurement of symptoms 
The detection and measurement of tremor is well documented and 

can be a useful indicator of Parkinson’s disease but is by no 
means a unique symptom as it is only found in a proportion of 

cases and can also be confused with other neurological 

dysfunctions.  Similarly, rigidity is not a unique symptom and is 
very difficult to measure with conventional computer interfaces. 

Although the term bradykinesia is defined as the slowness of a 

performed movement [1], it is commonly used synonymously with 
akinesia and hypokinesia, an expression of freezing and smaller 

movements respectively.  To quantify these symptoms a measure 

of movement time and particularly, the movement velocity of the 
patient’s pen, is required. 

As the patient’s drawing activity is digitized in real-time and at 

regular intervals, it is possible to determine the velocity of the pen 
at any instant.  This can be achieved by calculating the distance 

between two coordinate positions and dividing this by the 

difference of the relative timestamps as shown in (1). 
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Where: 

vij velocity of the pen between coordinates xi yi and xj yj 

ti , tj respective times at which pen coordinates xi yi and xj yj 

were recorded 

The above equation was used to provide a representation of the 

velocity of the pen for the duration of the patient’s response to the 

task attempted. This has been termed as the velocity profile of the 
patient and an example is given in Figure 3.  As might be 

expected, the velocity profile can reflect the nature of the task, e.g. 

in this case an acceleration and deceleration can often be 
associated with each side of the spiral pentagon. 

The main thrust of data analysis to date has focused on the 

patient’s pen velocity at the end of one edge of the spiral-
pentagon and the beginning of the next.  It is here that evidence of 

a slowing and of hesitation, commonly recognized as 

bradykinesia, is sought that will differentiate a Parkinson’s patient 
from a normal control [1]. Subjective examination of velocity 

profiles obtained from the 12 Parkinson’s patients and 10 controls 

was made with a view to identifying features that could be used as 
evidence of bradykinesia. 

One candidate for such a feature is a two-part artifact, which is 

illustrated in Figure 4. The initial acceleration of the pen is 
described by the section of the velocity profile labeled “A”.  After 

a period of remission, a second period of acceleration greater than 

that of “A” is observed (labeled “B”).  A total of 10 occurrences 
of the two-part velocity feature were detected in the responses of 

five separate patients.  The feature was only located in one of the 

age-matched control drawing responses. 

2.4 Summary of previous work 
The feature described in Section 2.3 is one example of the type of 

analysis that can be applied to digitized pen movements over a 
variety of tasks, each of which can be designed to emphasize and 

quantify the particular symptom of interest. However, it is clear 
that identification of these features is a difficult and time 

consuming task and that automating this process using an 

evolutionary algorithm would be potentially beneficial. 

 

Figure 3. Example velocity profile of a patient’s response 

(top) and after smoothing (bottom). 

 

 

 

 

 

 

 

 
Figure 4. Example of two-part velocity feature 

investigated as evidence of bradykinesia. 

3. APPLICATION OF EVOLUTIONARY 

ALGORITHM 
The application of an evolutionary algorithm to the problem of 

locating features within a patient’s velocity profiles requires the 
following preparations to be undertaken: the appropriate 

representation of the patient’s data; customization of the chosen 

evolutionary algorithm; arrangement of patients’ and age matched 
controls’ responses in to suitable training and testing sets.  

A 

B 



3.1 Representation of data 
First of all, the velocity profile from each patient’s response to the 

figure copying task needs to be converted in to a form that will be 
suitable for manipulation by the chosen evolutionary algorithm. 

As described in Section 2.2, the relative velocities of the patient’s 

pen, describing a two-part acceleration, is of particular interest in 
detection of the bradykinesia symptom of Parkinson’s disease.  

For this reason, the acceleration of the pen through the duration of 

the patient’s velocity profile is simply calculated by differentiating 
with respect to time.  The calculated acceleration or gradient 

values are then quantized and encoded according to the rules 

described in Table 1. The data is now in an appropriate form for 
the chosen evolutionary algorithm. 

Table 1. Quantization and encoding of patient’s data. 

Gradient range Gradient encoding 

gradient > 2 6 

1 <= gradient <= 2 5 

0 < gradient < 1 4 

gradient == 0 3 

-1 < gradient < 0 2 

-2 <= gradient <= -1 1 

gradient < -2 0 

Where: gradient is the acceleration of the patient’s pen. 

3.2 Evolutionary algorithm 
An implicit context representation of a Cartesian Genetic Program 
(CGP) was used for the evolutionary algorithm in this application. 

Cartesian Genetic Programming (CGP) was first proposed by 

Miller [9,10] as an alternative representation for genetic 

programming which does not require the use of a parse-tree based 
programming language and does not exhibit uncontrolled 

expansion commonly termed bloat [3].  As opposed to the rigid 

tree structure representation of traditional GP, CGP permits the 
arrangement of functions in a far more flexible, typically 

rectangular format, referenced by conventional Cartesian co-
ordinates. 

A criticism of CGP (and GP in general) is that the location of 

genes within the chromosome has a direct or indirect influence on 

the resulting phenotype [7].  In other words, the order in which 
specific information regarding the definition of the GP is stored 

has a direct or indirect effect on the operation, performance and 

characteristics of the resulting program. Such effects are 
considered undesirable as they may mask or modify the role of the 

specific genes in the generation of the phenotype (or resulting 
program). Consequently, GPs are often referred to as possessing a 

direct or indirect context representation. 

An alternative representation for GPs in which genes do not 

express positional dependence has been proposed by Lones and 
Tyrrell [6-8].  Termed implicit context representation, the order in 

which genes are used to describe the phenotype (or resulting 

program) is determined after their self-organized binding, based 
on their own characteristics and not their specific location within 

the genotype.  The result is an implicit con-text representation 
version of traditional parse-tree based GP termed Enzyme Genetic 

Programming. The authors have since implemented an implicit 

context representation of CGP, termed Implicit Context 
Representation Cartesian Genetic Programming (IRCGP), 

specifically for the evolution of image processing filters [12]. 

Implicit context representation employs an enzyme model 

comprising a shape, activity and specificities (or binding sites) 
[4], as shown in Figure 5. Along with inputs and outputs, the 

enzyme model can be considered a program component, executing 

one of the functions listed in Table 2, from which a genetic 
program may be constructed.  The shape describes how the 

enzyme is seen by other program components. Similarly, the 
binding sites determine the shape (and hence type) of program 

component the enzyme wishes to bind to. Finally, the activity 

determines the logical function the enzyme is to perform.  A 
typical IRCGP will comprise a set number of inputs and outputs 

and a number of enzyme models or components.  Initial values for 

each component’s binding sites and logical function are assigned 
non-deterministically; the component’s shape, however, is derived 

from a combination of its binding sites’ shapes and logical 

function. 

Once initialized, components are bound together to form a 

network, as shown in Figure 6.  The order in which components 

are bound is determined by the closeness of match between a 
component’s binding site shape and another component’s shape. 

The best matching components are bound first and the process is 

repeated until a network has formed in which no further binding is 
possible. 

Over time, components may evolve through mutation.  Mutation 

is applied to the component’s binding sites and logical function 
with a pre-determined probability.  When this occurs, a new 

component shape is derived accordingly and may lead to different 

binding between components occurring.  This in turn may result 
in a modified network. 

The network of processing elements is arranged in 10 rows and 3 

columns as shown in Figure 6.  In addition, 10 input components 

and one output component can also be seen. The 10 input 
components are fed by 10 consecutive gradient data from the data 

described in Section 3.1.  The value obtained at the output 
component is used to indicate whether a particular artifact 

(representing a Parkinson feature) is present. 

 

Figure 5. Example of a processing element that forms the 

evolutionary network. 



 

Figure 6. Example evolutionary network. 

 

Table 2. Functions available for processing elements. 

Function 

Index 
Function Definition 

F1 if (X>Y+3) OP=6 else OP=X 

F2 if (X<Y+3) OP=0 else OP=Y 

F3 if (X>Y) OP=4 else OP=X 

F4 if (X<Y) OP=2 else OP=Y 

F5 OP = (X+Y)/2 

Where: X is the first input value to the component 

 Y is the second input value to the component 
OP is the output value of the component 

 

3.3 Fitness function 
The fitness function is based on the desire to identify some artifact 
in the patient responses, but not in age-matched controls.  The 

presence of the artifact is determined by a value returned by the 

output component of each individual network as being greater 
than 3; a value less or equal to 3 indicating the non-presence of 

the artifact.  (The number 3 is the middle of the range of values 

possible at the output component.) 

The fitness score comprises two parts: each dependent on whether 

a patient or age-matched control is being tested.  For a 

Parkinson’s patient response, the fitness score is the number of 
artifacts detected; conversely, in an age-matched controls 

response, the inverse is the case. 

To achieve the aim of identifying a symptom of Parkinson’s 
disease it is only necessary to detect one such artifact in a patient 

response.  However, it is equally essential that no such artifacts 

are found in the age-matched controls.  For this reason the fitness 
function used to evolve the network is weighted heavily in favor 

of non-detection of artifacts in the age-matched control responses. 

This is achieved by using an exponential function to bias the 
fitness scores accordingly.  

3.4 Evolutionary parameters 
For the results presented in this paper a network was evolved 
using a population size of 5 over 10000 generations.  A 

conventional elitist strategy was adopted with mutation rate of 6% 

for the function used by each component and 3% for each 
dimension of the binding sites’ shapes. 

4. RESULTS 

4.1 Patient population 
12 patients with idiopathic PD (5/12, 42% female) were assessed 

as well as 10 controls (4/10, 40% female) who did not have PD or 
other neurological disorders, including stroke. Participants were 

enrolled from a PD specialist clinic and Day Hospital, after giving 

an informed consent approved by Liverpool Research Ethics 
Committee. The average age of PD patients enrolled in this study 

was 74.1 years (SD=8.4 years), and the exclusion criteria included 

drug-induced parkinsonism, Parkinson-plus and multisystem 
atrophy syndromes, Alzheimer’s disease and significant cognitive 

impairment. The majority of the controls were relatives attending 

with patients at the Day hospital, but a few were patients attending 
the Day hospital for general rehabilitation or assessment, and the 

average age was 73.2 years (SD=5.3 years). In order to assess the 

performance of the system under conditions normally found in 
out-patient clinics, patients were not given any specific 

instructions regarding medication, and were tested under their 

normal medication regime. 

The patient and age-matched control responses were arbitrarily 

split in to a training set and a testing set of approximately equal 

sizes.  

4.2 Evolution Stage 
Using the evolutionary algorithm described in Section 3, the 
evolution of a network that would discriminate between 

Parkinson’s patient responses and age-matched controls was 

attempted.  After 101 generations a network with control fitness 
of 99.068% and a patient fitness of 0.168% was evolved.  It 

should not be surprising that the age-matched control fitness was 

not 100% as many of the patients would have been under the 
influence of medication when tested, compensating for some of 

the symptoms of Parkinson’s disease.  Equally, as described in 

Section 3.3 it is not of great concern that the patient fitness was 
low. 

4.3 Testing Stage 
The chromosome representing the network with the highest fitness 

was saved and used in the testing phase. Specifically, the evolved 

network was used to discriminate between 11 patient responses 
and 19 control responses which were not included in the evolution 

stage. 

The results are shown in Figure 7.  For each response the number 

of occurrences of the artifact identified by the evolved network is 
shown.  Ideally, no artifacts should be present in the age-matched 

control responses and at least one occurrence of the artifact should 
be present in every patient response.  As can be seen, artifacts 

have been located in every response, but importantly, more have 



been located in patient responses than in the age-matched 

controls.  More specifically, the age-matched controls all have 
five or less occurrences of the artifact, whereas the patient 

responses each have six or more occurrences of the artifact. 

Response ID Response type Number of 
artifacts detected 

C1 control response 1 

C2 control response 2 

C3 control response 2 

C4 control response 3 

C5 control response 2 

C6 control response 2 

C7 control response 1 

C8 control response 4 

C9 control response 3 

C10 control response 2 

C11 control response 2 

C12 control response 2 

C13 control response 1 

C14 control response 3 

C15 control response 1 

C16 control response 2 

C17 control response 4 

C18 control response 4 

C19 control response 5 

P1 patient response 7 

P2 patient response 7 

P3 patient response 6 

P4 patient response 8 

P5 patient response 6 

P6 patient response 7 

P7 patient response 7 

P8 patient response 8 

P9 patient response 8 

P10 patient response 10 

P11 patient response 8 

 

Figure 7. Results of testing the evolved algorithm with patient 

and age-matched control responses. 

5. CONCLUSIONS 
This paper has described the initial results of an evolutionary 

algorithm used to discriminate between Parkinson’s patients’ and 
age-matched controls’ responses to a simple figure copying test.  

Although the discrimination between the two populations is not 

great, the authors believe that the results have demonstrated the 
potential in applying evolutionary algorithms to medical problems 

of this type, Further work is currently under way to fully 

characterize the evolution of these networks   
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