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ABSTRACT
The evolvability of a neural network controller for a hexa-
pod agent encoded directly and symmetrically is examined.
The symmetric encoding imposes a structural regularity on
the neural network and decreases the size of genotype space
relative to the direct encoding. The symmetrically encoded
neural networks are found to be more evolvable than the di-
rectly encoded neural networks, but it is unknown whether
structural regularity or decreased size of the genotype is
more important. To test whether structural regularity is
more important than genotype size, the architecture of the
neural network is manipulated to increase the genotype size
of the symmetric encodings so that they are larger than the
directly encoded genotypes. These symmetric encodings are
still found to be more evolvable than the direct encodings
despite having a larger genotype. In these experiments it is
the encoding which determines evolvability more than size
of genotype space.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Evolutionary computing and
genetic algorithms

General Terms
Algorithms, Performance, Theory

Keywords
Structural Regularity, Symmetry, Genotype Size, Evolvabil-
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1. INTRODUCTION
Evolutionary algorithms (EAs) such as genetic algorithms

(GAs) are widely used as a means to solve problems from
many areas of interest in ways unexpected by their program-
mers. As the number of parameters describing the problems
to which EAs are applied grow larger, the size of the param-
eter space grows exponentially [17] and leads to a scalability
problem.

Noticing that nature has evolved systems with many parts,
researchers have begun to extract the essential attributes of
nature’s genotype to phenotype mapping which they hope
will ameliorate the scalability problem. Some of the at-
tributes which the genotype to phenotype mapping should
facilitate are functional modularity, hierarchy, and struc-
tural regularity [11]. Structural regularity is a super-set in-
cluding symmetry, repetition, and self-similarity which, be-
cause of their existence, allow a description of the system to
be encoded with fewer parameters [10].

Experiments have been performed comparing the relative
ability of different encodings which facilitate these “essential
attributes” in the phenotypes to evolve complex systems.
Gruau [5] makes a comparison between a single cellular
encoding of neural networks (controlling a hexapod robot)
with and without a mechanism for the automatic definition
of sub-neural networks (ADSN). It was found that the cel-
lular encoding used in conjunction with ADSN was able to
find solutions that cellular encoding alone could not. Bent-
ley and Kumar [3] define three different “embryogenies”,
some of whose genotype to phenotype mappings could be
evolved and others which could not. These embryogenies
were compared against a direct mapping on their ability to
create tessellations of tiles at a number of scales. Komosin-
ski and Rotaru-Varga [9] use two direct encodings and one
developmental encoding of 3D agents. The encodings were
compared on their relative ability to discover high fitness
agents performing one of three tasks: active or passive height
achievement or locomotion speed. Most recently, Hornby
[7] compares five different encodings of simulated physical
tables which differ in the degree of the attributes of com-
bination, control-flow, and abstraction. These encoding are
compared on their ability to discover complete tables with
little excess material at different scales. All of these compar-
isons find that those encodings which facilitate more of the
essential attributes find higher fitness solutions, and where
examined, also find scalability improvements over those en-



codings which facilitate fewer of the essential attributes.
However, in most of these experiments the comparisons

made were between very different encodings, so that al-
though facilitation of the essential attributes as a group was
shown to be important, it is difficult to determine the rela-
tive importance of individual attributes. Moreover, the en-
codings which facilitate the essential attributes used by each
author are (sometimes greatly) different from each other and
it is difficult to discriminate which encoding is more suited
for what task. By understanding the relative importance of
attributes individually it may be possible to more fully un-
derstand and improve existing encodings or create new ones
for the evolution of complex systems.

An increasing degree of of structural regularity, a decrease
in genotype size, and an increase in fitness of solutions dis-
covered is a repeating theme in the experiments mentioned
above. Some of the papers [3, 9, 5] explicitly credit per-
formance increases to both structural regularity and a de-
crease in genotype size. The question of what extent the
size of genotype space and structural regularity contribute
to the success of encodings is widely applicable, yet remains
unexplored.

This paper compares the relative effect of the attribute
of symmetry and number of genotype parameters on evolv-
ability of a simple system.1 The system consists of a neural
network controlling a simulated hexapod agent in a simple
walking task. We sometimes make a distinction between
two types of of evolvability, “discoverability” and “adapt-
ability”. Discoverability is defined as the fraction of GA
searches, beginning with a random initial population, which
result in a high fitness individual being found. Adaptability
is the ability of a population containing high fitness individ-
uals to maintain a high fitness during a GA search while an
environmental change occurs.

The symmetry (or potential for asymmetry) of the neural
network was a property the genotype to phenotype map-
ping. The six legs of the hexapod agent provided a six-fold
symmetry around which the “symmetrical” encoding of the
neural network was manually created. The symmetrical en-
coding used a genotype which contained one parameter for
every parameter in the phenotype of a subnetwork 1

6
th the

neural network. This subnetwork was copied six times to
form the neural network. Every genotype parameter in the
symmetrical encoding was reused six times in the phenotype.
The “direct” encoding of the neural network contained one
genotype parameter for every neural network parameter. Di-
rectly encoding the neural network allows every parameter
to take on a different value and potentially create asymmet-
rical networks.

The number of genomic parameters was adjusted by using
two neural network architectures. In order to compare the
relative effects of symmetry and number of genotype param-
eters, it was necessary to create symmetric neural networks
with the same number of genotype parameters as the asym-
metric neural networks. This was accomplished by increas-
ing the number of genomic parameters in the symmetric en-
coding by adding connections to the neural network architec-

1“Evolvability” is a term that has many meanings in the
literature. Two definitions, both of which apply to the ex-
periments being performed in this paper are 1) ability of ran-
dom variations to sometimes produce improvement [15] and
2) ability to respond to a selective challenge [6]. Reisinger
[12] discusses evolvability and its definition more fully.

ture. The two architecture types were “locally-connected”
and “fully-connected” and will be described in the Methods
section.

This paper will show that the symmetric encodings are
more evolvable than the direct encodings. Furthermore,
the symmetric encodings with more genomic parameters are
more evolvable than smaller direct encodings.

2. METHODS
The body (Figure 1) is based on prior work by Beer &

Gallagher [2] and similar to [8]. Pairs of legs are attached
on either side at the extreme ends of the length of the body
as well as a pair in the middle. Effectors apply clockwise
and counter-clockwise torques to each leg which sum to pro-
duce a resultant force which can move the leg through an
angle of ± 5π

24
radians, with 0 radians being perpendicular to

the body’s long axis. In the central ±π
6

region the torque
applied could be 10 times larger than in the extreme ± π

24
regions. These “weak regions” are designed to degrade fit-
ness gradually and amplify the effects of a neural network
oscillating in a way not tuned to the legs’ length. While
the foot is raised the resultant torque moves the leg through
an angle relative to the body. When legs move past the
outer angle limits their feet are disengaged from the ground
and the leg angle reset to just inside the outer angle limit.
If at least three legs are in a position such that their low-

Figure 1: Hexapod agent modeling a tripod gait.
Feet on the ground are black while feet off the
ground are grey. Leg effectors become weak at the
extremes of the leg’s range of motion (between solid
and dashed lines).

ered feet form a base below the body’s center of gravity, the
agent is considered “supported” and a sum of forces from
all legs with feet on the ground are applied to the body. If
the body is unsupported, then a large amount of friction is
applied in a direction opposite its velocity. There is an en-
forced maximum velocity of 1 which prevents the body from
“outrunning” the legs. (Because there is no sensory feed-
back, body velocity and leg oscillation frequency are not
coupled. The body “outruns” the legs without a maximum
velocity.) A small amount of friction opposes velocity even
when the agent is supported so that the legs must continue



to accelerate the agent rather than merely have a support-
ing arrangement. The body is initialized with all legs at the
forward-most limit of the non-weak region and all feet down
so that the body is supported. A high fitness individual,
defined as an individual with fitness greater than or equal
to 0.75, begins walking by pushing backwards with all six
legs and then one set of three legs decouples from the other
three, and reaches forward and begins a tripod gait.

The body was controlled by a continuous-time recurrent
neural network (CTRNN):

τcẏc = −yc +
X
j∈IN

wjcσ(yc + θc) ,

IN = {self and other incoming connections}

where yc is the state of the “current” neuron c, ẏc denotes
the time rate of change of this state, τc is the neuron’s mem-
brane time constant, wjc is the strength of the connection
from neuron j to the current neuron c, θc is a bias term,
σ(x) = 1/

`
1 + e−x

´
is the standard logistic function, and

IN is the set of all neurons with connections to the cur-
rent neuron, including the current neuron because of a self-
connection. Connection weights and biases were constrained
to the range 16 and time constants to the range [0.5, 10].
The state of each neuron was initialized randomly to a value
between ±0.1 and their outputs adjusted to match. This
random noise helped break symmetry in what otherwise
could be a completely symmetrical neural network archi-
tecture and initial body arrangement. The body and neural
network were integrated using the forward Euler method
with a step size of 0.1.

A real-valued genetic algorithm (GA) is used to evolve the
CTRNN parameters. For every CTRNN parameter there is
a GA parameter linearly rescaled to lie between [-1, 1]. A
population of 100 individuals is maintained and parents are
selected for reproduction using a linear rank-based method
with the most fit individual producing an average of 1.1
offspring. Children are generated by mutation of selected
parents by adding the parent’s vector to a random displace-
ment vector with uniformly distributed direction and nor-
mally distributed magnitude [1]. The mutation magnitude
has a zero mean and variance is set to different values de-
pending on the stage of the experiment, as explained be-
low. Use of Elitism (preserving the best individual found
by the search through all generations) and the number of
generations of search also vary by stage of experiment, also
explained below.

Two types of neural network architecture, called “locally-
connected” and “fully-connected” are used to control the six
legs of the body. Examples of these two architectures are
marked “phenotype” in each of the two columns of Figure
3. The left column shows locally-connected (with an L as
the center letter of the label ·L·, where “·” is anything) and
the right fully-connected (·F·) neural network phenotypes.
In both types of architectures there are always three neu-
rons per leg which serve as motor neurons and control the
effectors of the leg. Two of the neurons oppose each other
and are named after their function: backward swing (BS)
and forward swing (FS). The third neuron raises and low-
ers the foot (FT). Additional interneurons with no direct
connections to the effectors can be added to the network in
multiples of six. In the locally-connected architecture, each
leg is associated with a fully connected subnet of neurons,

 

BS

FS

.

FT

Figure 2: Connections within a leg’s subnetwork
(·L4). FooT (FT), BackSwing (BS), ForwardSwing
(FS), and an interneuron (.). The number of in-
terneurons varied in these experiments from 0 to 3.
Outward pointing arrows are connections to neigh-
boring leg subnetworks.

which is composed of the leg’s motor neurons and 1
6

th the
interneurons. (These connections are shown in Figure 2).
Each neuron in a subnet is connected only to its analogous
neighbor in the subnet immediately to the left and right
around the perimeter of the body. For example a BS neu-
ron in any subnet will have one outgoing connection and one
incoming connection from each of its two BS neurons in its
left and right neighboring subnets (for a total of four con-
nections from the neighboring subnets). These connections
are shown in Figure 3 as arrows pointing from the source
neuron (a circle) to the destination neuron. What appears
to be a double-arrowed line is actually two arrows pointing
in opposite directions lying on top of each other indicating
incoming and outgoing connections between a pair of neu-
rons. In the fully-connected architecture, every neuron is
connected to every other neuron.

Two encoding schemes, direct and symmetric, are used to
represent the neural network parameters. The top row of
Figure 3 shows schematics of direct encodings (and have a
D as the first letter of their label D··) and the bottom sym-
metric encodings (S··). In the direct encoding scheme, every
parameter of every neuron was present in the genome and
the number of parameters stored in the genotype are the
same as those in the phenotype. Additionally, one subnet
of motor neurons, interneurons (if any), and their connec-
tions are present in the genotype. The symmetric encoding
genotype is mapped to a neural network by duplicating the
parameters six times, once for each leg. The outgoing con-
nections of the subnetwork are specified as a relative offset
to a subnet arranged around a perimeter. E.g. “From BS (in
genomic parameters) to BS in 2nd subnet clockwise around
the perimeter.” Note that the direct encoding can encode
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Figure 3: Genomic encoding and architectures of neural networks: Top and bottom rows contain graphics
symbolizing direct and symmetric encodings (respectively). The arrow is the mapping from genotype to
phenotype parameters. Left and right columns show the neural network connectivity patterns of locally- and
fully-connected architectures, respectively. The connections internal to each leg subnet are not shown in this
Figure, but are shown in Figure 2.

all neural networks that the symmetric encoding can, but
not visa versa.

By choosing a particular combination of architecture and
number of neurons, it was possible to create symmetrically
encoded neural networks which had slightly more genomic
parameters than directly encoded neural networks. The
genome of an symmetrically encoded, fully-connected, neu-
ral network with 5 neurons (SF5) has 160 parameters, slightly
more than the 126 parameters a directly encoded, locally-
connected neural network with 3 neurons (DL3) has. Sim-
ilarly, SF6 contains 228 parameters, which creates a larger
genomic parameter space than DL4. If parameter space
size alone were the sole determinant of discoverability, then
one would predict the order, in increasing discoverability or
adaptability to be DL3, SF5, DL4, SF6, but as the Results
will show, this is not the case.

The adaptability experiments are conducted in three stages,
with the overall goal being the creation of a population with
high overall fitness. 1) A high fitness seed individual is dis-
covered through GA search beginning with a random initial

population; 2) then the seed individual is used to create
an “equilibrium GA search”, and finally; 3) the equilibrium
GA search is continued while the population’s legs are incre-
mentally shortened at a rate determined by the adaptation
of the population to the new leg length.

First, high fitness seed individuals were discovered by cre-
ating a random initial population and performing a GA
search with Elitism and a mutation variance of 0.05 for 500
generations. If the best individual had a fitness of greater
than 0.75 it was used as a seed individual for the creation of
equilibrium populations. The fitness of 0.75 was chosen as a
cutoff by subjective observation. The behavior of the indi-
viduals was a fairly coordinated tripod gait with legs swing-
ing through the full range of the angles except the extreme
“weak” angles of the leg’s range of motion. This behavior
was judged to indicate the neural network had optimized its
output to the body with the nominal leg length.

Second, these high fitness individuals then serve as seed
individuals for the creation of an “equilibrium GA search”.
An equilibrium GA search is a situation where the popu-



lation’s location in parameter space and GA settings (such
mutation variance and selection pressure) are balanced to
allow high fitness individuals to exist for an indefinite num-
ber of generations without the use of Elitism. This can
be achieved if a zero mutation variance is allowed (because
no change in population occurs), but in addition, no adap-
tation can occur. A mutation variance somewhere above
zero mutation variance (no adaptation) and a high mutation
variance (destruction of equilibrium GA search) had to be
found. Because the layout of genotype/fitness space is un-
known, an ideal mutation variance could not be determined
a priori. Instead, an attempt was made to create an equilib-
rium GA search at mutation variances at each power of 10
between 1x10−6 and 1x10−1 for each seed individual. The
initial population of each attempt consisted of 100 copies of
the seed individual. If the population was able to maintain
a high median fitness (≥ 0.75) over 500 generations of GA
search (without Elitism) it was deemed to be an equilibrium
GA search and the adaptation stage of the experiment was
performed on it.

Third, the adaptability of the equilibrium GA searches
was determined. The adaptability of equilibrium GA searches
is the ability of an extra-genomic parameter to be changed
while a target fitness is maintained. This is analogous to
asking the question “How fast can the organism adapt to
environmental change?”. Unlike in nature, the environment
(politely) waits for the population’s fitness to rebound be-
fore changing further. In these adaptability experiments,
the median population fitness was the target fitness and
the leg length of the agent was the extra-genomic param-
eter that was changed.2 First the median population fitness
was recorded as the target fitness, then the length of the
legs (starting at 15) of the individuals in the population
were shortened (by 0.1). The equilibrium GA search con-
tinued until the median population fitness was greater than
or equal to the target fitness and the legs were shortened
incrementally again. This was repeated until either 5000
generations had passed, or rarely, a leg length of 10 was
reached, and the change in leg length3 was recorded. The
change in leg length of the equilibrium GA searches sharing
a common seed individual but run with different mutation
variances are compared and the largest change used as the
final adaptability number.

The significance of the differences in the adaptability num-
bers were determined by comparing the confidence intervals
of the median created by bootstrapping. Bootstrapping is
a method for generating distributions of a statistic such as
the mean or median from raw data by repeatedly sampling
the data. [4, 14] The confidence interval for the statistic can
then be determined from the distribution of that statistic
in the standard way. The 95% confidence interval of the
median for each combination of encoding, architecture, and
number of neurons was determined. If the 95% confidence
intervals do not overlap, then there is a 5% or less chance
that the medians are the same, i.e. a p < 0.05.

2The leg length is not part of the genome, so it should be
considered part of the environment.
3Abs(final leg length− initial leg length)

3. RESULTS

3.1 Symmetric encoding more discoverable than
direct encoding

Before the adaptability of neural networks in various en-
codings and architectures was measured, high fitness indi-
viduals were evolved to be the seeds of an equilibrium GA
search. This was done by running a GA search with high
mutation variance (relative to the adaptability experiments)
and Elitism, beginning with a randomly generated popula-
tion.

Figure 4 gives the fraction of searches which successfully
found a high fitness individual. Every encoding/architecture
type was given at least 1000 attempts to find one high fitness
individual. The searches are arranged in order of number of
parameters and are labeled with their abbreviated name.

0 200 400 600 800 1000 1200 1400
# parameters in genome

0

0.005

0.01

0.015

0.02

0.025

0.03

fr
ac

tio
n

of
se

ar
ch

es

DL3 DL4

SL3

SL4

DF5 DF6

SF5

SF6

Figure 4: Discoverability of the various neural net-
works types. Fraction of searches beginning with
random initial population resulting in discovery of
high fitness individual plotted by size of genotype.
The directly encoded neural networks found no high
fitness individuals after 1000 attempts.

Only GA searches using symmetrically encoded architec-
tures successfully discovered high fitness individuals. After
1000 attempts, no GA search performed on a directly en-
coded architecture discovered a high fitness individual. The
symmetric encoding GA searches did discover high fitness
individuals and enough searches were run so that 20 high fit-
ness symmetrically encoded seeds of each architecture were
found. The least discoverable symmetrically encoded archi-
tecture is SF6 with approximately 1 high fitness individual
found per 280 searches and the most discoverable is SL4
with a ratio of ∼1:30.

Interestingly, symmetric encodings were discoverable de-
spite sometimes having more parameters than the directly
encoded architectures. From Figure 4 SF5 and SF6 have
more genomic parameters (160, 228 respectively) than DL3
and DL4 (126, 192 respectively), yet no high fitness indi-
viduals were found for either of the direct encodings. This
pattern is echoed below in the adaptability findings in Sec-
tion 3.3.

Because no directly encoded high fitness seeds were found,
symmetrically encoded high fitness seeds were re-encoded
using the direct encoding. This is possible because the ge-
nomic space of the direct encoding is a superset of the sym-
metric encoding. The generation of equilibrium GA searches



from the re-encoded seeds proceeded as described in the
Methods.

3.2 Restriction of architecture by symmetric
encoding increases adaptability

The symmetric encodings used in these experiments have
the same network connectivity as the direct encodings, but
the weights of the connections are restricted to a six-fold
symmetry and therefore have a smaller genomic parameter
space as described in the Methods section. The directly
encoded neural networks have a wider range of phenotypes
possible and include as a subset the symmetric encodings.
In order to find what effect symmetrical restrictions have on
this system, experiments were run in which the two archi-
tecture types were encoded both directly and symmetrically.

Two variants of the fully-connected and locally-connected
neural networks were encoded both directly and symmetri-
cally. The two fully-connected neural networks contained 5
and 6 neurons per leg, and the two locally-connected neural
networks contained 3 and 4 neurons per leg.

Figure 5 plots the number of genomic parameters versus
the change in leg length during the adaptation experiments.
The median adaptability of the direct encoding neural net-
works is marked with a grey dot and symmetric encoding
neural networks are marked with a black dot. The 95%
confidence interval of the median are marked with lines ex-
tending vertically from each median marker. Next to each
median marker is the abbreviated name of each neural net-
work.
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Figure 5: Adaptability of all encoding / architec-
ture combinations performed. The symmetric en-
coding of a specific architecture number of neurons
is always more adaptable than the direct encoding.
Also, if the encoding is the same, both architectures
have approximately the same adaptability.

Symmetrically encoding a neural network makes that ar-
chitecture more adaptable when compared to the direct en-
coding of the same architecture. The comparisons to make
are between neural networks which have different encoding
type (first letter) but have the same architecture (second
letter) and number of neurons. Specifically, comparisons
should be made between DF5 & SF5, DF6 & SF6, DL3 &
SL3, and DL4 & SL4. In every pairing the median adapt-
ability of the symmetrically encoded version of the archi-
tecture is larger than the direct encoding. (In two out of
the four pairs, DF6 & SF6 and DL4 & SL4 the 95% confi-

dence interval of the medians do not overlap and difference
is significant.)

Furthermore, the two architectures (fully- and locally-
connected) are roughly equally adaptable using the same
encoding type. The median adaptabilities of each symmet-
rically encoded architecture are all greater than the median
adaptability of all directly encoded architecture. However,
the clustering is not tight and many of the 95% confidence
intervals of the median overlap between the two encoding
types.

The greater adaptability of symmetrically encoded neural
networks cannot be caused by the location of the seed indi-
vidual in genotype space. The directly encoded seed indi-
viduals had the same non-zero neural network weights as the
symmetrically encoded seeds and the equilibrium GA search
began in the same region of genotype and phenotype space.
Additionally, because the direct encoding’s genotype space
is a superset of the symmetric’s genotype space, in principle
the directly encoded population can continue to mirror the
symmetrically encoded population during equilibrium GA
search. Instead the lower adaptability of directly encoded
neural networks is probably due to the existence of addi-
tional lower fitness neural networks possible in the larger
genotype space.

3.3 Encoding more important to adaptability
than genome size

One reasonable hypothesis is that fewer genomic parame-
ters leads to more discoverable, and by extension, adaptable,
phenotypes. In order to test this hypothesis, experiments
were run to compare the adaptability of different encodings
with the similar numbers of genomic parameters.
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Figure 6: Subset of all adaptation experiments.
DL3, SF5, DL4, SF6. Adaptability does not decline
with number of parameters in the genome. Instead,
adaptability is greater when the neural network is
symmetrically encoded even when the number of pa-
rameters is greater.

Two symmetrically encoded, fully-connected architectures
with slightly more parameters than two direct encodings of
the locally-connected architectures were created. The sym-
metrically encoded, fully-connected neural networks have 5
and 6 neurons per leg (SF5, SF6) for a total of 160 and
228 genomic parameters, respectively. The directly encoded,
locally-connected neural networks have 3 and 4 neurons per
leg (DL3, DL4) for a total of 126 and 192 genomic pa-



rameters, respectively. Note that the number of genomic
parameters in the symmetrically encoded, fully-connected
networks are intermediate or greater than the number of ge-
nomic parameters in the directly encoded, locally-connected
networks.

Figure 6 is a magnified view of Figure 5 and isolates the
neural networks DL3, SF5, DL4, SF6. As in Figure 5 the
x-axis is the number of genomic parameters and the y-axis
is the change in leg length.

Symmetrically encoded neural networks are more adapt-
able even when the symmetric encoding has more genomic
parameters than the direct encoding. Based on genomic pa-
rameter space size one would predict the order of increasing
discoverability or adaptability to be DL3, SF5, DL4, SF6.
This is not the case: SF6 (228 genomic parameters) is sig-
nificantly more adaptable than DL4 (192) and though not
significantly so, the median adaptability for SF5 (160) is
higher than DL3 (126) median adaptability.

These results cannot be shown to be merely because the
locally-connected neural architecture is less adaptable than
the fully-connected architecture. As the results of Section
3.2 show, if the locally-connected neural networks DL3 &
DL4 are symmetrically encoded, their adaptability is the
same (if not more) than the symmetrically encoded fully-
connected neural networks SF5 & SF6.

In these experiments, the size of genomic parameter space
is less important to adaptability than encoding.

4. DISCUSSION
Most of the encodings cited in the introduction have been

based on attributes of biological genotype to phenotype maps
(GPmaps). While this approach has demonstrated results,
the underlying reasons for the current state of biological
GPmaps are less well understood. As a step towards crys-
tallizing the understanding of some of these concepts, this
paper studied the relationship between number of genomic
parameters describing a neural network, encoding type, and
discoverability and adaptability. It was shown that the num-
ber of genomic parameters is less important to discoverabil-
ity than the encoding of the neural network. Symmetrically
encoded neural networks containing more genomic param-
eters were more discoverable and adaptable than directly
encoded neural networks.

One possible way to explain these results is that it is not
the parameter space size which is most important, but the
symmetrical way in which the symmetric encoding was un-
packed to create the neural network. When there are fewer
parameters in the genotype than in the phenotype, there is
necessarily some reuse of genotype parameters upon creation
of the phenotype. In the universe of GPmaps, this reuse is
not necessarily in a structurally regular, or symmetric way.

Future work could study the possibility that describing
a phenotype using an symmetric encoding in the “wrong”
way could make a system less evolvable. For example, in this
system the six-fold symmetrical unpacking of the genotype
into the six leg’s neural subnetworks could be viewed as a
special symmetric mapping contrived to make the system
more evolvable than the direct encoding. Is it possible to
create an symmetric encoding which is less evolvable than
the direct encoding? The attempt to do so might clarify
what types of “reuse” are important.

The architecture of the neural network, whether fully-
connected or locally-connected, appears to have little effect

on the adaptability of the neural network. This might be
somewhat surprising given that the more connections there
are, the wider the influence each individual neuron has on
the neural network as a whole. One might expect that the
locally-connected architectures have structural modularity
that leads to a “structural separation of functions that re-
duces the amount of coupling between internal and external
behavior” [11] and allows for greater adaptability. On the
other hand the dynamical functioning of these neural net-
works has not been determined and others [16] show that
structural topology does not imply functional modularity. It
may be that the two architectures function in similar ways
though they are structurally different.

Would a varying environment of evolution select for more
adaptable neural networks later? It was somewhat surpris-
ing how non-adaptable all architectures studied were. Most
of the adaptation experiments in which the legs were short-
ened incrementally from length 15 towards length 10 ter-
minated because the maximum number of generations had
passed rather than reaching the leg length 10. Plotting gen-
eration number versus leg length reveals a general pattern
of initially fast rate of adaptation that quickly flattens out
for the rest of the search. Since it is possible to evolve high
fitness leg length 10 individuals using a GA search beginning
on a random population, it may be that there is no high fit-
ness connection between the two regions in genotype space.
I.e. It may be that high fitness leg length 15 individuals are
not located in a region of genotype space which has a high
fitness path to a genotype which produces a high fitness leg
length 10 individual. If the leg were incrementally chang-
ing length throughout the GA search, the result might be
a more adaptable neural network, not through evolution of
the GPmap (as in [13]), but by filtering out the genotypes
which do not have neighbors in genotype space that produce
high fitness phenotypes at a variety of leg lengths.

Currently natural genotype to phenotype mappings are
imitated without fully understanding why they are success-
ful, how they evolved, or their influence on the evolution of
organisms. By studying genotype to phenotype mappings,
we improve our ability to evolve artificial systems and un-
derstand the evolution of natural systems.
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