
 1

Initial Study on Handling Constrained Optimization
Problems in Learnable Evolution Model

 Janusz Wojtusiak

 School of Computational Sciences
 George Mason University

4400 University Drive MSN 5B2
Fairfax, VA 22030, USA

 jwojt@mli.gmu.edu

ABSTRACT1
Learnable Evolution Model (LEM) is an evolutionary
computation methodology that applies hypothesis formulation and
instantiation to create new individuals. Initial study has shown
that LEM significantly outperforms standard evolutionary
computation methods in terms of evolution length on selected
benchmark optimization problems. This paper presents initial
results from handling constrained optimization problems in LEM.
Constraints are classified as instantiable, which can be handled
directly during instantiation process, and general, which cannot be
directly instantiated. The later can be handled by applying three
different methods presented in this paper.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – Concept learning,
induction. G.1.6 [Optimization]: Constrained optimization.

General Terms
Algorithms, Performance, Design, Experimentation, Theory.

Keywords
Constraints, Evolutionary Computation, Learnable Evolution
Model, Machine Learning, Non-Darwinian Evolutionary
Computation

1. INTRODUCTION
Evolutionary computation presents an important approach to the
optimization of complex functions or systems. Its popularity is
stems mostly from the fact that it requires little problem
knowledge to set up an optimization problem, and that individuals
(candidate solutions) are created though semi-random or random
operators, such as mutation and/or recombination, that are easy to
implement. These methods, however, suffer from slow
convergence to the optimal solutions, which makes them
impractical for problems in which evaluation of the fitness

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO'06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007...$5.00.

function takes a significant amount of time (and thousands of
evaluations are needed).

Learnable Evolution Model (LEM) is a non-Darwinian
evolutionary computation method that applies hypothesis
formulation and instantiation to generate new candidate solutions
[5]. It selects groups of high- and low-performing individuals
from the population and uses them as positive and negative
examples, respectively, for learning. A learning program
generates a general hypothesis that characterizes high-performing
individuals in contrast to the low-performing ones. This
hypothesis is instantiated in order to produce new individuals.

The goal of this paper is to describe ongoing research on handling
constrained optimization problems in Learnable Evolution Model,
which constitutes part of the author’s Ph.D. research. The
problem of handling constraints is very important from a practical
point of view, because most real world optimization problems are
constrained. The presented methods are only partially developed,
and are not yet sufficiently studied and tested.

Section 2 of this paper briefly describes Learnable Evolution
Model and its selected experimental results (on non-constrained
problems). Section 3 describes the initial study on methods of
handling constraints in LEM. Future research and conclusions
from the preliminary study are presented in Sections 4 and 5,
respectively.

2. LEARNABLE EVOLUTION MODEL
This section briefly describes LEM3, the newest implementation
of Learnable Evolution Model [13], [14]. Based on this
description, in particular regarding learning mode, Section 3
describes methods for handling constraints.

LEM3 contains several components that are also found in
traditional evolutionary algorithms, such as generation of an
initial population, selection of individuals for a new population,
and evaluation of individuals. These methods are well known and
are not discussed further in this paper.

Components that are unique to LEM3 concern guiding
evolutionary computation through machine learning, adjustment
of the representation space, and multistrategy selection of actions
to be executed. Figure 1 presents the top-level algorithm
underlying LEM3.

 2

The major operator for creating new individuals in Learnable
Evolution Model is the “Learn and Instantiate” action (a.k.a.
learning mode). This action creates new individuals by
performing three steps: (1) selecting the training set for the
learning program (2) learning a hypothesis characterizing
subspaces that likely contain the optimum, and (3) instantiating
the hypothesis in various ways to create new individuals.

Step (1) selects high-performing (H-group) and low-performing
(L-group) individuals from the population, according to the given
fitness function. These individuals serve as positive and negative
examples, respectively, for a learning program. There are two
methods of creating these groups. These two selection methods,
fitness-based and population-based, are described, for example, in
[5] and [13]. The H- and L-groups are then passed as positive
and negative examples to a learning program.

Figure 1: Flowchart of LEM3 algorithm.

In step (2) of LEM learning mode, the program applies hypothesis
formulation to obtain a general description of the H-group against
the L-group. Although any learning method can be applied in this
step, our study concentrates on AQ rule learning, in particular its
AQ21 implementation [12]. This program is the newest
implementation of the AQ learning, an inductive learning method
that produces hypotheses in the form of sets of attributional rules
[6]. The simplest form of such a rule is:

CONSEQUENT <= PREMISE

where CONSEQUENT and PREMISE are conjunctions of
attributional conditions (a.k.a. selectors). The simplest form of an

attributional condition defines a relation between an attribute and
attribute values that satisfy that condition. Here is an example of
an attributional rule:

[design = high-performing] <= [weight = 2..5] &
[shape= rhombus v triangular] &
[height < 3]

The rule states that a design is classified as high-performing if its
weight is between 2 and 5 (units are presumably defined in the
attribute domain), its shape is rhombus or triangular, and its
height is less than 3.

A hypotheses learned by AQ21 usually consist of a number of
such rules. Please note that rules learned by AQ21 have much
higher expressive power than those learned by most machine
learning systems.

For completeness of this discussion, Figure 2 presents pseudocode
of simplified AQ21 learning algorithm. Further details on AQ
learning and some of its more extended forms can be found in, for
example, [7].

HYPOTHESIS = null
While not all H-group examples are covered
 Select uncovered positive example e+ and use it as a seed
 Generate star G(e+, L-group)
 Select the best rule, R, from the star according to a given

criterion of optimality, and add it to HYPOTHESIS
 Remove examples covered by R from H-group

Figure 2: Basic AQ21 learning algorithm.

The instantiation process (Step 3 of learning mode) generates new
individuals that satisfy the learned hypothesis. When instantiating
a rule to create an individual for the new population, the program
faces the problem of instantiating values to attributes that are
specified in the rule and to attributes not present in the rule. A
basic instantiation algorithm implemented in LEM3 is presented
in Figure 3. For a detailed description, discussion and more
advanced algorithms, please refer to [14].

For each rule in a ruleset (hypothesis) to be instantiated
Compute the number of individuals to be created
For each individual to be created

Create the individual
For each attribute

If the attribute is specified in the rule
Select a random value satisfying the rule

 Else Select a random individual from the previous
population and use its value

Figure 3: Basic instantiation algorithm in LEM3.

In addition to learning mode described above, LEM3 implements
several other actions. The Probe action applies mutation and
crossover operators known in evolutionary computation. The
Search locally action applies user defined local search operators
such as gradient-based methods. The Randomize action either
adds randomly generated individuals into a population or restarts
the evolution process by regenerating randomly the entire
population. These operators are, however, beyond the scope of
this paper.

 3

Adjust representation is applied to improve the representation
space in which hypotheses are learned. This includes finding the
most suitable discretization of numeric attributes, ignoring
irrelevant attributes, and constructing new attributes that can
better capture features of the fitness landscape.

Comparison of LEM3 with other evolutionary computation
methods shows its strong advantage, which tends to grow with the
number of variables. For example, LEM3 required on average
16.5 times fewer fitness evaluations than EA, a standard
evolutionary computation method [2], when optimizing Rastrigin,
Griewangk and Rosenbrock functions of 100 to 1000 variables. It
was also about 70 times faster than results of Estimation of
Distribution Algorithms on Griewangk and Rosenbrock functions
of 10 and 50 variables reported in [1]. When compared to results
reported on Cultural Algorithms [9], LEM3 required on average
340 times fewer fitness evaluations. The study was performed on
Rastrigin, Griewangk and Rosenbrock functions of 5, 3, and 2
variables respectively. Details of the experimental study are
presented in [14].

3. HANDLING CONSTRAINTS
The problem of handling constrained optimization problems in
evolutionary computation has been studied and presented in the
literature by many authors. Several methods have been proposed;
some are general and applicable to a wide range of optimization
techniques, and some are designed for use with specific
optimization algorithms. Michalewicz [3] proposed the
classification of constraint-handling methods into four main
categories: penalty functions, decoders, repair algorithms, and
constraint preserving algorithms. In addition to the four
categories, there are a number of methods concerning constraint-
handling methods such as multi-objective optimization (e.g. [11]),
cultural algorithms (e.g. [10]), and the coevolutionary model (e.g.
[8]).

A constrained optimization problem in Learnable Evolution
Model seeks feasible solutions X1, … Xk that are optima of
function f(x1, .. xn): E � R given a set of constraints C in
Disjunctive Normal Form (DNF) defining feasible solutions. For
example suppose that E is the Cartesian product of the domains
D1 = {red, green, blue}, D2 = [0 .. 10], and D3 = [0 .. 10] of three
attributes, one nominal (x1) and two ratio (x2 and x3) and f: E �
R is a fitness function. An example of constraints in DNF for
such a problem is:

[x1=red] & [x2 > 4] v [x1=blue v green] & [x2+x3 < 10]

meaning that the feasible solutions are those for which x1 is red
and x2 is greater than 4, or x1 is blue or green and the sum of x2
and x3 is less than 10.

Constraints are integral part of problem definitions (in addition to
the representation space and fitness function). Constraints may
represent physical limitations of an optimized system or expert
background knowledge.

In order to handle constraints, the LEM methodology
distinguishes between instantiable constraints and general
constraints. The proposed methods are applicable only to
learning mode in LEM, and are described in the next two sections.
Methods for handling constraints for other modes have been
widely investigated in the literature.

3.1 Handling Instantiable Constraints
Instantiable constraints can be directly instantiated as conditions
using the algorithm presented in Figure 3. For example
conditions [x1=red] and [x2 > 4] from the above example can be
directly instantiated by assigning “red” as the value of attribute x1
and a random number greater that 4 as the value of attribute x2 in
an instantiated individual. Another example of the instantiable
constraint condition is [x4 > x2

2 + 7], where the expression on the
right side can be evaluated (assuming that x2 is already
instantiated). This research concerns constraints in the form:

[attr rel expr]

where attr is an attribute, expr is an expression that includes only
previously instantiated attributes (and does not include attr), and
rel is a relation applicable to attr and expr. Constraints in this
form represent a large number of possible constraints. For
constraints in many different forms (for example sets of
equations), efficient instantiation methods can also be proposed.

Instantiation for this type of constraint works in two steps. First,
intersect a learned hypothesis with the constraints. Because both
are represented in attributional calculus, such an operation is
meaningful, and results in the creation of a target constrained
hypothesis. In the second step, the target constrained hypothesis
is instantiated using, for example, the algorithm presented in
Figure 3. The following example shows a step-by-step
instantiation of an exemplary hypothesis and constraints.

Let a hypothesis describing high-performing individuals consist of
one rule: <= [color=red v green] & [length > 2.7], and the
constraints be given by a conjunction of two conditions:
[color=red] & [width < length + height – 7].

In this case the target constrained hypothesis is:

<= [color=red] & [length > 2.7] & [width < length + height – 7]

which is instantiated in four steps: (1) assign to attribute color the
only possible value red, (2) assign to attribute length a random
value 5, (3) assign to attribute height a value from an existing
individual, say 6, (4) evaluate expression length + height – 7 and
assign to attribute width a random value consistent with the
expression, say 2. This results in creation of individual
(color=red, length=5, width=2, height=6) which satisfies both the
learned hypothesis and the constraints.

A problem arises when because of instantiation of one condition,
other conditions cannot be instantiated. Suppose that in the
example above, the attribute length was assigned value 8, which is
consistent with the second condition. Because of that, there is no
value of the attribute width that could possibly satisfy the third
condition. A backtracking algorithm is used to solve this
problem.

Please note that whenever the group of high performing
individuals (H-group) are feasible, the target constrained
hypotheses are always instantiable, meaning that there exist
individuals that satisfy all conditions at the same time. This can
be proven using the fact that the hypotheses learned by AQ21 are
complete and consistent.

 4

3.2 Handling General Constraints
The previous section described methods of handling a class of
constraints for which there is an efficient instantiation algorithm.
Please note that in general problem of handling constraints is
known to be NP-Hard, thus, there is no effective way to handle all
possible constraints, and all proposed methods are good only for
some problems.

In this section it is assumed that constraints are given as a
function:

c: E -> {true, false}

where c(i) = true if an individuals i is feasible (satisfies all
constraints) and c(i) = false otherwise. Because of this
assumption, the program does not have any prior knowledge
about the constraints; it can only check whether they are satisfied.
It also ignores the degree to which constraints are satisfied, for
example, 3 out of 5 constraints are satisfied. These issues will be
addressed in future research.

Three methods of handling general types of constraints are
defined. They are applicable to LEM’s learning mode only. The
methods are illustrated using a simple example, and initial results
from testing performance of these methods are presented.

Suppose that an optimization problem is defined in a two-
dimensional representation space as illustrated in Figure 4.
Individuals on the plot are marked H (high-performing), L (low-
performing), and X (infeasible), and the shaded area represents
the feasible region.

Given sets of positive examples (H-group) and negative examples
(L-group) the learning program may generate rules characterizing
the H-group illustrated in Figure 5. The rules are complete and
consistent with regard to training data (they cover all positive and
no negative examples), but also cover a number of infeasible
individuals, and large portions of the infeasible region. When
instantiating the rules, the program may generate many infeasible
solutions that would have to be rejected. In real world
optimization problems evaluation of constraints may be a very
time consuming process, sometimes as consuming as evaluation
of the fitness function. Thus, the presented methods of handling
constraints are designed to minimize the number of infeasible
solutions generated during the optimization process and at the
same time do not increase the total number of the fitness function
evaluations (evolution length).

Figure 4: Feasible and infeasible individuals in the example
problem.

Figure 5: Example rules found using high- and low-
performing examples.

3.2.1 Trimming of Rules
The AQ21 learning program learns rules with controllable levels
of generality. Figure 5 shows that rules cover a much larger area
than is needed to cover the high-performing examples, and covers
large portions of the infeasible region.

The first method of handling general constraints in LEM trims the
learned rules, so they do not extend far beyond the high-
performing examples. As shown in the Figure 6, the trimmed
rules cover significantly less infeasible space, but large portions of
the feasible region are also not covered, and solutions may be
missed. This problem is solved by using flexible rule
interpretation, that is generating 95% of the individuals to strictly
match rules and 5% individuals with probabilities linearly
decreasing with distance from the rule.

Figure 6: Trimmed rules for the example problem.

It can be also noted that the rule in the right part of the diagram
covers a large portion of the infeasible area, because the program
does not have any information that the area is infeasible. The
problem arises when the feasible area consists of disjoint parts, or
in general is not convex.

To overcome the latter problem two other methods are proposed.

 5

3.2.2 Learning Approximation of Feasible Area
The general idea behind this method is to learn an approximation
of the feasible area in parallel to the evolutionary optimization
process. The presented method of learning approximate
constraints applies the AQ21 learning program to sets of feasible
and infeasible solutions. The advantage of using the same
learning program for hypothesis formulation and feasible space
approximation is that learned descriptions are represented in the
same language (attributional calculus), and several operations can
be performed on both, e.g., they can be easily intersected.

Let Sf be set of all feasible candidate solutions, and Sn be set of
infeasible solutions created during the evolutionary optimization
process in LEM. Using Sf as the set of positive and Sn as the set
of negative examples, the method learns an approximation of the
feasible subspace. Because both sets are growing during the
evolution process, the approximation converges to the actual set
of feasible solutions.

At each step of evolution a hypothesis describing high-performing
individuals is intersected with the feasible space approximation.
The intersection is then instantiated to generate new candidate
solutions which are likely to be feasible and high-performing. It
was aforementioned that the intersection is meaningful and can be
easily computed because both, hypothesis and approximation are
represented in attributional calculus and in the same
representation space.

The approximation of the feasible area may miss the actual
solution when the learned description is overspecialized. In such
cases, some feasible candidate solutions may be missed and the
actual solution to the optimization problem may also be missed,
especially when it is close to the border of the set of feasible
solutions. This problem can be solved by (1) learning maximally
general descriptions of feasible solutions, (2) checking randomly
selected candidate solutions that do not satisfy the learned
description of the feasible area, or (3) using flexible rule
interpretation, as described in the previous section. After
instantiation, sets Sf and Sn are updated with new candidate
solutions.

The method is illustrated in Figures 7 and 8.

Figure 7: Feasible space approximation.

Figure 8: Intersection of learned hypothesis and feasible area
approximation.

3.2.3 Using Infeasible Individuals as a Contrast Set
for Learning
The last described method for handling general constraints keeps
a list Sn of infeasible solutions and uses them as constraints for
hypothesis formation in LEM, by adding Sn to the group of low-
performing candidate solutions. A hypothesis learned using such
a method not only describes high-performing candidate solutions,
but also minimizes areas with infeasible solutions. After
instantiation, the set Sn is updated with new candidate solutions.

The set Sn of infeasible individuals may be very large when many
individuals are rejected. This may negatively affect performance
of the learning program. To overcome this problem a subset of Sn
is used as a contrast set for learning (whenever Sn is large).
Selection of the subset can be random, or through choosing
individuals that are the closest to known feasible ones.

Similarly to the other methods, to avoid missing solutions, when
rules are overspecialized, flexible rule interpretation can be used.

Figure 9 presents an example hypothesis learned with infeasible
examples used as a contrast set.

Figure 9: Hypothesis learned with set of infeasible solutions
used as examples.

 6

3.2.4 Initial Experimental Results
Initial application of the three methods to the G1 function [4]
show that the trimming method gave the best results in terms of
number of fitness function evaluations needed to find the solution.
The G1 function is given by formula:

∑∑
==

−−+++=
13

5

4

1

2
4321 555555)(1

i
i

i
i xxxxxxXG

with 9 constraints presented, for example, in [4].

In the presented experiment, LEM3 was executed with default
parameters, most important of which are: population size 100,
population-based selection method, and learning mode. Ten
initial populations of feasible individuals (generated randomly
with uniform distribution) were loaded by LEM3. The reported
results are averages and standard deviations on the 10 runs.

Table 1: Results of application of LEM to G1 function.

Method Number of fitness
evaluations

Number of infeasible
individuals

 Average Std. dev. Average Std. dev.
Trimming 1,383 137 1,902 600

Approximation 1,787 1086 4,045 6138
Contrast Set 2,562 831 1,731 1026

It is not surprising that the method based on the contrast set
generated the smallest number of infeasible solutions, but was
slow in terms of convergence to the solution. This is because it
generated overspecialized rules that often missed the solution.
The best in terms of number of fitness evaluations is the trimming
method. It also requires only a slightly larger number of
infeasible solutions.

A very large standard deviation for the approximation method is
caused by one execution in which program “got stuck” in a point
near optimum and switched to the probing mode to explore
neighborhood of the point (it generated over 20,000 infeasible
solutions). Such a point should be treated as an outlier, but
clearly represents the worst case.

Results reported in [4] state that the authors applied the Genocop
method, which required fewer than 1,000 generations to find the
solution. It is very encouraging that LEM required in average
only 14 generations to get the same result (in experiments
repeated 10 times with different starting populations).

4. FUTURE RESEARCH
The presented methods of handling constraints in Learnable
Evolution Model are in an initial stage of research. Although
methods were proposed and mostly implemented, a theoretical
and experimental study is needed to fully understand their
behavior and applicability. In particular the research will include:

- detailed study of methods for handling general constraints
(e.g. how approximations should be learned, how many
examples of feasible and infeasible examples should be
selected, how often the approximation should be updated),

- testing of methods of handling general constraints on
selected constrained problems (e.g. other benchmark
problems proposed and described in [4]),

- development of methods for handling instantiable
constraints, in particular constraints in the form [att rel expr],
and special functions such as average, equal, count [6],

- extension of the methodology to flexible constraints (which
may not have to be satisfied). This includes extension of the
proposed methods to reflect degrees to which constraints are
satisfied.

Moreover, the methodology will be applied to a difficult real
world problem.

5. CONCLUSION
Most real world optimization problems are constrained, thus
efficient methods of handling constraints are important for the
practical applicability of Learnable Evolution Model.

The presented methods are designed specifically to work with
Learnable Evolution Model, in particular its LEM3
implementation, which uses the AQ21 rule learning program for
hypothesis formulation. It produces hypotheses in the form of
rules in attributional calculus – a highly expressive language
which allows to represent both, hypotheses and constraints.

A special form of instantiable constraints has been introduced to
allow efficient instantiation method. For all other constraints,
three other (general) methods have been described. The very
promising initial results of the presented methods encourage
further investigation. Both theoretical study and large sets of
experiments are needed to fully understand the methods.

The presented methods are in an initial stage of implementation
and analysis. Detailed testing and comparison with existing
methods is also part of ongoing research. Perhaps an even greater
challenge is to find classes of problems to which these methods
are applicable.

6. ACKNOWLEDGEMENTS
The author would like to express his gratitude to Dr. Ryszard
Michalski, Dr. Kenneth Kaufman and Jarek Pietrzykowski for
their comments on this paper and its earlier versions and for their
help during process of development of LEM3 system.

Research presented here was conducted at the Machine Learning
and Inference Laboratory of George Mason University. Research
activities of the Machine Learning and Inference Laboratory are
supported by the National Science Foundation Grants No. IIS
9906858 and IIS 0097476. The findings and opinions expressed
here are those of the author, and do not necessarily reflect those of
the above sponsoring organizations.

7. REFERENCES
[1] Bengoextea, E., Miquelez, T., Larranaga, P., and Lozano,

J.A., Experimental Results in Function Optimization with
EDAs in Continuous Domain. In Pedro Larranaga and Jose
A. Lozano Estimation of Distribution Algorithms, Kluwer
Academic Publishers, 2002.

[2] Evolutionary Objects Library, downloadable from the
website: http://eodev.sourceforge.net

[3] Michalewicz, Z. Introduction to Constraint Handling
Techniques. In T. Back, D.B. Fogel, Z. Michalewicz

 7

Evolutionary Computation 2, Philadelphia Institute of
Physics Publishing, 2000.

[4] Michalewicz, Z., Schoenauer M. Evolutionary Algorithms
for Constrained Parameter Optimization Problems.
Evolutionary Computation 4. 1996.

[5] Michalski, R.S. LEARNABLE EVOLUTION MODEL
Evolutionary Processes Guided by Machine Learning.
Machine Learning, Vol. 38, 2000, pp. 9-40.

[6] Michalski, R.S. ATTRIBUTIONAL CALCULUS: A Logic
and Representation Language for Natural Induction. Reports
of the Machine Learning and Inference Laboratory, MLI 04-
2, George Mason University, Fairfax, VA, April, 2004.

[7] Michalski, R. S. and Kaufman, K. The AQ19 System for
Machine Learning and Pattern Discovery: A General
Description and User's Guide. Reports of the Machine
Learning and Inference Laboratory, MLI 01-2, George
Mason University, Fairfax, VA, 2001.

[8] Paredis, J., Coevolutionary Constraint Satisfaction, Parallel.
Problem Solving from Nature III, Lecture Notes in Computer
Science, vol. 866, Davidor, Y., Schwefel, H-P., Manner, R.
(eds.), Springer Verlag, 1994.

[9] Reynolds, R. G. and Zhu, S. Knowledge-Based Function
Optimization Using Fuzzy Cultural Algorithms with
Evolutionary Programming. IEEE Transactions on Systems,
Man, and Cybernetics, 31, 2001.

[10] Reynolds, R. G., Michalewicz, Z., and Cavaretta, M. Using
cultural algorithms for constraint handling in GENOCOP.
Proceedings of the Fourth Annual Conference on
Evolutionary Programming, 1995.

[11] Surry, P. D., Radcliffe, N., and Boyd I. D. A Multi-objective
Approach to Constrained Optimisation of Gas Supply
Networks: The COMOGA Method. AISB-95 Workshop on
Evolutionary Computing, 1995.

[12] Wojtusiak, J. AQ21 User’s Guide. Reports of the Machine
Learning and Inference Laboratory, George Mason
University, MLI 04-3, Fairfax, VA, 2004.

[13] Wojtusiak, J. The LEM3 Implementation of Learnable
Evolution Model: User’s Guide. Reports of the Machine
Learning and Inference Laboratory, George Mason
University, MLI 04-5, Fairfax, VA, 2004.

[14] Wojtusiak, J. and Michalski, R. S. The LEM3 System for
Non-Darwinian Evolutionary Computation and Its
Application to Complex Function Optimization. Reports of
the Machine Learning and Inference Laboratory, MLI 05-2,
George Mason University, Fairfax, VA, October, 2005.

