
Designing Secure Communication Using Evolutionary
Approach

Pavel Ocenasek
Brno University of Technology

Bozetechova 2
612 66 Brno, Czech Republic

+420-604922818

ocenaspa@fit.vutbr.cz

Jiri Ocenasek
Kimotion Technologies
Leuvensesteenweg 200

B-3370 Boutersem, Belgium
+33-484067461

jiri@ocenasek.com

ABSTRACT
This paper proposes an evolutionary method that serves for
designing security protocols. The principles of security protocols
are outlined, followed by the outline of the evolutionary
optimization framework and the techniques that can be used to
automatically evolve basic security protocols.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols – protocol verification.

General Terms
Algorithms, Performance, Design, Security, Verification.

Keywords
Security Protocols, Authentication, Communication, Design,
Verification.

1. INTRODUCTION
The increasing popularity of distributed computing and
applications like internet banking and electronic commerce has
created both tremendous risks and opportunities. Many of risks
stem from security breaches, which can be ruinously expensive.
One of the cornerstones of security is the use of security
(cryptographic) protocols in which information is exchanged in a
way intended to provide security guarantees. Security protocols
are becoming widely used and many new protocols are being
proposed. Since security protocols are notoriously difficult to
design, computer assistance in the design process is desirable.

In this paper we describe an evolutionary technique that might be
useful in designing new security protocols. This approach
supports the principles of subjects’ knowledge and belief [5] [2].

2. MOTIVATION & STATE OF THE ART
There has been much work done in the field of genetic algorithms
and security protocols, and their design, but in both areas

separately. Current techniques for creating security protocols deal
with the human interaction and knowledge [6] [7]. The designer
states the security goals and finally creates a corresponding
security protocol. As this paper shows below, this process could
be highly automated with our new approach

Although the main idea of the presented approach – the use of
evolutionary techniques in the security protocols design in general
– was introduced by Pavel Ocenasek in 2005 [9] [10], the
concrete details of using Genetic Programming and some
designing aspect are outlined in this paper.

3. SECURITY PROTOCOLS
A protocol is a recipe that describes how subjects should act to
achieve certain goal. Protocols are often described using an
informal notation, for example as a sequence of instructions
explaining the actions taken by the subjects. Each step describes
an event A → B: X, which states that A exchanges the message X
with B. Messages consists of atoms, like subject names and
nonces (randomly generated strings), and are composed by
tupling. Moreover, messages may be encrypted using keys of
subjects.

3.1 Introduction
The general events of security protocols can be decomposed into
elementary instructions. These instructions are e.g. sending a
message, or encrypting/decrypting a message with a secret key.
Additionally, for our approach we should mention a new basic
operation: adding a nonce (random number) to the set of
knowledge - this allows subjects to send these nonces in the rest
of protocol as often needed in cryptographic operations to
guarantee a freshness of a message. The example of Needham-
Schroeder symmetric protocol follows:

The messages consist of atoms, like subject names and plain texts.
Moreover, messages may be encrypted using keys of subjects.

3.2 Protocol Behavior
For successful use of the proposed design approach, we must
understand the behavior of security protocol when it is running.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’06, July 8–12, 2004, Seattle, WA, USA.

Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

This helps us also in evaluating a quality of each protocol and
finding a measure of satisfaction of the presumptions.

While the protocol runs, the messages are exchanged between
involved subjects. Let us trace the set of “knowledge” and
“belief” for each subject. Each operation affects at least one of
this set. The set of knowledge for the specified subject contains
all the messages and elements that are known to the subject.
Similarly, the set of belief contains all the information about what
subject beliefs that other subjects know (have in their set of
knowledge). Both sets could be traced while the protocol runs and
they are the basic criteria for evaluating the quality of a protocol.
For the formal notation we could use some of the modal logics.
For example BAN logic [5] [2] [3] directly deals with knowledge
and beliefs. The verification process with quality measurement
are separate area of interest and the reader is kindly referred to the
appropriate literature in references [1] [12].

3.3 Protocol Primitives in the Design Process
During the process of designing a security protocol a number of
decisions must be made: How many subjects are involved in
communication? What elementary instructions and cryptographic
operations we plan to use? And, finally, what will be the sequence
of instructions that causes exchange of messages and affects
subjects’ knowledge and belief?

When stating the involved subjects and elementary operations that
could be (not always must be) used in the generated protocol, we
have to follow some preparation steps. As mentioned above, the
basic events could be usually separated into elementary
instructions. Furthermore, subjects’ sets of knowledge could be
imagined like instruction registers that could be read or written.
The subjects has as many register as there are elementary and
composed messages.

For example, the operation

A → B: { Kab, “A” }Kbs
could be finally decomposed into the following elementary
instructions:

A.concatenate(Kab, “A”) into M;

A.encrypt(M, Kbs) into N;

A.send(N) to B

When using register-notation, we could write:

A.write[M] = A.read[Kab] . “A”

A.write[N] =

A.encrypt(A.read[M],A.read[Kbs])

B.write[N] = A.read[N]

Where N states the new symbol {Kab,“A”}Kbs .

This elementary 3-address code could be further rewritten into
elementary instructions using operations that deal only with 1
register.

After choosing the elementary instructions that would be used in
the design process, we generate a set of such instructions with all
possible arguments that could affect the corresponding sets of
knowledge and belief. Note that the subject’s set of beliefs has a

semantic meaning and is updated as the protocol is being traced in
the evaluation step.

4. AUTOMATED DESIGN PROCESS
The whole protocol design process is generally NP-complete. In
the past two decades a number of optimization techniques have
been proposed to find reasonably good solutions to NP-complete
problems. These include Evolutionary strategies, Genetic
algorithms, Genetic programming, and others.

4.1 Genetic algorithms
Genetic algorithms (GA) [4] are so-called “uninformed” search
algorithms, i.e., they do not incorporate any special knowledge on
the problem they solve. All problem specific knowledge is
included in the fitness (objective) function that evaluates each
solution produced by the GA. The better the solution’s fitness, the
more likely it survives and reproduces. The following algorithm
describes the whole GA flow we use to design security protocols:

1. Specifying security goals – in this first step we describe what
should or should not contain the sets of knowledge and belief for
each involved subject, which message is secret and cannot be sent
unencrypted, which message can never be sent, the maximum
number of recursive encryptions etc.

2. Generation of initial population – randomly generated protocols
(instruction sequences) are encoded into the chromosomes. In this
step the fitness of all individuals is calculated. This value depends
highly on the satisfaction of security presumptions in each state of
the protocol run. The use of additional verification tools for
finding certain flaws might be helpful.

3. Choosing parents – like in standard genetic algorithms, the
individuals with the best fitness are chosen to be parents for
mating.

4. Performing crossover – the choice of the right locations in
chromosomes for crossover is very important. The basic idea for
mating is that two chromosomes may be mated at selected states
(instructions) if both have corresponding sets of knowledge and
belief. This means we have to ensure that after crossing, the rest
of protocols makes sense for both individuals.

5. Performing mutation – avoiding jamming in local minima, the
mutation is very useful step. By performing atomic changes in the
instructions, mutation may affect both sets of knowledge and
belief.

6. Replacing offspring to population - the produced individuals
are evaluated and replaced to the new population and the
evolution loop starts over again from step 3.

The whole design is finished when some individuals (with best
fitness) satisfy the initial presumptions. The result is the
chromosome with the best fitness which can be interpreted as a
sequence of basic operations in the cryptographic protocol.

4.2 Genetic Programming
A Genetic Programming (GP) [4] can be considered as a
specialized form of genetic algorithm, which manipulates very
specific type of solutions using modified genetic operators. A
strong motivation for using such hierarchical representation was

the problem of applying crossover to variable-length
chromosomes. Security protocols are obviously of variable sizes.
The crossover operation can be used to interchange randomly
chosen branches of the parents’ trees.

4.3 Heuristic techniques
The described evolutionary methods can be advanced using
additional heuristic techniques that are now under our research.
We give several examples.

As mentioned, the interchange of parts – subtrees – of security
protocols is a difficult process. There is a need for heuristic
technique which recognizes what parts could be interchanged
without altering the semantics of instruction sequences.

Another example of a problem for employing heuristic techniques
is the ordering of instructions. For example, an elementary
instruction that needs to read from some register should be
executed only after this register is filled with valid data. Thus,
read operations must come after write operations. This could be
guaranteed by linking these two operations together ⇒ the
sequence of operations cannot be changed, but other non-
destructing instructions might be inserted between them.
Alternatively, the problem could be partially solved using proper
calculation of fitness function – protocols that contain instructions
with invalid operands gain smaller fitness values.

Some heuristics can also serve to limit the size of searched space.
The final design goal is known in advance – say “we require that
when the protocol finishes, some subject will believe in
something”. Therefore, heuristic techniques can force subjects to
send concrete goal-oriented messages and perform concrete goal-
oriented operations.

To calculate the fitness of solutions of generated protocols we
have to trace the instruction sequences to simulate their outcomes.
In security protocols, we use various measures to quantify a
quality of generated protocol. The design and verification of
protocol are two different processes. The higher is the fitness, the
less security flows exist and the more initial presumptions are
satisfied. Methods that could be used to evaluate the fitness were
introduced recently, e.g. in [7] [10].

5. CONCLUSIONS
The paper describes the approach that serves for designing
security protocols. The idea of security protocols is outlined as
well as the evolutionary methods that could be used to design new
prescriptions for secure communications. The main part is
devoted to the use of genetic programming, which seems to be
best suited for performing automated design process. Description
of the whole process in details is beyond the scope of this paper,
therefore some steps were explained in general.

Our future work will focus on advancing the current techniques
and improving the heuristic techniques, which are necessary to
achieve initial presumptions in real design applications.

6. ACKNOWLEDGMENTS
This research has been supported by the Grant Agency of the
Czech Republic through the following grants: GACR

102/05/0723: A Framework for Formal Specifications and
Prototyping of Information System's Network Applications,
GACR 102/05/0467: Architectures of Embedded Systems
Networks, GACR 102/05/H050: Integrated approach to education
of PhD students in the area of parallel and distributed systems,
and by the Czech Ministry of Education in frame of MSM
0021630503 Research Intention MIKROSYN: New Trends in
Microelectronic Systems and Nanotechnologies.

7. REFERENCES
[1] Abadi M., Needham R., Prudent Engineering Practice for

Cryptographic Protocols, In: Proceedings of the 1994 IEEE
Symposium on Security and Privacy, IEEE Computer
Security Press, 1994, p. 122-136

[2] Abadi, M., Tuttle, N., A Semantic for a Logic of
Authentication, In: Proceedings of the ACM Symposium on
Principles of Distributed Computing, 1991, p. 201-216

[3] Agray, N., van der Hoek, W., de Vink, E., On BAN Logics
for Industrial Security protocols. CCEMAS, 2001, p. 8

[4] Bentley, P. J., Evolutionary Design by Computers, Morgan
Kaufmann Publishers Inc., 1999, San Francisco, CA

[5] Burrows M., Abadi M., Needham R., A Logic of
Authentication, ACM Transactions on Computer Systems, 8
(1), 1990, p. 18-36

[6] Gritzalis S., Security protocols over open networks and
distributed systems: Formal methods for their Analysis,
Design and Verification, University of Aegean, Greece,
Computer Communications, 22 (8), 1999, p. 695-707

[7] Ma, L., Tsai, J., Formal Verification Techniques for
Computer Communication Security Protocols, Handbook of
Software Engineering and Knowledge Engineering, World
Scientific Publishing Company, 2000, p. 23

[8] Nossal, R., Galla, T.M., Solving NP-Complete Problems in
Real-Time System Design by Multichromosome Genetic
Algorithms, Vienna Institut of Technology, AT, 1997

[9] Očenášek, P.: Evolutionary Approach in the Security
Protocols Design, In: Proceedings of the First European
Conference on Computer Net-work Defence, University of
Glamorgan, GB, Springer, 2005, p. 147-156, ISBN 1-84628-
311-6

[10] Očenášek, P., The Security Protocol Design Using Genetic
Algorithms Paradigms, In: Proceedings of the 11th
Conference and Competition STUDENT EEICT 2005, Brno,
CZ, p. 576-580

[11] Očenášek, P., Towards Selected Problems in the Security
Protocol Design and Verification, 1st Doctoral Workshop on
Mathematical and Engineering Methods in Computer
Science MEMICS 2005, Znojmo, CZ, p. 9

[12] Shmatikov, V., Stern, U., Efficient Finite-State Analysis for
Large Security Protocols, In: Proceedings of the 11th IEEE
Computer Security Foundation Workshop, IEEE Computer
Society Press, 1998, p. 10

