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ABSTRACT
Since the introduction of Xcs there have been many derivative

systems supporting alternative rule languages such as languages

over reals, fuzzy logic, S-expressions and even neural networks.

This paper describes Foxcs, a derivative of Xcs for learning

rules in first-order logic. The Foxcs system is aimed at solv-

ing tasks in model-free, relational environments, and is generally

applicable to Inductive Logic Programming (ILP) and Relational

Reinforcement Learning (RRL). The system was evaluated on

several benchmarking ILP tasks where it was found to perform

at a level comparable to a number of well-known ILP algorithms

with regard to its predictive accuracy. This finding validates the

approach of using evolutionary heuristics for discovering rules in

first-order logic under the reinforcement learning paradigm, and

establishes the system as a promising alternative for RRL.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Predicate logic; Representations
(procedural and rule-based)

General Terms
Algorithms, Languages

Keywords
First order logic, inductice logic programming, learning clas-
sifier system, relational reinforcement learning, Xcs

1. INTRODUCTION
The accuracy based Xcs [32, 33] is perhaps the most im-

portant Learning Classifier System (LCS) to emerge, realis-
ing the majority of the features of Holland’s original frame-
work [16], while overcoming the problem of strong over-
general rules that had hindered earlier strength based sys-
tems [17]. Recent analysis supports the view that under
favourable conditions Xcs has an inductive bias towards
the discovery of maximally general but accurate rules [7].
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Good empirical results have also been reported, showing
that the system is competitive with other machine learning
approaches [1, 2].

Originally the Xcs system was specified to use bit-string
rules, but much subsequent research has focused on extend-
ing the representational capability of the system. For in-
stance, rule languages over continuous spaces [34, 29, 30, 8],
fuzzy logic [11], S-expressions [20, 19], and even multi-layer
neural networks [6] have been previously investigated. This
diversity of representations suggests that the framework un-
derlying Xcs is largely representationally neutral, and not
dependent upon one rule language or another. Further evi-
dence for this view can be found in the pressures which [9]
identified as driving the inductive process within Xcs, most
of which function independently of the rule language.

In this paper I extend Xcs for representation with first-
order logic. First-order logic is an important representa-
tional paradigm for machine learning, forming the basis of
Inductive Logic Programming (ILP) [24, 22] and Relational
Reinforcement Learning (RRL) [31]. The new system is
aimed at solving tasks in relational environments where a
model of the transition and reward dynamics is not avail-
able, and is generally applicable to both ILP and RRL.
An advantage of using Xcs as the parent system is that
it performs both model-free learning and addresses auto-
matic generalisation, where currently most RRL systems —
with the notable exception of [14] and the family of systems
based on it — either require a model of the environment or
do not automatically induce generalisations.

2. SYSTEM DESIGN
This section gives a detailed description of the design of

the Foxcs system. The description primarily focuses on the
modifications made by the new system and assumes that the
reader is familiar with the details of Xcs. Readers unfamil-
iar with Xcs might like to consult [32] for an introduction to
Xcs and [10] for a complete algorithmic specification. Note
that an earlier version of Foxcs appears in [21]; the princi-
pal difference between the two versions is that the covering
and mutation operations were domain specific in the earlier
version, whereas here domain independent operations have
been developed.

The Foxcs system, like its parent Xcs, accepts inputs
and produces rules, but unlike Xcs these inputs and rules
are expressed in languages over first-order logic. An input
to the system describes the present state of the environment
and the potential for action within it. More specifically, it
is a pair (s,A(s)), where s ∈ S is the current state and A(s)
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s = {cl(a), on(a, b), on fl(b), cl(c), on(c, d), on(d, e), on fl(e)}
A(s) = {mv fl(a), mv(a, c), mv fl(c), mv(c, a)}

Figure 1: A hypothetical system input.

is the set of actions that apply to s. The state, s, and the
set of applicable actions, A(s), are each represented by a
set of ground facts in first-order logic. In addition to the
input describing the current condition of the environment,
the system can have access to a background theory, B, which
takes the form of a collection of rules that pertain to the
environment. The use of background knowledge is a feature
of many ILP and RRL systems.

The rules in the new system contain a logical part which
replaces the bit-string action and condition of their counter-
parts in Xcs. All other parameters and estimates associated
with rules in Xcs are retained and function in the same fash-
ion as they do in Xcs. The logical part of the rule, Φ, is a
definite clause in first-order logic, that is, it has the form:

ϕ0 ← ϕ1, . . . , ϕn

where each ϕi is a predicate formula (literal). Each predicate
formula ϕi has the form f(t1, . . . , tm), where f is a predicate
symbol, and each ti is a constant or variable (but not a
function), and m is the arity of the formula. A special case
occurs when the arity of ϕi is zero (i.e. m = 0): then ϕi

is a nullary predicate and just has the form f , that is, the
bracketed list is omitted. The head of the rule, ϕ0, can be
thought of as the rule’s action, and the rule body, ϕ1, . . . , ϕn,
can be thought of as the rule’s condition.

With the new representation comes a corresponding re-
definition for matching. The matching operation works as
follows: a rule rl with logical part Φ successfully matches a
ground state-action pair (s, a) if and only if Φ, s, and the
background theory B, together entail a. This leads to the
following definition of matching:

Definition 1. A given rule rl with logical part Φ matches
a ground state-action pair (s, a) under background theory B,
if and only if:

Φ ∧ s ∧B |= a (1)

Foxcs implements matching using the logic language Pro-
log: Φ and s are asserted to a Prolog knowledge base which
already contains the background theory B, and then the
query corresponding to a is posed. If the query succeeds then
rl matches (s, a), otherwise it does not. Note that match-
ing logical formula is a more expensive operation than the
simple linear procedure used for matching bit-strings. This

input: the current input to the system, (s,A(s))

1. Construct match sets. For each a ∈ A(s) there is a corre-
sponding match set [M]a, where [M]a = {rl ∈ [P] | Φrl matches
(s, a)}.

2. Trigger covering if required. For each action a ∈ A(s) where
[M]a = ∅, the covering operation is called to produce a rule
covering (s, a).

3. Calculate system predictions. For each a ∈ A(s) the system
prediction p(a) is calculated as a fitness weighted sum of the
predictions of the rules in [M]a.

4. Select action. An action a∗ ∈ A(s) is selected ε-greedily over
the system predictions. On greedy steps, if some actions are
tied for maximum prediction then these actions are selected
from at random uniformly. The action set is assigned: [A] :=
[M]a∗ .

5. Execute action. The selected action, a∗ is executed, and a
reward is obtained.

6. Assign credit. The parameters of the rules in the action set
of the previous cycle, [A]−1 are updated. If it is the terminal
step of an episode then the rules in [A] are also updated.

7. Trigger mutation. From time to time mutation is run on a
parent rule selected from [A]−1. If it is the terminal step of an
episode then mutation may be triggered on [A] also.

Figure 2: The algorithm for the operational cycle.

represents the cost of increasing the expressive power of the
rule language, and occurs in all systems that upgrade from
propositional representations to first-order logic.

The operational cycle for the new system, which is largely
identical to its counterpart procedure in Xcs, is shown in
figure 2. The principal modification occurs at step 1 and
arises because the system can generalise over actions as well
as states: for each action a ∈ A(s) a separate match set,
denoted [M]a, is constructed. Note that an individual rule
can, and often does, belong to more than one match set if
it contains an abstract action.

Rule discovery in Foxcs consists of covering plus vari-
ous mutation operations. These operations have the same
purpose as their counterparts in Xcs but have been com-
pletely re-defined for representation with first-order logic.
In order to create and vary rules the operations will need
to know the predicates that constitute the rule language,
which will depend on the task at hand. A language dec-
laration command that enables such user provided defini-
tions is a common feature of most ILP systems. In Foxcs
the command is mode(type, [min, max], neg, pred), which de-
clares the predicate pred for inclusion in the rule language.
The arguments are: type, which indicates whether pred is
an action, state or background predicate (the values are a, s
and b respectively); min and max, which are integers spec-
ifying the minimum and maximum number of occurrences
of pred allowed within an individual rule; and neg, which
determines whether pred may be negated or not.

The general form of pred itself is name(arg1, . . . , argn),
where name is the name of the predicate, argi is a declara-
tion for the ith argument of pred, and n is the predicate’s
arity (if a predicate has arity n = 0, then the form of pred re-
duces to just name). Each argi is a list [arg type, spec1, spec2, . . .],
where arg type is a type specifier and the remaining argu-
ments, spec1, spec2, . . ., are symbols which determine how



input: a state-action pair (s, a)

1. create and initialise a new rule rl

2. Φ := ϕ0 ← ϕ1, . . . , ϕn, where ϕ0 = a and ϕ1, . . . , ϕn is the
clause containing all the facts in s (as part of this step each
place p in Φ is associated with a set of mode symbols Mp ac-
cording to the mode declarations)

3. θ−1 := {〈c1, {p1,1, . . . , p1,k1}〉/v1, . . . , 〈cl, {pl,1, . . . , pl,kl
}〉/vl},

where c1, . . . , cl are the constants of Φ, pi,j are the places
in Φ where ci occurs s.t. Θ(Mpi,j

) = -, and v1, . . . , vl are

the variables to be substituted for c1, . . . , cl, where each vi is
unique.

4. Φ := Φθ−1

5. insert rl into [P ] with deletion

Figure 3: The algorithm for covering.

argi may be set. The symbols and their meanings are given
below:

+ Input variable. The argument may be set to a named
variable (of the same type) that already occurs in the
rule.

- Output variable. The argument may be set to a named
variable that does not already occur in the rule.

# Constant. The argument may be a constant.

Anonymous variable. The argument may be set to the
anonymous variable.1

! If the argument is a variable then it must be unique
within the literal’s argument list.

The algorithm for covering is given in figure 3. Firstly,
a new rule, rl, is created and its parameters (except for Φ)
are initialised in the same way as Xcs. Then at step 2,
the logical part, Φ, is set to a clause derived from (s, a).
At this stage the rule does not generalise because (s, a) is
ground, thus steps 3 and 4 generalise the rule by creating and
applying an inverse substitution which replaces some or all
of the constants with variables, where the constants that will
be replaced are determined by the mode declarations. Lastly,
rl is inserted in the population where deletion may occur if
the number of rules exceeds the system parameter N .

After an initial population is created through covering,
further exploration of the rule space is achieved by applying
mutation. The system uses three generalising and three spe-
cialising mutations, some of which were originally inspired
by the Ecl system [13]. The generalisation operations are:

del: This operation randomly selects a literal and deletes
it.

c2v: This operation performs a inverse substitution on a
randomly selected constant (i.e. occurrences of the con-
stant are replaced with a variable).

v2a: This operation randomly selects a place containing a
variable and replaces the variable with the anonymous
variable.

1
The role of the anonymous variable in first-order logic is analogous

to role of the “don’t care” symbol, #, in bit-string languages.

The specialisation operations are:

add: This operation creates and adds a new literal.

v2c: This operation performs a substitution on a randomly
selected variable (i.e. occurrences of the variable are
replaced with a constant).

a2v: This operation randomly selects a place containing
an anonymous variable and replaces it with a named
variable (i.e. an input or output variable).

In addition to the mutation operations there is also a repro-
duction operation:

rep: This operation increments the numerosity of the par-
ent rule. It can be used to encourage the system to
converge to a population containing the most highly
fit rules.

When mutation is triggered the system randomly selects
one of the above seven operations to apply. Each operation,
i ∈ {del,c2v,v2a,add,v2c,a2v,rep}, is associated with a
weight µi, and the selection probability for i is proportional
to its relative weight, µiP

j µj
. If the operation fails to pro-

duce offspring then another randomly selected operation is
applied, and so on, until one succeeds.

Finally, the subsumption deletion procedure makes use of
θ-subsumption [25] to test whether one rule is more general
than another.

3. EVALUATION
Tasks in ILP are essentially classification tasks, and it

has been shown that Xcs is a competitive method for clas-
sification [1, 2]. Therefore, in order to empirically validate
the system I compared Foxcs to some well-known ILP sys-
tems to determine whether it performs as competitively as
its parent, Xcs.

Four well-known ILP algorithms were selected for com-
parison on the basis that they have results published for the
same benchmarking data: Foil [26], Progol [23], Icl [12],
and Tilde [4]. The first three are rule-based systems, while
Tilde uses a tree-based representation. An evolutionary
ILP algorithm was also selected, Ecl [13], which employs a
memetic search that hybridises evolutionary and ILP search
heuristics. The following three benchmarking data sets were
used: Mutagenesis [28], Biodegradability [5] and Traffic [15].

For classification a typical performance measure is the pre-
dictive accuracy under 10-fold cross-validation. However,
care must be taken because Foxcs is not a deterministic
system and produces different rules when an experiment is
re-run, which potentially reduces the reproducibility of the
result. In order to minimise the effects of non-determinism,
10-fold cross-validation was repeated ten times on the same
data partition. The predictive accuracies reported for the
comparison systems were determined by a single 10-fold
cross validation for the Mutagenesis and Traffic data sets,
and by five repetitions of 10-fold cross validation (on five
different 10-fold partitions) for Biodegradability.

The following system parameters were used for the Foxcs
system: N = 1000, ε = 10%, α = 0.1, βF = 0.1, ε0 = 0.01,
ν = 5, θga = 50, θsub = 20, θdel = 20, δ = 0.1, µrep = 1,
µadd = 3.25 and µdel = 0.75. The learning rate was an-
nealed and both GA and action set subsumption were used.
The system was trained for 100,000 steps, but mutation was



Algorithm Predictive Accuracy (%)

Mutagenesis (NS+S1) Mutagenesis (NS+S2)

Foxcs 84 (2) 87 (1)
Icl 87 (10) 88 (8)
Tilde 85 86
Progol 82 (3) 88 (2)
Foil 83 82
Ecl – 90 (1)

Biodegradability Traffic

Foxcs 72 (2) 94 (1)
Icl 75 (1) 93 (4)
Tilde 74 (1) 94 (4)
Progol – 94 (3)
Foil – –
Ecl 74 (4) 93 (2)

Table 1: Comparison between the predictive accuracy of

Foxcs and selected ILP algorithms on the benchmarking

data sets. The standard deviation, where available, is

given in parentheses.

switched off after 90,000 steps in order to encourage con-
vergence of the system prediction. The reward was 10 for a
correct classification and -10 for an incorrect classification.

Table 1 compares the predictive accuracy of Foxcs to the
above ILP algorithms on the three data sets.From the table
it can be seen that Foxcs performs at a level comparable
to the other systems. Differences in the accuracy rates of
the systems may be due to variations in their particular
inductive and language biases. More sophisticated methods
for handling numerical attributes were used by Tilde, Icl
and Ecl, which may also partially account for their better
performance at Mutagenesis and Biodegradability, both of
which contain numerical data.

In summary, the results for Foxcs are consistent with
previous findings that Xcs is a competitive approach to ma-
chine learning, validating the effectiveness of Foxcs as a
method for evolving rules in first-order logic under the rein-
forcement learning paradigm.

4. CONCLUSION
In this paper the Xcs system was extended with represen-

tation in first-order logic, deriving a system generally appli-
cable to both ILP and RRL tasks. It was found that the new
system, Foxcs, performs at a level comparable to several
well-known ILP algorithms, which is consistent with pre-
vious findings for Xcs on classification tasks, validating the
use of evolution for discovering rules in first-order logic in the
context of reinforcement learning. The wider significance of
the result is two-fold. Firstly, for the field of LCS it suggests
that the mechanisms driving induction in Xcs are largely
representationally neutral, especially when considered with
the growing number of systems that extend the representa-
tional capabilities of Xcs. The finding also establishes the
Xcs framework as a promising alternative for RRL. An ad-
vantage of using the Xcs framework for RRL is that it both
supports online learning and automatically induces general-
isations, and furthermore it avoids the need for complex and
possibly unnatural gradient calculations through the use of
evolutionary heuristics. Further work will look at applying
Foxcs to multi-step RRL tasks, such as blocks world.
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