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ABSTRACT
Various military systems require image and signal process-
ing, often in noisy or bandwidth-limited situations. In this
research, we employ genetic algorithms (GAs) to evolve for-
ward and inverse transforms that reduce quantization error
in reconstructed signals and images. The resulting trans-
forms produce higher quality images than current wavelet-
based transforms at a given compression ratio and thus allow
transmission of compressed data at a lower bandwidth. We
expand on previous research by evaluating several mutation
strategies for evolving reconstruction filters. Our results in-
dicate that GAs employing Gaussian mutation applied with
shrinking standard deviations evolve transforms superior to
transforms evolved by GAs employing other tested mutation
operators.
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1. INTRODUCTION
Image and signal processing are active areas of military

research. Satellites and Unmanned Aerial Vehicles (UAVs)
potentially collect huge amounts of image data during sur-
veillance missions. Sonar and radar systems process huge
amounts of sensor data in real time. The requirements to
minimize mission cost while maximizing effectiveness neces-
sitates the development of compression techniques that si-
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multaneously minimize storage and bandwidth requirements
while maintaining maximum signal information.

With these requirements in mind, quantization of digi-
tized data is often necessary for military DSP applications.
Quantization minimizes storage requirements by mapping
all values in signal x to a small discrete range of values Q(x).
Though quantization greatly improves compression ratios,
perfect reconstruction of x from Q(x) is impossible due to
the loss of low-order bits [8]. Wavelets [1] are a standard
methodology for signal compression algorithms. The dis-
crete wavelet transform (DWT) redistributes the energy in
a signal by transforming a time signal into a time-frequency
domain. A signal may be compressed by first applying the
DWT, followed by quantization, and then by applying en-
tropy coding. Signals are reconstructed in a reverse manner.
Most information loss occurs during quantization.

Figure 1 shows a publicly available satellite image of the
U.S. Air Force Museum in Dayton, OH, taken approximately
in 2003 [3]. This image shows a diverse set of aircraft, two
existing hangers, and a third hanger under construction.
This low-resolution image is representative of the type of
image that may be obtained by an expendable UAV dur-
ing a reconnaissance mission in hostile territory. Figure 2
shows the same image after it has been compressed with
the Daubechies-4 (DB4) DWT, quantized with a quantiza-
tion step of 64, dequantized, and reconstructed by the DB4
inverse transform. Note the loss of information due to quan-
tization. A military grade system must minimize this loss to
maximize the intelligence that may be gathered while main-
taining a desired compression ratio. Our previous research
established that GAs are capable of evolving coefficient sets
defining filters that provide improved signal and image re-
construction in comparison to the DWT under conditions
subject to quantization error [5, 7]. We seek to improve
GA performance by evaluating several real-valued mutation
operators.

2. METHODOLOGY
We compare the performance of GAs using four differ-

ent mutation operators designed for real-valued operators
to evolve image reconstruction filters. The first operator
employs mutation steps sampled from a Gaussian mutation
centered at the current gene value with a standard deviation
that shrinks by generation [2]. The second operator is re-
lated to the first, but new values are instead sampled from a
Cauchy distribution. This distribution has longer tails than



Figure 1: Satellite image of US Air Force Museum.

the Gaussian distribution and hence samples a wider area
of the search space [10]. The third operator is a nonuniform
operator originally proposed by Michalewicz [4]. Genes are
mutated according to distributions that have ranges shrink-
ing by generation and that favor a balanced search between
the minimum and maximum bounds on the genes. The final
mutation operator [7] applies a small random step change
to the current gene value for 95% of all mutations, and flips
the sign of a gene in 5% of the mutations. We refer to this
mutation as a local mutation.

The GA evolves a population of 50 individuals for 500
generations in each experiment. Parents are chosen through
stochastic uniform selection. Recombination occurs through
heuristic crossover. A set percentage of children are created
through crossover, the remaining are created by mutation.
This crossover rate is empirically set to 0.7, 0.35, 0.65, and
0.7 for Gaussian, Cauchy, nonuniform, and local mutation,
respectively. The two most fit parents survive to the next
generation, and the remaining population consists of chil-
dren built through crossover and mutation. The universal
quality index (UQI) measuring image quality [9] defines the
fitness function. UQI may range from -1 to 1, with a value
of 1 indicating perfect reconstruction. Experiments are con-
ducted at one level of DWT decomposition at quantization
level 64 on the standard greyscale fruits test image [7], cho-
sen for its varieties of pixel intensities and textures.

20 experiments are conducted for each mutation opera-
tor, using two population initialization routines. The first
initializes individuals randomly, sampling a uniform distri-
bution. This technique tests the GA’s ability to sample a
global search space. The second routine creates initial in-
dividuals located near the DB4 reconstruction coefficients.
This technique tests the GAs’ abilities to refine wavelet co-
efficients.

Figure 2: Reconstructed image after quantization.

mutation NonUniform Cauchy Local Gaussian

average 0.9744 0.92165 0.97398 0.97537
stdDev 0.00093 0.02196 0.00186 0.00012

reject null? yes yes yes baseline
significance 4.59E-05 2.71E-13 0.002 baseline

ci lower 0.0005 0.0438 0.0005 baseline
ci upper 0.0014 0.0637 0.0022 baseline

Random Population Initialization Fitness

Descriptive Statistics

t-tests (alpha = 0.05)

Table 1: Mutation results with random population
initialization.

3. RESULTS AND ANALYSIS
Table 1 presents the results using random population ini-

tialization. Though differences in average fitness may ap-
pear small when measured in UQI, they appear larger when
using alternate error measures, such as mean squared error
[7]. Small standard deviations indicate consistent perfor-
mance across replications. Gaussian mutation achieves the
highest average UQI. The other mutation operator results
are compared to the Gaussian results using the student’s
two-sized t-test at 95% confidence (α = 0.05). At this con-
fidence level, the Gaussian mutation results are superior at
a significant level. The table also provides the significance
level (p-value) for each t-test and the 95% confidence level
in the difference of means.

While the Gaussian mutation operator provides the best
global search, the local and nonuniform operators provide
competitive levels of performance. The Cauchy mutation
operator performs much worse than the other operators.
Due to the large mutations obtained by the Cauchy distri-
bution; the GA does not effectively search promising local
areas of the solution space.

Table 2 shows the GA performance under local population



mutation NonUniform Cauchy Local Gaussian

average 0.975405 0.973605 0.975365 0.975425
stdDev 0.00008 0.00034 0.00016 0.00006

reject null? no yes no baseline
significance 0.3275 1.87E-24 0.0842 baseline

ci lower -2.15E-05 0.0017 -0.0091 baseline
ci upper 6.26E-05 0.002 0.1374 baseline

Local Population Initialization Fitness

Descriptive Statistics

t-tests (alpha = 0.05)

Table 2: Mutation results with local population ini-
tialization.

initialization. As before, the standard deviations are small,
indicating repeated consistent performance. As with ran-
dom population initialization, the Gaussian operator pro-
vides the best average performance, though the improve-
ment over other operators is no longer clear. T-tests indicate
no significant difference in average performance between the
Gaussian operator and either the local or nonuniform mu-
tation operators. As before, the Cauchy mutation operator
results in the worst performance, but it performs much bet-
ter when the population is initialized in the neighborhood of
the original wavelet coefficients, since the GA is already bi-
ased toward a favorable location in the search space. When
initializing the population in the local neighborhood of the
DWT, the choice of mutation operators is not as important
for GA performance. Though results are only presented for
the training image, previous research has established that
evolved filters continue to outperform the original DWT fil-
ters when applied to a diverse set of independent training
images [5, 7].

4. CONCLUSIONS
GAs using real-coded representations depend heavily upon

the ability of their variation operators (mutation and recom-
bination) to provide a sufficient sampling of very large search
spaces. Real-valued operators that do not sufficiently sam-
ple the search space often exhibit deteriorated performance
[6]. Hence, the selection of appropriate variation operators is
critical when designing GAs for military-grade algorithm de-
velopment. Among the tested mutation operators, Gaussian
mutation results in the best global search for evolved image
reconstruction transforms. Nonuniform, local, and Gaussian
mutation all perform well for searching for improved trans-
forms in GAs initialized near the original DWT reconstruc-
tion coefficients. Whether performing a global search or
refining local solutions, the Gaussian mutation operator us-
ing smaller mutation step probabilities in later generations
allows for good search of the solution space using GAs.

The next step in this research will be to evaluate advanced
crossover operators for real-valued recombination, such as
the unimodal normal distribution crossover (UNDX), the
blend crossover (BLX-α), simulated binary crossover (SBX),
or simplex crossover (SPX). By sampling a wider area of
the search space, such crossover operators outperform tradi-
tional crossover operators for real-valued problems in epista-
tic environments [6] and may result in improved evolution
of image and signal transforms.

Military systems involving the acquisition and analysis of
large amounts of data require advanced algorithms able to
retain critical information at high compression levels when

subject to quantization. GAs aid in the development of such
algorithms. Though GAs are notoriously difficult to tune
and operator selection may be difficult, it is critical to select
operators providing fast search for high quality solutions.
By replicating small GA tests for evolved reconstruction fil-
ters, we are able to identify operators providing strong per-
formance. In the future, we will apply these operators in
the evolution of transform filters of longer length in GAs
evolved for many generations as we develop military grade
signal and image processing algorithms.
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