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ABSTRACT
In 2000, Zhores Alferov and Herbert Kroemer received a
share of the Nobel Prize in Physics for their work in devel-
oping a semiconductor laser using a double heterostructure.
These types of lasers are now quite common in our society,
and can be found in everyday devices such as laser printers,
compact disk players, and laser pointers. Unfortunately,
these devices can only operate in a limited range of wave-
lengths, because it has been found that these devices are
inefficient and unreliable for wavelengths greater than 2µm
when operated at room temperatures [1].

Quantum cascade lasers (QCL) are semiconductor lasers
that are not based on the heterostructure design, but on
quantum mechanics. The QCL does not have the same
limitations of the double heterostructure design. As such,
QCLs are used in applications where the standard double
heterostructure cannot [11].
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This research focuses on developing good QCL designs in
the terahertz frequency range. A terahertz QCL can have
potential applications in spectroscopy, astronomy, medicine,
free-space communication, near-space radar, and possibly
chemical/biological detection [10]. Of particular interest is
its potential use as a sensor for security purposes, particu-
larly in the realm of homeland security. In an attempt to
find better laser designs, a memetic multi-objective evolu-
tionary algorithm (MOEA) was developed. The local search
technique attempts to find better solutions in the vicinity of
the current chromosome. If a better solution is found, the
chromosome is replaced by the new value.

Quantum Cascade Laser Overview
The first QCL was created in 1994 by researchers from Bell

Laboratories. A QCL uses only electrons, so it is classified
as a unipolar laser. The laser name comes from its opera-
tion. It operates using quantum mechanics and a cascading
electronic waterfall, hence the name. The semiconductor
crystals are grown is such a way that identical energy steps
are created for the electrons cascade down. At each energy
step, the electrons emit photons. A normal diode laser can
only emit one photon in per cycle where a QCL can emit
many more. In fact, a QCL operating at the same wave-
length can outperform a diode laser by a factor greater than
1000 in terms of power because of both the cascading ef-
fect and its ability to carry large currents [2]. Additionally,
the QCL can can be designed to emit wavelengths over a
broad spectrum of frequencies using the same combination
of materials in the active region.

Since QCLs operate at room temperature (and in the mid-
infrared spectrum) they are ideal candidates to be used as
sensors. Many pollutants, explosives, industrial chemicals,
and medical substances can only be detected with high ac-
curacy with mid-infrared lasers [9]. Given the wide range of
capabilities listed, QCLs can be applied in the environmen-
tal, military, security, and medical fields.

Lasers work by controlling the photon emissions of atoms
as electrons move from higher energy states to lower ones.
The wavelength of a laser is determined by the electrons
change in energy state.

QCLs work by utilizing quantum wells (QWs). QWs are
formed in semiconductors by placing a thin layer of narrow
bandgap semiconductor between two potential barriers with



a higher energy bandgap. After an electron emits a photon,
it is collected and injected into the next stage so that an
additional photon can be emitted. Each emitter and collec-
tor/injector pair is defined as one period of the laser. This
cascading, which causes emission of photons and in turn
lasing, is the attribute of the quantum cascade laser that
gives it its name [8]. In addition to these attributes, QCLs
are unique because their performance is not directly related
to the properties of the specific semiconductor used, but
rather is governed by the thickness of the fabricated layer.
In essence, this means a QCL is tunable to the terahertz
frequency.

The QCL problem domain utilizes two fitness functions.
These fitness functions are different from previous fitness
functions used and attempt to model two of the most im-
portant properties of a QCL. The first fitness function deter-
mines how well the energy levels are lining up. The goal is
to have good injection of electrons at the top of each quan-
tum well, but at the same time, have good drainage at the
bottom of the well. If a laser has good injection, but poor
drainage, then the electrons at the top of the well won’t be
able to jump to the next energy state since it drains slower
than the injection process. The second fitness function de-
termines the overlap ratios. This describes how electrons
jump from one state to another. In essence, the fitness func-
tion is a measure of how close states are and the ability of
the electron to transfer between the states.

Memetic MOEAs
GAs often have difficulty fine-tuning chromosomes that

are close to the optimal solution [4]. Memetic MOEAs are
designed as an attempt to find better solutions in these in-
stances. The algorithm is a combination of an MOEA and a
local search algorithm. By balancing the genetic search and
local search, researchers can improve their results for some
problem instances. Permutation problems are an example
of where memetic MOEAs have performed well. For this
research effort, the focus is on finding good solutions with a
an approximation model of a QCL so a more accurate model
can be used to validate the solution is good. Since the goal is
finding the best solutions to analyze further, a Lamarckian
approach is the most appropriate method to use. With the
Lamarckian method, the best solution from the local search
is saved, and this is the solution that we analyze in depth.

Local Search Approach An evolutionary algorithm can
implement local search in three different ways: after each
generation, on the final generation, and after a predefined
number of generations. Based on results found in [3], this
research applies local search after predefined generations.
By applying local search this way, good early solutions can
be improved multiple times as opposed to only once at the
end. Since a stochastic local search method is used in this
research, the multiple local searches have a better chance of
finding good solutions in a rugged search landscape.

Algorithm Selection
For this problem, the general multi-objective parallel (GEN-

MOP) algorithm was selected because it incorporates some
of the major operators NSGA-II , SPEA2, and Genocop.
The algorithm is extended to include the local search pro-
cedure. GENMOP has been applied successfully to a broad
range of problems ranging from in-situ bioremediation of
contaminated groundwater [7] to solving the aircraft en-
gine maintenance scheduling problem [6]. The algorithm has
been applied to the QCL problem twice before [5, 10] with

mixed results. But in order to build a working laser, bet-
ter solutions are required, because the more accurate model
takes a long time to run and tweaking the solutions to pro-
duce better quality solutions is not practical. So a local
search was added to GENMOP and new fitness functions
were created in an effort to produce better solutions.

GENMOP is a pareto-based algorithm that utilizes real
values for crossover and mutation operators. The algorithm
employs fitness sharing through a niche radius and a ranking
structure that is similar to the one employed in NSGA-II.

For the QCL problem, the individual chromosomes are
encoded with values denoting the physical size of the barriers
and wells for cascading region of the semiconductor, as well
as the electrical field that is applied to the laser.

If no input file is specified to begin GENMOP execution
a population of size Pop0 is randomly initialized. Instead of
utilizing a repair function after new individuals are created,
all parameters have minimum and maximum values that
constrain the chromosome construction. These initial chro-
mosomes are stored in the cumulative population, Popcum.
Each individual within this population is evaluated for its
fitness and then these fitnesses are granted a Pareto rank.
This Pareto rank corresponds to the number of chromosomes
that dominate the particular individual. A non-dominated
chromosome would hold the Pareto rank of zero.

Once Pareto ranking has terminated, selection for the
mating pool begins. Individuals are selected first based on
their Pareto rank. When more individuals are present in a
particular rank than spaces left in the mating pool, defined
by MP, then the equivalence class sharing technique is used
to measure crowding within the objective space. Chromo-
somes relating to less crowded areas of the objective space
will be chosen for the mating pool to help preserve diversity
within the population.

Crossover Crossover occurs in one of four ways. For the
first three types of crossover mentioned below a second in-
dividual, is chosen at random from the mating pool to be
crossed with the selected individual. The type of crossover
to be performed is chosen based upon an adaptive probabil-
ity distribution. Each of the four crossover types begins with
the same probability of being chosen. As the algorithm pro-
gresses through generations, these probabilities are adapted
through the fitness of the individuals they create.

1. Whole Arithmetical Crossover

2. Simple Crossover

3. Heuristic Crossover

4. Pool Crossover

Mutation The new individuals created through a crossover
operation are subject to mutation with a probability defined
by the user. If mutation occurs, then one of three mutation
operators listed below is chosen. The mutation operator
is selected using the same adaptive probability distribution
described previously for crossover operations.

1. Uniform Mutation

2. Boundary Mutation

3. Non-uniform Mutation



Local Search Description The local search procedure
looks for allele values that are in the vicinity of the previ-
ous value. Specifically, the procedure limits its search to the
area that is within .1 of the total values that the allele can
take on. The algorithm stochastically selects an equal num-
ber of neighbors that are above the current allele value and
below. The number of local searches per chromosome is 40.
This number is chosen in an effort to balance efficiency and
effectiveness. The local search is applied at set generations.
It is applied after every generation, every 20 generations,
every 50 generations, and at the end of the algorithm. This
setting is changed to see if it has any effect on the outcome.

Results and Analysis
Each implementation of GENMOP and memetic GEN-

MOP is run 100 times and the Pareto front generated by
the best results are compared to the other runs. Each im-
plementation is run for 200 generations and starts with 25
individuals. Memetic GENMOP is run with local search
applied on the last generation, every 50 generations (local
search applied 4 times), every 20 generations (applied 10
times), and after every generation (applied 200 times). In all
instances, the memetic GENMOP was able to find high qual-
ity solutions. But when comparing memetic GENMOP to
the baseline GENMOP, very little improvement was gained.
Figure 1 shows graph comparing GENMOP with GENMOP
with local search applied every 20 generations.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Energy Seperation

O
ve

rla
p 

ra
tio

 

 
GENMOP +
Local search
GENMOP
only

Figure 1: Comparison of GENMOP with a local
search applied every 20 generations and GENMOP
run without local search

These results can be explained by two operators used in
GENMOP. The uniform mutation operator mutates the al-
lele value within a certain range. This range was set at a
range that was within the 10% local search range. Addition-
ally, the non-uniform mutation operator mutates the alleles
within a certain range. But this range shrinks as the gen-
erations increase, much like the simulated annealing local
search technique. And since our mutation rate was set at
25%, mutation occurred at a fairly high rate. More thorough
analysis revealed that, in fact, the local search improved the
current solution less than 1% of the time. Table 1 lists the
key findings of the various local search techniques.
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