
A Further Look at UCS Classifier System

Albert Orriols-Puig
Enginyeria i Arquitectura La Salle

Universitat Ramon Llull
Quatre Camins, 2. 08022 Barcelona, Spain.

aorriols@salleurl.edu

Ester Bernadó-Mansilla
Enginyeria i Arquitectura La Salle

Universitat Ramon Llull
Quatre Camins, 2. 08022 Barcelona, Spain.

esterb@salleurl.edu

ABSTRACT
This paper studies UCS, a learning classifier system (LCS)
derived from XCS that works under a supervised learning
scheme. A complete description of the system is given. Be-
sides, we introduce a fitness sharing scheme to UCS and
analyze UCS both with fitness sharing and without fitness
sharing. Results show the benefits of fitness sharing in all
the tested problems, specially those with class imbalances.
We also compare UCS with XCS and analyze how the fitness
pressure works under each approach.

Categories and Subject Descriptors
I.2.6 [Learning]: concept learning, knowledge adquisition

General Terms
Experimentation

Keywords
Evolutionary Computation, Genetic Algorithms, Machine
Learning, Learning Classifier Systems, Fitness Sharing

1. INTRODUCTION
UCS [1] is a learning classifier system (LCS) derived from

XCS [10, 11] that works under a supervised learning scheme.
UCS inherits the main components and structure of XCS,
which are adapted for supervised learning. The main dif-
ferences between both systems are related to 1) classifier’s
parameters and their update, and to 2) the lack of a pre-
diction array in UCS. UCS’s fitness is based on accuracy,
computed as the percentage of correct classifications. This
makes UCS to explore the consistently correct classifiers and
thus evolve only best action maps.

In previous work [1], UCS’s lack of fitness sharing was
identified as a potential weakness. Thus, the aim of this pa-
per is to introduce a fitness sharing scheme and analyze its

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

benefits compared to raw UCS. We also compare both UCS
with and without fitness sharing with XCS. The testbed
consists of two binary-input classification problems selected
from a larger set (see [7]) that highlight the differences be-
tween both systems: the decoder and the imbalanced mul-
tiplexer problems. We show that XCS suffers from fitness
dilemma [3] in the decoder problem, whose effect is a mis-
leading pressure that tends to guide the genetic search in
the wrong direction. The way in which accuracy is com-
puted allows UCS to overcome the problem.

2. DESCRIPTION OF UCS

2.1 UCS Components
UCS is an accuracy-based learning classifier system in-

troduced in [1]. It inherits the features of XCS, but spe-
cialize them for supervised learning tasks. UCS mainly dif-
fers from XCS in two perspectives. Firstly, the performance
component is adjusted to a supervised learning scheme. As
the class is provided with each new example, UCS only ex-
plores the correct class. This implies that UCS only evolves
high-rewarded classifiers, that is, the best action map [B].
Secondly, accuracy is computed differently in both systems.
UCS computes accuracy as the percentage of correct classi-
fications instead of computing it from the prediction error.

In the following, we give a deeper insight into UCS by
explaining each component of the system.

Classifier’s Parameters
In UCS, classifier’s parameters are the following: a) accu-
racy acc; b) fitness F ; c) correct set size cs; d) numerosity
num; and e) experience exp. Accuracy and fitness are a
measure of the quality of the classifier. The correct set size
is the estimated average size of all the correct sets where the
classifier participates. Numerosity is the number of copies
of the classifier, and experience is the number of times that
a classifier has belonged to a match set.

Performance Component
UCS is an online learner that receives a new input example
x = (x1, ..., xn) at each learning iteration. As it works under
a supervised learning scheme, also the class c of the example
is provided. Then, the system creates a match set [M] that
contains all classifiers in the population [P] whose condition
matches x. From that, the correct set [C] is created, which
consists of the classifiers in [M] that predict the correct class.
If [C] is empty, the covering operator is activated, creating
a new classifier with a generalized condition matching x,

and predicting class c. The remaining classifiers form the
incorrect set ![C].

In test mode, a new input example x is provided, and UCS
must predict the associated class. To do that, the match set
[M] is created. All classifiers in [M] emit a vote, weighted by
their fitness, for the class they predict. The most-voted class
is chosen. Under test mode, the population of UCS does not
suffer any change. All update and search mechanisms are
disabled.

Parameter Updates
Each time a classifier participates in a match set, its expe-
rience, accuracy and fitness are updated. Firstly, the expe-
rience is increased. Then, the accuracy is computed as the
percentage of correct classifications:

acc =
number of correct classifications

experience
(1)

Thus, accuracy is a cumulative average of correct classifi-
cations over all matches of the classifier. Next, fitness is
updated according to the following formula:

F = (acc)ν (2)

where ν is a constant set by the user (a common value is
10). Thus, fitness is calculated individually for each mi-
croclassifier, and it is not shared. The fitness of the whole
macroclassifier is: Fmacro = num ∗ F .

Finally, each time the classifier participates in [C], the cor-
rect set size cs is updated. cs is computed as the arithmetic
average of all sizes of the correct sets in which the classifier
has taken part.

Discovery Component
The genetic algorithm (GA) is used as the primary search
mechanism to discover new promising rules. The GA is ap-
plied to [C], following the same procedure as in XCS. It
selects two parents from [C] with a probability that depends
on classifier’s fitness. The same selection schemes applied in
XCS can be used in UCS, such as proportional selection or
tournament selection. The two parents are copied, creating
two new children, which are recombined and mutated with
probabilities χ and µ respectively.

Finally, both children are introduced into the population.
First, each offspring is checked for subsumption with its par-
ents (the subsumption mechanism is adapted from XCS). If
the offspring cannot be subsumed, it is inserted in the pop-
ulation, deleting another classifier if the population is full.
The deletion probability is computed in the same way as in
XCS (see [5]).

Parameter Initialization
UCS is very robust to parameter initialization since the ini-
tial value of most of the parameters is lost the first time that
the classifier participates in a match set. When a classifier
is created by covering, its parameters are set to: exp = 1,
num = 1, cs = 1, acc = 1 and F = 1. If a classifier is created
by the GA, its parameters are initialized to: exp = 0, num
= 1, cs = (csp1

+ csp2
)/2 (where p1 and p2 denote each of

the parents), acc = 1 and F = 1.

2.2 Why do not share fitness?
We introduce a new fitness computation scheme that shares

fitness, similarly to XCS, with the aim of comparing its ad-

vantages and disadvantages with a non sharing scheme. In
the remainder of the paper, UCS without sharing is referred
as UCSns, and UCS with sharing as UCSs.

Parameters update with fitness sharing works as follows.
Experience, correct set size and accuracy are computed as
in UCSns. However, fitness is shared among all classifiers
in [M]. Firstly, a new accuracy k is calculated, which dis-
criminates between accurate and inaccurate classifiers. For
classifiers belonging to ![C], kcl∈![C] = 0. For classifiers be-
longing to [C], k is computed as follows:

kcl∈[C] =

1 if acc > acc0

α(acc/acc0)
ν otherwise

Then, a relative accuracy k′ is calculated:

k′

cl =
kcl · numcl

∑

cli∈[M] kcli · numcli

(3)

And fitness is updated from k′:

F = F + β · (k′ − F) (4)

Let’s note that, under this scheme, the computed fitness
corresponds to the macroclassifier’s fitness, as numerosities
are involved in the formulas.

3. XCS AND UCS IN BINARY-INPUT PROB-
LEMS

3.1 Methodology
The aim of this section is to analyze the behavior in dif-

ferent facets of UCS and XCS. We base our analysis on two
artificial problems that gather some complexity factors said
to affect the performance of LCSs [1, 6]: a) the decoder [1], a
multiclass problem; and b) the imbalanced multiplexed [8],
an imbalanced binary-class problem.

The proportion of the optimal action map achieved was
proposed as an accurate measure of the progress of the ge-
netic search in XCS [6]. However, XCS and UCS evolve
different types of action maps. To permit a fair comparison
between both systems, we used the proportion of the best
action map achieved %[B] as the metric of performance.

3.2 Results
We ran XCS, UCSns and UCSs with the decoder and the

11-bit imbalanced multiplexer. Parameters were set as fol-
lows. For XCS, we set: β = 0.2, α = 0.1, ν = 5, θGA = 25,
selection = tournament, χ = 0.8, µ = 0.04, θdel = 20, δ =
0.1, GAsub = true, [A]sub = false, θsub = 20. Parameters
for UCS had the same values as in XCS, with acc0=0.999
and ν=10. Population size was set to N = 25 · |[O]| in XCS,
and to N = 25 · |[B]| in UCS1. Besides, in the 11-bit im-
balanced multiplexer problem, parameters of both XCS and
UCS were tuned following the guidelines proposed in [8].
For XCS we set β = {0.04, 0.02, 0.01, 0.005} and θGA =
{200, 400, 800, 1600} for i={6, 7, 8, 9} respectively. UCS
appeared to be less sensitive to parameters’ settings in pre-
vious experiments (not reported here). We only set θGA =
50 and β = 0.02 for i≥6.

1Optimal population sizes |[O]| in XCS and UCS are differ-
ent since XCS evolves the complete action map and UCS
only evolves the best action map.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Dec

Dec3
Dec4
Dec5
Dec6

(a) UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Dec

Dec3
Dec4
Dec5
Dec6

(b) UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Dec

Dec3
Dec4
Dec5
Dec6

(c) XCS

Figure 1: Proportion of the best action map
achieved by UCSns (a), UCSs (b) and XCS (c) in
the decoder problem with condition lengths from
l=3 to l=6. Note that UCS is shown for 50,000 ex-
plore trials, while XCS is shown for 100,000 trials.

Figure 1 shows the proportion of the best action map
achieved by UCSns, UCSs and XCS in the decoder prob-
lem with condition length from 3 to 6. Figure 2 shows the
same metric for the 11-bit imbalanced multiplexer problem
with imbalance levels from i=0 to i=9. All curves were av-
eraged over ten runs with different seeds. The differences
observed between the three systems are summed up in the
following.

Explore Regime
Exploring only the class of the input instance (as UCS does)
is beneficial in the decoder problem. In general, such an ex-
plore regime is advantageous in problems with high number

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(a) UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(b) UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(c) XCS

Figure 2: Proportion of the best action map
achieved by UCSns (a), UCSs (b) and XCS (c) in
the 11-bit multiplexer problem with imbalance lev-
els from i=0 to i=9.

of classes. Moreover, it helps to solve the imbalanced mul-
tiplexer up to one imbalance level higher than XCS, in an
extreme low supply of minority class instances.

Accuracy Guidance
The results of XCS in the decoder problem shows the lack
of fitness guidance toward accurate classifiers. This prob-
lem, already observed in previous studies [1, 3], was termed
as the fitness dilemma in [3]. The problem does not exist
in UCS since accuracy is computed directly as the percent-
age of correct classifications. The results show that XCS
strongly suffers from fitness dilemma in the decoder. In this

case, UCS clearly outperforms XCS. To alleviate this effect,
bilateral accuracy was proposed for XCS [3]. As a future
work, we aim to investigate how this approach compares
with UCS.

Fitness Sharing
Fitness sharing speeds up the convergence in all problems
tested. Specially, it appears to be crucial in highly imbal-
anced datasets to deter overgeneral classifiers from overtak-
ing the population.

Figure 2(a) shows that, without fitness sharing, UCS fails
at solving the imbalanced multiplexer problem for high im-
balance levels. For i≥4, UCSns evolves only half of the
best action maps. Looking at the populations evolved (not
shown for brevity) we observed that UCSns discovered all
optimal classifiers predicting the minority class (class 1).
However, optimal classifiers predicting the majority class
were replaced by the most overgeneral classifier (with all
the bits set to ’#’) covering the majority class. This be-
havior is related to 1) the low difference in fitness of the
most overgeneral rule an the maximally general and accu-
rate rules predicting the majority class when both coexist
in the population; and 2) the increasing number of genetic
opportunities that the most overgeneral classifier receives
respect to the maximally general ones.

Population Size
In the tested problems, UCS evolved best action maps with
less learning iterations. Also smaller population sizes were
used in UCS in all the tested problems. The population
evolved by XCS is generally larger, but comparable to that
of UCS in terms of legibility. In fact, by removing low-
rewarded classifiers from XCS’s final population, we get a
set of rules similar to that of UCS (not shown for brevity).
Thus, the advantage derived from having smaller popula-
tions in UCS is that we need less computational resources
to solve the problem.

4. CONCLUSIONS
This paper provided a brief analysis of the UCS learn-

ing classifier system (see [7] for more details). We improved
the original UCS system as introduced in [1] by including
fitness sharing. A fitness sharing scheme appeared to be
beneficial in both problems tested. Specially, it was crucial
in the imbalanced multiplexer problem. Using sharing, we
allow overgeneral classifiers until optimal classifiers start to
evolve. When this happens, fitness of overgeneral classifiers
decreases fast by the effect of sharing fitness with better
competing solutions. We suspect that this behavior can be
also generalizable to other imbalanced problems, where over-
general classifier can easily become strong.

Comparison with XCS allowed for better understanding
of the differences between two approaches of accuracy-based
classifier systems. There were two key differences between
XCS and UCS that provided UCS with better results in
the classification domains tested: exploration focused on
best action maps and correct fitness pressure toward accu-
racy. XCS’s convergence could be improved by using search
regimes with more exploitation guidance. Some methods
such as those based on ε-greedy action-selection or softmax
action-selection [9] have already been tested on reinforce-
ment learners. Their introduction in XCS could lead to
similar performance to UCS. To avoid the effects of fitness

dilemma in XCS, the use of bilateral accuracy was proposed
[3].

Acknowledgements
The authors thank the support of Enginyeria i Arquitectura
La Salle, Ramon Llull University, as well as the support of
Ministerio de Ciencia y Tecnoloǵıa under project TIN2005-
08386-C05-04, and Generalitat de Catalunya under Grants
2005FI-00252 and 2005SGR-00302.

5. REFERENCES
[1] Bernadó-Mansilla, E. and Garrell, J.M.

Accuracy-Based Learning Classifier Systems: Models,
Analysis and Applications to Classification Tasks.
Evolutionary Computation, 11(3):209–238, 2003.

[2] Bull, L. and Hurst, J. ZCS Redux. Evolutionary
Computation, 10(2):185–205, 2002.

[3] Butz, M.V., Goldberg, D., and Tharankunnel, K.
Analysis and improvement of fitness exploration in
XCS: bounding models, tournament selection, and
bilateral accuracy. Evolutionary Computation,
11(3):239–277, 2003.

[4] Harik, G. Finding Multiple Solutions in Problems of
Bounded Difficulty. Technical report, IlliGAL Report
No. 94002, Urbana-Champaign IL 61801, USA, May
1994.

[5] Kovacs, T. Deletion Schemes for Classifier Systems. In
W. Banzhaf, J. Daida, A. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, editors,
Proceedings of the Genetic and Evolutionary
Computation Conference, (GECCO-99), pages
329–336. Morgan Kaufmann, 1999.

[6] Kovacs, T. and Kerber, M. What makes a problem
hard for XCS. In Lanzi, P. L., Stolzmann, W., &
Wilson, S. W. (Eds.), Advances in Learning Classifier
Systems: Third International Workshop, IWLCS,
pages 80–99. Springer-Verlag, 2000.

[7] Orriols-Puig, A. and Bernadó-Mansilla, E. A Further
Look at UCS Classifier System. Technical report,
Enginyeria i Arquitectura La Salle - Ramon Llull
University. http://www.salle.url.edu/∼aorriols,
January 2006.

[8] Orriols-Puig, A. and Bernadó-Mansilla, E. Bounding
XCS Parameters for Unbalanced Datasets. In 2006
Genetic and Evolutionary Computation Conference,
2006 (accepted).

[9] Sutton, R. S. and Barto, A. G. Reinforcement
learning: An introduction. Cambridge, MA: MIT
Press, 1998.

[10] Wilson, S.W. Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

[11] Wilson, S.W. Generalization in the XCS Classifier
System. In J. Koza, W. Banzhaf, K. Chellapilla,
K. Deb, M. Dorigo, D. Fogel, M. Garzon,
D. Goldberg, H. Iba, and R. Riolo, editors, Genetic
Programming: Proceedings of the Third Annual
Conference, pages 665–674. Morgan Kaufmann, 1998.

