
ECSS – Evolutionary Component Surface System

A tool for architectural form generation and form
optimization

Katrin Jonas
University College London

Wates House 22 Gordon Street
WC1H OQB London UK

+44(0)7834468980

katrin.jonas@ucl.ac.uk

Martin Hemberg
Imperial College London

Exhibition Road
SW7 2AZ London UK
+44(0)2075945169

martin.hemberg@imperial.ac.uk

ABSTRACT
In this paper we describe the Evolutionary Component Surface
System (ECSS). It is a software tool for generating, analyzing and
optimizing structural component surfaces. The surfaces are
created from a limited set of architectural parts. We can create a
large number of different surface articulations using simple rules
of connectivity. The generated structures are self supporting
envelopes. Through their articulation the surfaces create
inhabitable space and where they reach the ground they define
their own points of support. The form-generating process is
complemented with an evolutionary algorithm to help search the
space of possible outcomes. An important aspect of the tool is that
design as well as structural and fabrication aspects have been
considered from the outset.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Mel, Maya embedded
language.

General Terms
Algorithms, Design, Experimentation.

Keywords
Evolutionary Design, Structural Optimization, Fabrication
Optimization, Spatial Optimization.

1. INTRODUCTION
The advent of powerful computers provides novel and interesting
opportunities for designers and design makers. Today, computer
aided design (CAD) is extensively used by architects as a design
tool. However we believe that only a fraction of the computers'
potential is exploited. This project is part of a research effort
aimed at making better use of available computing resources.

To achieve this goal, new ways of thinking about the role of the
computer in the design process is required. Our intention is to
develop algorithms that support new design conceptions and
design making.

In this project we combine algorithmic growth with an
optimization technique to explore the range of surfaces created
from simple repetitive parts. The work is inspired by the concepts
of complex adaptive systems and is based on the notions of
Emergence [1] and Artificial Evolution [2]. These concepts are
combined to create a digital design tool which can generate as
well as optimize form. The project aspires to shorten the path
from the conception of a design to its production. We are able to
incorporate spatial, aesthetical and structural aspects within the
same design composition process through the use of appropriate
fitness criteria. The course of design conception and design
making is understood as an iterative procedure where different
interests and expertise need to interact. A software tool has the
ability to programmatically combine different design
consideration in a semi-automated process controlled by the user.

Applying ideas from complex systems to architecture is a
relatively new one. An early pioneer in the field was John Frazer
who started working on these ideas as early as in the 1960s [3] He
has also advocated the concept of creative design tools [4].
Developing software design tools based on the principles of
complex systems was pursued by the Emergent Design Group
(EDG) at MIT. Between 1997 and 2001, the group produced a
number of different generative design tools. These tools
emphasize interaction with the user and the idea of presenting
multiple solutions to a given design problem. The tools by the
EDG often provide visually compelling output as they employ
advanced growth algorithms. However, their main drawback is
that they are not informed by physical parameters. Thus, the user
faces a significant challenge trying to understand the structural
and material aspects of the available parameters [5]. Coates et al
have also investigated in the combination of Lindenmayer
Systems with genetic Programming, which allowed them to
produce recursively defined three-dimensional objects [6]. They
stress that the use of evolutionary Algorithms in their experiments
facilitate form generation not form optimization. An interesting
example of a larger project based on self-organization is the
Groningen Twister [7]. In this project, the columns in an
underground bike storage are arranged using a self-organizing
clustering algorithm. The placement of the columns is influenced
by the structural requirements as well as the functional aspects of
the space.

 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

GECCO’06, July 8–12, 2004, Seattle, WA, USA.

Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

2. THE TOOL
The tool consists of two connected methods which we label
engines. First there is the growth engine which is responsible for
selecting and placing components and thereby combining them to
form articulated surfaces. The growth engine has the capability to
create complex and diverse structures from a small set of simple
local geometries which are connected under simple rules. The
second mechanism is the evolutionary engine. It helps the user to
search the universe of possible surfaces for efficient solutions to a
design problem. ECSS has been implemented as a script for
Maya. This makes it easy to incorporate the evolutionary
algorithm into a design process and intuitive for new users.

Figure 1. Screen shot in Maya, which showing a generated

surface, the fitness score output window on the left side and

the Graphical User Interface (GUI) on the right. In the GUI

the user can specify the settings and choose the weights and

target values for the fitness criteria.

2.1 The Growth Engine
The growth engine consists of a set of components and a set of
rules that govern the interactions of the components based only on
local information. By combining a large number of tiles, large
articulated surface geometries may be created. An important
criterion when developing the tool was to keep the number of
components small and their geometries simple. The set of
components in the ECSS consists of five basic forms which were
derived from a square. By a controlled displacement of their
vertices, we attain four variations of the original square. The
components are shown in Figure 2. Each component except for
the square can be rotated in 4 different ways. Thus, we end up
with 17 different tiles grouped into five families.

Figure 2. The five initial components, which are derived from

the ordinary square (to the left). The black lines illustrate the

displacement of the vertices in reference to the original

square. The controlled displacement ensures that the parts are

sharing features so they can connect to each other and at the

same time they have distinct features to allow for

differentiation in the overall surface.

The similarity of the components makes it possible to connect
them in various ways. The rules for connecting the tiles are
derived from the geometry of the component: two components
can be connected if their edges have the same length and if they
are inclined their inclination has to have the same direction (see
Figure 3).

Figure 3. The five components with possible neighboring

components overlaid.

 Another important rule is the order in which the tiles are added to
the structure. In the basic setup, the tiles are added in a predefined
linear fashion to form a square or rectangular envelope. As an
alternative, the tile choice of where to put the next tile can be
genetically encoded.

We wish to emphasize that the growth engine can be used
independently and that it is a powerful form generating tool.
However we have incorporated the second method, the
algorithmic search and optimization to help the user explore the
possible forms.

2.2 The Evolutionary Engine
Evolutionary algorithms are metheuristic, population based,
randomized search algorithms. The most common type of EA is
the genetic algorithm (GA) [2]. EAs are inspired by natural
evolution and they maintain a population of candidate solutions.
They are frequently used for optimization problems in
engineering and they are about to emerge in building applications.
However, it remains an open question how they can be used to
best effect. The number of possible surface outcomes in our
surface generating system is excessively high. In fact, the number
of possible surfaces grows combinatorial, making it intractable
even for a very fast computer to investigate every possible surface
consisting of a given number of tiles. By using a GA, we may
efficiently navigate the space of potential solutions.

When applying a GA to a design task, the choice of how to
encode the genome is very important. That is, how does one
interpret the array of integers as a surface? Hornby and Pollack
recommend using a grammar based approach as that will allow
for an efficient programming of the genotype [8]. The solution in
the ECSS is somewhere in between a direct representation and the
grammatical encoding. The genome represents rules, but the
choice of rule is determined by the evaluation of the phenotype so
far. Thus, the representation is inefficient in the sense that there is
a one to one mapping between the phenotype and the genotype.
However, we do not encode the type of tile directly in the
genome. Instead the number determines how to choose tiles from
the subset of allowed tiles thus ensuring that we will always
create valid individuals. The procedure for decoding the genome
is illustrated in Figure 4.

Figure 4. Mapping of the genome into a surface. The genome

dictates which of the possible fitting components is chosen to

fill the next position.

2.3 Fitness Evaluation and User Control
The main problem when applying EAs to architectural design
problems is to define a fitness function. As there is no generic
method for evaluating fitness in architectural applications, this
remains an open question. Romero et al suggest four different
approaches: a) interactive evolutionary computation (IEC), b)
learning user preferences, c) a rule based system and d) co-
evolving critics [9]. The most popular of those four is IEC which
bypasses the problem of defining a fitness function by having the
user rank the members of each generation. This resolves the issue
of defining fitness algorithmically but introduces another problem
namely human fatigue. A user has a limited scope to objectively
evaluate fitness in cases where the number of necessary
considerations is high. Consequently the population sizes as well
as the numbers of generations must be kept low. This restricts the
possibility to find original designs [10]. The second approach is
based on the idea of using a machine learning system, such as a
neural network to learn the user's preferences. This method does
not work very well in practice since there are too many
parameters to learn from a small training set for the automated
system. The third idea is to encode the user's knowledge about
good designs as a set of rules. This approach works well for
specific niche-problems but is hard to generalize.

Our approach is closest to the rule-based scheme, but an
important feature is that the rules are parametric. That is, each
rule considers a particular feature, such as the maximum height of
the envelope. The target value for this parameter as well as its
relative importance is defined by the user. To parameterize the
rules gives the tool greater flexibility and allows for a wider range
of applications. Moreover, we have retained the traditional IEC
features, giving the user the possibility to micro-manage the
selection.

In the ECSS there are three types of evaluation: a manual and two
automated assessments. The manual evaluation allows the user to
set the fitness score, giving the user the possibility to micro-
manage the selection. However, in practice the parameterized
fitness function is usually sufficient as it allows for significantly
larger populations and longer runs. Second, there are the two

automated evaluations: the assessment of geometrical features and
the assessment of structural behavior. The assessment of
geometrical features through defined fitness functions is informed
by spatial, aesthetical and structural considerations and takes
place within the tool (see Table 1). This part of the automated
evaluation is fast and occurs at every generation. After both of the
described evaluation cycles the user can decide to continue under
the same or altered parameters and fitness criteria.

The assessment of the structural behavior takes place in an
interlinked finite element program (Ansys). This evaluation does
not automatically take place during generation since it is
computationally more costly. Typically, the user will run the
generating process for several generations using only the manual
and the geometrical evaluation. When the output is considered
good enough, a set number of the fittest surfaces are read into the
finite element analysis loop.

Ansys is started with the loaded script and the program runs
through a number of automated steps. Material properties,
thickness and size of a single component, represented as a mesh,
is assigned. The components are connected to create a continuous
area as we recognize the structures as shells. The lowest points
along the z-axis of the surface are identified as support points.
Under the set physical conditions Ansys calculates the structural
behaviors, stress and the deflection, of each surface. Ansys
outputs the location of the supporting points and the forces which
they are subjected to. It also identifies the areas with the highest
deformation. The fitness score is calculated and the score values
are exported into Maya as text file.

In contrast to the first part of evaluation, the assessment criteria in
Ansys are predefined, the user cannot choose within a given
range. Again, the evaluation can lead to the selection of a hybrid
geometry or a part of it or is followed by continuing the
generating process under the same or altered parameters and
fitness criteria.

The parametric fitness function of the ECSS is developed with the
architectural application in mind to create self supportive
envelopes (see Figure 5.). Through their articulation the surfaces
define inhabitable space as well as that they are creating their own
points of support.

Table 1. The geometrical fitness criteria

Number of holes Number of holes which occur

when no component fits into a

place

Height Highest point along the z-axis the

surfaces should reach

Number of supports Lowest points of the surface

Support distance The desired minimum distance

between lowest points

Figure 5. Example of an architectural envelope.

The choice of geometrical criteria is informed by aesthetical as
well as spatial and structural considerations. For example, the
distance and number of supports is structurally as well as a
spatially important. The value range of the distance is informed
by the size and material definition of the components. The current
default is to use GFK sandwich panels each with a size of
2500mm*2500mm*84mm in plan projection. The size is
determined by the sandwich panel fabrication technique.
Computer controlled milling machines usually have a milling bed
with the maximum capacity size of 2500*2500mm which is also
the maximum size for transportation. Through a number of Ansys
tests we learned how far the surface created from these panels can
span before they have to reach the ground again or being
additionally supported. The maximum span informs the default
value within which the user can choose.

3. CONLUSION
We believe that generative growth algorithms provide exciting
and novel opportunities for designers, engineers and fabricators.
Different interests are no longer conflicting in an initial design
proposal but are involved in the preliminary conception of it.
Understanding, translating and tuning of the necessary conditions
which a designer has to consider allows the interaction between
those parameters to necessitate the design. They allow us to
approach a design briefing without a preconception of form. The
population based nature of the evolutionary algorithms provides
us with multiple solutions to a given task which opens for new
opportunities. Furthermore, computational power enables us to
explore the possible range stemming from the combination of a
set of simple parts. We are also able to represent constraints from
material properties and production methods in the digital model.
Particular to this project is that the fitness criteria consider
aesthetic as well as engineering aspects thereby allowing for a
programmatic form finding. The ECSS is still a prototype but
nevertheless it is a demonstration of a novel type of device for
designers. It is aimed at supporting an evolving understanding and
interest in communicating design aspects and to parameterize
design projects.

4. ACKNOWLEDGEMENT
The authors would like to thank Michael Hensel, Achim Menges
and Mike Weinstock for many valuable and inspirational
discussions. We also thank Matthias Michel with whom we
discussed and developed the automated structural fitness
evaluation.

5. REFERENCES

[1] Holland, J. Emergence: From Chaos to Order, Oxford
University Press, 1998.

[2] Mitchell, M. An Introduction to Genetic Algorithm, MIT
Press, 1996.

[3] Frazer, J. An Evolutionary Architecture, Architectural
Association Publications, 1995.

[4] Jansen, P., Frazer, J. and Ming-Xi, T. Evolutionary design
systems and generative processes, Applied Intelligence, 16, 2002,
119-128.

[5] Hemberg, M. and O'Reilly UM. Extending Grammatical
Evolution to Evolve Digital Surfaces with Genr8. European
Conference On Genetic Programming (Coimbra, Portugal, 2004).

[6] Broughton, T., Coates P. and Jackson, H.Exploring 3D Design
Worlds Using Lindenmayer Systems and Genetic Programming.In
Evolutionary Design by Computers, Morgan Kaufmann, 1999

[7] Scheurer, F., The Groningen Twister – An experiment in
applied generative design. In Generative Art (Milan, Italy, 2003)

[8] Hornby, G. and Pollack JB. The Advantages of Generative
Grammatical Encodings for Physical Design. Congress of
Evolutionary Computation, 2001

[9] Machado, P., Romero, J., Manaris, B., Santos, A. and
Cardoso, A., Power to the Critics – A Framework for the
Development of Artificial Art Critics.European Conference On
Genetic Programming (Coimbra, Portugal, 2004).

[10] Lutton, E., Cayla, E and Chapuis, J. ArtiE-Fract: The Artist's
Viewpoint, 2003.European Conference On Genetic Programming
(Essex, UK, 2003).

