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ABSTRACT 
In this paper we describe the Evolutionary Component Surface 
System (ECSS). It is a software tool for generating, analyzing and 
optimizing structural component surfaces. The surfaces are 
created from a limited set of architectural parts. We can create a 
large number of different surface articulations using simple rules 
of connectivity. The generated structures are self supporting 
envelopes. Through their articulation the surfaces create 
inhabitable space and where they reach the ground they define 
their own points of support. The form-generating process is 
complemented with an evolutionary algorithm to help search the 
space of possible outcomes. An important aspect of the tool is that 
design as well as structural and fabrication aspects have been 
considered from the outset.  

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Mel, Maya embedded 
language. 

General Terms 
Algorithms, Design, Experimentation.  

Keywords 
Evolutionary Design, Structural Optimization, Fabrication 
Optimization, Spatial Optimization. 

 

1. INTRODUCTION 
The advent of powerful computers provides novel and interesting 
opportunities for designers and design makers. Today, computer 
aided design (CAD) is extensively used by architects as a design 
tool. However we believe that only a fraction of the computers' 
potential is exploited. This project is part of a research effort 
aimed at making better use of available computing resources.  
 
 

 
To achieve this goal, new ways of thinking about the role of the 
computer in the design process is required. Our intention is to 
develop algorithms that support new design conceptions and 
design making. 
 
In this project we combine algorithmic growth with an 
optimization technique to explore the range of surfaces created 
from simple repetitive parts. The work is inspired by the concepts 
of complex adaptive systems and is based on the notions of 
Emergence [1] and Artificial Evolution [2]. These concepts are 
combined to create a digital design tool which can generate as 
well as optimize form. The project aspires to shorten the path 
from the conception of a design to its production. We are able to 
incorporate spatial, aesthetical and structural aspects within the 
same design composition process through the use of appropriate 
fitness criteria. The course of design conception and design 
making is understood as an iterative procedure where different 
interests and expertise need to interact. A software tool has the 
ability to programmatically combine different design 
consideration in a semi-automated process controlled by the user.   
 
Applying ideas from complex systems to architecture is a 
relatively new one. An early pioneer in the field was John Frazer 
who started working on these ideas as early as in the 1960s [3] He  
has also advocated the concept of creative design tools [4]. 
Developing software design tools based on the principles of 
complex systems was pursued by the Emergent Design Group 
(EDG) at MIT. Between 1997 and 2001, the group produced a 
number of different generative design tools. These tools 
emphasize interaction with the user and the idea of presenting 
multiple solutions to a given design problem. The tools by the 
EDG often provide visually compelling output as they employ 
advanced growth algorithms. However, their main drawback is 
that they are not informed by physical parameters. Thus, the user 
faces a significant challenge trying to understand the structural 
and material aspects of the available parameters [5]. Coates et al 
have also investigated in the combination of Lindenmayer 
Systems with genetic Programming, which allowed them to 
produce recursively defined three-dimensional objects [6]. They 
stress that the use of evolutionary Algorithms in their experiments 
facilitate form generation not form optimization. An interesting 
example of a larger project  based on self-organization is the 
Groningen Twister [7]. In this project, the columns in an 
underground bike storage are arranged using a self-organizing 
clustering algorithm. The placement of the columns is influenced 
by the structural requirements as well as the functional aspects of 
the space. 
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2. THE TOOL 
The tool consists of two connected methods which we label 
engines. First there is the growth engine which is responsible for 
selecting and placing components and thereby combining them to 
form articulated surfaces. The growth engine has the capability to 
create complex and diverse structures from a small set of simple 
local geometries which are connected under simple rules. The 
second mechanism is the evolutionary engine. It helps the user to 
search the universe of possible surfaces for efficient solutions to a 
design problem. ECSS has been implemented as a script for 
Maya. This makes it easy to incorporate the evolutionary 
algorithm into a design process and intuitive for new users.  
 

  

Figure 1. Screen shot in Maya, which showing a generated 

surface, the fitness score output window on the left side and 

the Graphical User Interface (GUI) on the right. In the GUI 

the user can specify the settings and choose the weights and 

target values for the fitness criteria.   

 

2.1 The Growth Engine 
The growth engine consists of a set of components and a set of 
rules that govern the interactions of the components based only on 
local information. By combining a large number of tiles, large 
articulated surface geometries may be created. An important 
criterion when developing the tool was to keep the number of 
components small and their geometries simple. The set of 
components in the ECSS consists of five basic forms which were 
derived from a square. By a controlled displacement of their 
vertices, we attain four variations of the original square. The 
components are shown in Figure 2. Each component except for 
the square can be rotated in 4 different ways. Thus, we end up 
with 17 different tiles grouped into five families. 
 

 
 
Figure 2. The five initial components, which are derived from 

the ordinary square (to the left). The black lines illustrate the 

displacement of the vertices in reference to the original 

square. The controlled displacement ensures that the parts are 

sharing features so they can connect to each other and at the 

same time they have distinct features to allow for 

differentiation in the overall surface. 

 

The similarity of the components makes it possible to connect 
them in various ways. The rules for connecting the tiles are 
derived from the geometry of the component: two components 
can be connected if their edges have the same length and if they 
are inclined their inclination has to have the same direction (see 
Figure 3). 
 

 
Figure 3. The five components with possible neighboring 

components overlaid.  

 

 Another important rule is the order in which the tiles are added to 
the structure. In the basic setup, the tiles are added in a predefined 
linear fashion to form a square or rectangular envelope. As an 
alternative, the tile choice of where to put the next tile can be 
genetically encoded. 
 
We wish to emphasize that the growth engine can be used 
independently and that it is a powerful form generating tool. 
However we have incorporated the second method, the 
algorithmic search and optimization to help the user explore the 
possible forms.  

  

2.2 The Evolutionary Engine 
Evolutionary algorithms are metheuristic, population based, 
randomized search algorithms. The most common type of EA is 
the genetic algorithm (GA) [2]. EAs are inspired by natural 
evolution and they maintain a population of candidate solutions. 
They are frequently used for optimization problems in 
engineering and they are about to emerge in building applications. 
However, it remains an open question how they can be used to 
best effect. The number of possible surface outcomes in our 
surface generating system is excessively high. In fact, the number 
of possible surfaces grows combinatorial, making it intractable 
even for a very fast computer to investigate every possible surface 
consisting of a given number of tiles. By using a GA, we may 
efficiently navigate the space of potential solutions. 
 
When applying a GA to a design task, the choice of how to 
encode the genome is very important. That is, how does one 
interpret the array of integers as a surface? Hornby and Pollack 
recommend using a grammar based approach as that will allow 
for an efficient programming of the genotype [8]. The solution in 
the ECSS is somewhere in between a direct representation and the 
grammatical encoding. The genome represents rules, but the 
choice of rule is determined by the evaluation of the phenotype so 
far. Thus, the representation is inefficient in the sense that there is 
a one to one mapping between the phenotype and the genotype. 
However, we do not encode the type of tile directly in the 
genome. Instead the number determines how to choose tiles from 
the subset of allowed tiles thus ensuring that we will always 
create valid individuals. The procedure for decoding the genome 
is illustrated in Figure 4. 
 

 



 
 
 
 

 
Figure 4. Mapping of the genome into a surface. The genome 

dictates which of the possible fitting components is chosen to 

fill the next position.  

 

2.3 Fitness Evaluation and User Control 
The main problem when applying EAs to architectural design 
problems is to define a fitness function. As there is no generic 
method for evaluating fitness in architectural applications, this 
remains an open question. Romero et al suggest four different 
approaches: a) interactive evolutionary computation (IEC), b) 
learning user preferences, c) a rule based system and d) co-
evolving critics [9]. The most popular of those four is IEC which 
bypasses the problem of defining a fitness function by having the 
user rank the members of each generation. This resolves the issue 
of defining fitness algorithmically but introduces another problem 
namely human fatigue. A user has a limited scope to objectively 
evaluate fitness in cases where the number of necessary 
considerations is high. Consequently the population sizes as well 
as the numbers of generations must be kept low. This restricts the 
possibility to find original designs [10]. The second approach is 
based on the idea of using a machine learning system, such as a 
neural network to learn the user's preferences. This method does 
not work very well in practice since there are too many 
parameters to learn from a small training set for the automated 
system. The third idea is to encode the user's knowledge about 
good designs as a set of rules. This approach works well for 
specific niche-problems but is hard to generalize.  
 
Our approach is closest to the rule-based scheme, but an 
important feature is that the rules are parametric. That is, each 
rule considers a particular feature, such as the maximum height of 
the envelope. The target value for this parameter as well as its 
relative importance is defined by the user. To parameterize the 
rules gives the tool greater flexibility and allows for a wider range 
of applications. Moreover, we have retained the traditional IEC 
features, giving the user the possibility to micro-manage the 
selection.  
 
In the ECSS there are three types of evaluation: a manual and two 
automated assessments. The manual evaluation allows the user to 
set the fitness score, giving the user the possibility to micro-
manage the selection. However, in practice the parameterized 
fitness function is usually sufficient as it allows for significantly 
larger populations and longer runs. Second, there are the two 

automated evaluations: the assessment of geometrical features and 
the assessment of structural behavior. The assessment of 
geometrical features through defined fitness functions is informed 
by spatial, aesthetical and structural considerations and takes 
place within the tool (see Table 1). This part of the automated 
evaluation is fast and occurs at every generation. After both of the 
described evaluation cycles the user can decide to continue under 
the same or altered parameters and fitness criteria.  

 
The assessment of the structural behavior takes place in an 
interlinked finite element program (Ansys). This evaluation does 
not automatically take place during generation since it is 
computationally more costly. Typically, the user will run the 
generating process for several generations using only the manual 
and the geometrical evaluation. When the output is considered 
good enough, a set number of the fittest surfaces are read into the 
finite element analysis loop.  
 
Ansys is started with the loaded script and the program runs 
through a number of automated steps. Material properties, 
thickness and size of a single component, represented as a mesh, 
is assigned. The components are connected to create a continuous 
area as we recognize the structures as shells. The lowest points 
along the z-axis of the surface are identified as support points. 
Under the set physical conditions Ansys calculates the structural 
behaviors, stress and the deflection, of each surface. Ansys 
outputs the location of the supporting points and the forces which 
they are subjected to. It also identifies the areas with the highest 
deformation. The fitness score is calculated and the score values 
are exported into Maya as text file.   
 
In contrast to the first part of evaluation, the assessment criteria in 
Ansys are predefined, the user cannot choose within a given 
range. Again, the evaluation can lead to the selection of a hybrid 
geometry or a part of it or is followed by continuing the 
generating process under the same or altered parameters and 
fitness criteria. 
 
The parametric fitness function of the ECSS is developed with the 
architectural application in mind to create self supportive 
envelopes (see Figure 5.). Through their articulation the surfaces 
define inhabitable space as well as that they are creating their own 
points of support.  

 
Table 1. The geometrical fitness criteria 

 

Number of holes Number of holes which occur 

when no component fits into a 

place 

 

Height Highest point along the z-axis the 

surfaces should reach 

 

Number of supports Lowest points of the surface 

 

Support distance The desired minimum distance 

between lowest points 

 



 

 
Figure 5. Example of an architectural envelope. 

 
The choice of geometrical criteria is informed by aesthetical as 
well as spatial and structural considerations. For example, the 
distance and number of supports is structurally as well as a 
spatially important. The value range of the distance is informed 
by the size and material definition of the components. The current 
default is to use GFK sandwich panels each with a size of 
2500mm*2500mm*84mm in plan projection. The size is 
determined by the sandwich panel fabrication technique. 
Computer controlled milling machines usually have a milling bed 
with the maximum capacity size of 2500*2500mm which is also 
the maximum size for transportation. Through a number of Ansys 
tests we learned how far the surface created from these panels can 
span before they have to reach the ground again or being 
additionally supported. The maximum span informs the default 
value within which the user can choose.  
 

3. CONLUSION 
We believe that generative growth algorithms provide exciting 
and novel opportunities for designers, engineers and fabricators.  
Different interests are no longer conflicting in an initial design 
proposal but are involved in the preliminary conception of it. 
Understanding, translating and tuning of the necessary conditions 
which a designer has to consider allows the interaction between 
those parameters to necessitate the design. They allow us to 
approach a design briefing without a preconception of form. The 
population based nature of the evolutionary algorithms provides 
us with multiple solutions to a given task which opens for new 
opportunities. Furthermore, computational power enables us to 
explore the possible range stemming from the combination of a 
set of simple parts. We are also able to represent constraints from 
material properties and production methods in the digital model. 
Particular to this project is that the fitness criteria consider 
aesthetic as well as engineering aspects thereby allowing for a 
programmatic form finding. The ECSS is still a prototype but 
nevertheless it is a demonstration of a novel type of device for 
designers. It is aimed at supporting an evolving understanding and 
interest in communicating design aspects and to parameterize 
design projects.       
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