
Using XCS for Action Selection in
RoboCup Rescue Simulation League

Ivette C. Martı́nez
Grupo de Inteligencia Artificial

Universidad Simón Bolı́var
Caracas 1080-A, Venezuela
martinez@gia.usb.ve

David Ojeda
Grupo de Inteligencia Artificial

Universidad Simón Bolı́var
Caracas 1080-A, Venezuela

david@gia.usb.ve

Ezequiel Zamora
Grupo de Inteligencia Artificial

Universidad Simón Bolı́var
Caracas 1080-A, Venezuela

ezequiel@gia.usb.ve

ABSTRACT
This paper presents a team of agents for the RoboCup Res-
cue Simulation League problem that uses an evolutionary
reinforcement learning mechanism called XCS, a version of
Holland’s Genetic Classifiers Systems, to support the agents’
decision process. In particular, we use this mechanism to de-
cide the number of ambulances required to rescue a buried
civilian and the number of Fire Brigades necessary to extin-
guish a fire. We also analyze the problems implied by the
rescue simulation and briefly describe our solutions for every
identified sub-problem using multi-agent cooperation and
coordination built over a subsumption architecture. Our
classifier systems were trained in different disaster situa-
tions. Trained agents outperformed untrained agents and
most participants of the 2004 RoboCup Rescue Simulation
League competition. This system managed to extract gen-
eral rules that could be applied to new disaster situations.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—knowledge acqui-
sition; I.6.3 [Simulation and Modeling]: Applications

General Terms
Design, experimentation

Keywords
RoboCup Rescue Simulation League, Action Selection,
XCS, ERL

1. INTRODUCTION
RoboCup Rescue has become a standard problem for the

artificial intelligence, intelligent robotics and multi-agents
communities. In particular, the RoboCup Rescue Simula-
tion League (RCRSL) problem, has proven to be an excellent
environment for AI and Machine Learning software testing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

This project started as a response to the Japanese rescue
team’s inability to deal with natural disasters observed in
the Hanshin Awaji Earthquake in 1995 [8]. Its main goal was
to create an heterogeneous multi-agent system for disaster
prevention and mitigation and victim search and rescue in
a simulated environment.

Tadokoro et.al. [8] define RoboCup Rescue Simulation
League as a semi-optimal behavior planning problem with ex-
tremely complex constraints having widely time-varying mul-
tiple objectives, these constraints include limited time for
decision making, constantly changing conditions and partial
information. Additionally, communication is limited, and
there are sometimes incorrect rumors [8]. In this work we
try to solve the most important RCRSL’s challenges: victim
rescue and fire extinction.

Usually large state-space problems are managed through
generalization techniques such as neural networks and other
function approximators, which allow compact storage of
learned information and transfer of knowledge between “sim-
ilar” states and actions [2]. In order to manage this large
state-space problem under RCRSL time restrictions, we
use an accuracy-based evolutionary reinforcement learning
mechanism called XCS [11]. This mechanism not only does
an accelerated search, but also is able to derive general
rules. In particular, the XCS decides how many Ambulance
Teams are required to make an effective rescue of a victim
buried in debris of a building and how many Fire Brigades
are necessary to extinguish a fire. We decided to focus
on these decisions because they require the analysis of a
large amount of scattered information and are critical to
the agents’ performance.

Evolutionary reinforcement learning (ERL) is an approach
to reinforcement learning inspired by Darwin’s theory of
evolution. Evolutionary algorithms can find satisfactory
solutions in large state-spaces at a low computational cost.
Methods from genetic algorithms, evolutionary program-
ming, genetic programming, and evolutionary strategies
could all be used in this framework to form effective decision
making agents [4].

We compared our agents with other successful teams from
the 2004 competition and obtained satisfactory results. We
believe this technique is able to process the pertinent infor-
mation from the environment and give the appropriate out-
put to solve the victims rescue and fire extinction problems.
Additionally we give a short description of our RoboCup
Rescue decomposition into sub-problems and the approach
we used for each one of them.

2. XCS
The XCS classifier systems [9], as well as Holland’s Learn-

ing Classifier Systems (LCS) [1], are domain independent
adaptive learning systems. Their main distinguishing fea-
tures are the base of classifier fitness on the accuracy of
classifier reward prediction instead of the prediction itself,
and the use of a niche genetic algorithm, i.e., a Genetic
Algorithm (GA) that operates on a subset of the classifier
population.

XCS is an example of a rule-based ERL that searches over
a policy space. The advantage of XCS from the ERL point
of view is its generalization capacity. For this reason, the
XCS should be able to scale to more complex problems, in
contrast with the RL traditional algorithms [11].

3. DESIGN
In this section we present the results of our analysis and

the decomposition of RCRSL into sub-problems. We use a
hybrid approach for decision making, i.e., some decisions are
centralized while others are taken by platoon agents. There-
fore, platoon agents can take decisions with slight relevance
but center agents must decide the most important matters.

3.1 Problem Classification
We divided RCRSL sub-problems into four categories:

common problems, fire extinction, rubble cleansing and vic-
tim rescue. Now we describe some of the identified problems
and their solutions.

1. Common problems:

Civilian search. Our agents look for civilians in all
the buildings in the city. Each platoon must do this job
when there is no other higher-priority task to do. All
agents have a “world model” which they share in every
turn to avoid visiting an already explored site and to
provide center agents with the necessary information
to make decisions.

Route planning. The problem of finding optimal
routes between two points in a city was solved by re-
ducing the state space, specifically using LongRoads as
proposed by ResQ Freiburg [3].

Communication. We designed and built a commu-
nication protocol based in tokens which uses the mes-
sage space as much as possible and gives preference to
high-priority information.

2. Victim rescue: The Ambulance Center must decide
which victim is going to be rescued next, the number of
ambulances that will be sent to the rescue site, which
ambulances must go and which one will take the victim
to the refuge.

The next victim selection algorithm we are using is
based on the strategy proposed by the Damas Team
[6], in order to minimize future casualties considering
the next rescue.

The number of ambulances for each victim is deter-
mined using an XCS classifier system whose structure
and parameters are explained in Section 3.2. Once the
number of ambulances is fixed, the nearest ambulances
are sent to the rescue. The nearest ambulance of all
takes the victim to the shelter.

3. Fire extinction: The Fire Station Agent decides
which fires to extinguish. At first it selects the 3 most
centered fires and uses an XCS to decide how many
fire brigades are going to be sent to each fire and sends
the nearest units (see section 3.2.2 for Fire Extinction
XCS details). We consider a fire as a group of burning
buildings relatively close to each other and build them
using clustering techniques. When an agent gets to
the fire, it chooses which building is going to put out
by itself. Each fire brigade decides on its own when to
refill its water tank.

4. Rubble cleaning: The Police Office prioritizes the
roads to be cleaned taking into account their location
and traffic.

Cleaning requests: If a platoon agent (other than
Police Forces) needs to go through a blocked area, it
sends a cleaning request to the Police Station, who
assigns a police force agent to clean it.

3.2 Description of Genetic Classifiers
As we mentioned in Section 2, we use XCS genetic classi-

fiers to support our decision making. In particular we decide
how many ambulances are required to rescue a victim and
how many Fire Brigades are going to extinguish a fire using
this kind of system. The center agents gather information
from the platoons and other center agents and decides what
platoons should do.

3.2.1 XCS Design for Victim Rescue
Our classifier system takes into account the following at-

tributes: health points, damage, buriedness and world time.
Each classifier contains 24 bits as shown in Table 1.

Bits 0 to 7 contain the ratio of the victim’s health points
to his damage, bits 7 to 14, his degree of buriedness, and the
other 6 bits from the input represent the simulation time in
order to inform the system about how much time can be
spent to rescue the victim. The conversion between inte-
ger and binary representation is accomplished by creating
predefined ranges.

Each classifier has 3 output bits that represent the number
of ambulances that will be sent to rescue the victim.

The reward assigned to each decision taken by the XCS
was positive if the victim was rescued and negative if the
victim died or wasn’t rescued by the end of the simulation.

3.2.2 XCS Design for Fire Extinction
The fire extinction XCS takes input from three different

fires at a time and make a decision on the number of Fire
Brigades necessary to extinguish each fire in a single query.
The pieces of information taken into consideration are: fire
areas, number of unburned buildings around the fire, dis-
tance from center of the map, and the cost of the best route
to the nearest refuge.

Table 1 shows how information for each fire is given to
the XCS, using a 20-bit string composed of 4 fields of 5
bits each. The output for each input fire is a 4-bit string
representing the number of ambulances that are going to be
sent to extinguish the fire.

Finally, each decision is rewarded positively if fire was ex-
tinguished and negatively if the fire could not be controlled
by the end of the simulation.

Table 1: Classifier Structures
Ambulance Center Classifier Structure
Input 21 bits
Victim’s hitpoints/damage 8 bits
Victim’s buriedness 7 bits
World time 6 bits

Output 3 bits
Fire Station Classifier Structure
Input 60 bits (20 per fire)
Fire area 5 bits
Unburned buildings 5 bits
Distance to center 5 bits
Cost to refuge 5 bits

Output 12 bits (4 per fire)

Table 2: XCS and Genetic Algorithm Parameters
XCS Parameter Value

Genetic algorithm probability 0.2
Reinforcement update rate (α) 0.1
Min error (ε0) 0.5
Error Penalty (n) 5

Covering Parameter Value
Don’t care bit probability 0.2
Initial prediction 0
Initial error 100
Initial fitness 0
Max population size (|[P]|) 100

GA Parameter Value
Replacement algorithm Elitist
Selection algorithm 8-tournament
Crossover algorithm One point
Mutation algorithm One point
Mutation probability 0.02

4. EXPERIMENTS AND RESULTS
We implemented our agents in Java over the standard

agent development kit for RoboCup Rescue Simulation Sys-
tem (RCRSS), YabAPI [5]. We also developed our own XCS
libraries, following Holland’s basic framework presented by
Wilson [10].

The XCS system was trained using the parameters shown
in Table 2. Two sets of rules were generated using the sys-
tem during its learning phase over two different instances
of the city of Foligno1. These sets correspond to the vic-
tim rescue and fire extinction systems and will be called
Foligno-Rules on further results. Another couple of sets,
called Kobe-Rules, were also derived from a similar proce-
dure, but using instances of the city of Kobe.

Each classifier set was initially empty. All new rules were
generated by covering or by the evolutive steps of the XCS.
After each simulation, rules were stored and used in the
next simulation. We analyzed all simulations in order to
obtain the percentage of alive agents and destroyed build-
ings. These data measured the performance of the rescue
and extinguish decision systems. We simulated over 900
disaster situations, alternating maps according to the rule
set. The analyzed data are shown in Fig. 1.

We selected the trained classifier set that showed the high-

1Foligno and Kobe are standard maps included on the
RCRSS.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900
Simulation

Alive Agents Percentage
Destroyed Buildings Percentage

Figure 1: Alive Agents and Destroyed Buildings
Evolution over Foligno-Rules Training

Table 3: Maps and Rule-Sets for experiments
Map Trained Rule-Set

FolignoEasy 2005 Foligno-Rules
Kobe (1/10) 2004 Kobe-Rules
RandomEasy 2005 Kobe-Rules

est percentage of alive agents at the end of the simulation.
The rules used around the 250th simulation for the Foligno-
Rules training were selected for our experiments.

When the training phase was over, we observed the perfor-
mance of the classifier systems on three different city maps.
The maps and rules selected for the experiments are shown
in Table 3.

We also compared our agents using the same decision sys-
tem with random classifiers. Each group of agents’ results
is a mean of 20 simulations, except for the results of ResQ
Freiburg [3], Damas Team [6] and 5rings [7], which were ex-
tracted from the 2004 competition logs. Fig. 2 shows the
results of the experiments on all maps.

In all test cases our agents show better results for rescue
operations when using the trained set of rules. These agents
achieve higher percentage of alive agents than the ones us-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

S
am

pl
e

A
ge

nt
s

K
ob

e

R
an

do
m

 R
ul

es
K

ob
e

Tr
ai

ne
d

R
ul

es
K

ob
e

R
es

Q
 F

re
ib

ur
g

20
04

 K
ob

e

D
am

as
 T

ea
m

20
04

 K
ob

e

5R
in

gs
20

04
 K

ob
e

S
am

pl
e

A
ge

nt
s

Fo
lig

no

R
an

do
m

 R
ul

es
Fo

lig
no

Tr
ai

ne
d

R
ul

es
Fo

lig
no

S
am

pl
e

A
ge

nt
s

R
an

do
m

 M
ap

R
an

do
m

 R
ul

es
R

an
do

m
 M

ap

Tr
ai

ne
d

R
ul

es
R

an
do

m
 M

ap
Alive Agents Percentage

Unburned Buildings Percentage

Figure 2: Teams result over Kobe, Foligno and Ran-
dom maps.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

C
la

ss
ifi

er
 S

et
 S

iz
e

Simulation

Total Size
Classifiers with Different Actions

Figure 3: Size of the classifier set of the fire extinc-
tion system over Foligno-Rules training

ing randomly generated rules. This demonstrates that the
evolutionary reinforcement learning system tends to refine
and keep better rules for the XCS.

Our trained agents also managed to rescue more agents
than Damas Team and outperformed the 5rings agents.
However, ResQ Freiburg agents can solve the victim rescue
problem with better results.

Fire extinction decisions were also notably better than
other agents except for the results on Foligno, where ran-
domly generated rules performed better than trained rules.
This result suggests that the learning in the training system
stalled.

After a detailed analysis of our XCS parameters we re-
alized that the Action Sets generated in each iteration in
most cases had only one element. This anomaly is present
because the classifier set is significantly smaller than the set
of possible actions and this originates a low repetition rate
of actions in the classifier set as shown in Fig. 3. These
singleton Action Sets suppress the execution of the genetic
algorithm of the XCS (since it is impossible to select two
classifiers for the GA) and therefore halts the evolution.

5. CONCLUDING REMARKS AND FU-
TURE WORK

This paper presents an approximation to the RCRSL
problem that uses an evolutionary reinforcement learning
technique, particularly XCS classifier systems. This tech-
nique is used to support the decision making of a center
agent that coordinates several platoon agents on two com-
plex tasks: civilian rescue and fire extinction.

The design proposed in this paper proved to be an effec-
tive solution to the problem and is competitive with other
agent teams. Reinforcement learning techniques proved to
be a feasible method of extracting general rules that can
support decision making in RCRSL. This study found that
a trained classifier system provides a good approximation.
We obtained sets of rules with a satisfactory degree of gen-
eralization: agents trained in one map perform successfully
in new environments. Therefore, evolutionary reinforcement
learning approaches are appropriate for the RoboCup Res-
cue domain.

The experiments of this study also pointed out a problem

in parameter selection of the XCS. A maximum population
size comparatively smaller than the number of all possible
actions, considerably crippled the evolution of the learning
system.

The design addressed in this paper showed satisfactory
results even considering that the current design of the XCS
classifier system for the rescue task is simple. The design
of the classifier system for fire extinction decisions must be
revised in order to assure that the learning process doesn’t
stop. An extension of the elements considered by the rules
could outperform the current system with a bigger training
procedure trade-off.

6. REFERENCES
[1] J. Holland. Adaptation in Natural and Artificial

Systems. Ann Arbor, MI, University of Michigan
Press, 1975.

[2] L. P. L. Kaebling and Moore. A. P. Reinforcement
learning: A survey. Journal of Artificial Intelligence
Research, 1998.

[3] A. Kleiner, M. Brenner, et al. ResQ Freiburg: Team
description paper and evaluation. RoboCupRescue
simulation league, 2004.

[4] D. Moriarty, A. Schultz, and J. Grefenstette.
Evolutionary algorithms for reinforcement learning.
Journal of Artificial Intelligence Research., 1999.

[5] T. Morimoto. YabAPI: API to develop a
RoboCupRescue Agent in Java.
http://ne.cs.uec.ac.jp/~morimoto/rescue/yabapi,
2004.

[6] S. Paquet, N. Bernier, and B. Chaib-draa.
Damas-Rescue description paper. RoboCupRescue
simulation league, 2004.

[7] P. T. Silva and H. Coelho. The 5Rings team report.
RoboCupRescue simulation league, 2004.

[8] S. Tadokoro, H. Kitano, T. Takahashi, et al. The
RoboCup-Rescue project: A robotic approach to the
disaster mitigation problem. In ICRA, page 4089,
2000.

[9] S. W. Wilson. Classifier fitness based on accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

[10] S. W. Wilson. Structure and function of the XCS
classifier system.
http://web.tiscali.it/LCS/Papers/TUT2.pdf.zip,
1997.

[11] S. W. Wilson. Generalization in the XCS classifier
system. Genetic Programming 1998: Proceedings of
the Third Annual Conference, 1998.

