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ABSTRACT
Temporal difference methods are theoretically grounded and
empirically effective methods for addressing reinforcement
learning problems. In most real-world reinforcement learn-
ing tasks, TD methods require a function approximator to
represent the value function. However, using function ap-
proximators requires manually making crucial representa-
tional decisions. This thesis investigates evolutionary func-

tion approximation, a novel approach to automatically se-
lecting function approximator representations that enable
efficient individual learning. This method evolves individ-
uals that are better able to learn. I present a fully imple-
mented instantiation of evolutionary function approxima-
tion which combines NEAT, a neuroevolutionary optimiza-
tion technique, with Q-learning, a popular TD method. The
resulting NEAT+Q algorithm automatically discovers effec-
tive representations for neural network function approxima-
tors. This thesis also presents on-line evolutionary compu-

tation, which improves the on-line performance of evolution-
ary computation by borrowing selection mechanisms used in
TD methods to choose individual actions and using them in
evolutionary computation to select policies for evaluation. I
evaluate these contributions with extended empirical stud-
ies in two domains: 1) the mountain car task, a standard
reinforcement learning benchmark on which neural network
function approximators have previously performed poorly
and 2) server job scheduling, a large probabilistic domain
drawn from the field of autonomic computing. The results
demonstrate that evolutionary function approximation can
significantly improve the performance of TD methods and
on-line evolutionary computation can significantly improve
evolutionary methods.
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1. INTRODUCTION
In many machine learning problems, an agent must learn

a policy for selecting actions based on its current state. Re-

inforcement learning problems are the subset of these tasks
in which the agent never sees examples of correct behav-
ior. Instead, it receives only positive and negative rewards
for the actions it tries. Since many practical, real world
problems (such as robot control, game playing, and system
optimization) fall in this category, developing effective rein-
forcement learning algorithms is critical to the progress of
artificial intelligence.

The most common approach to reinforcement learning re-
lies on the concept of value functions, which indicate, for
a particular policy, the long-term value of a given state or
state-action pair. Temporal difference methods (TD) [23],
which combine principles of dynamic programming with sta-
tistical sampling, use the immediate rewards received by the
agent to incrementally improve both the agent’s policy and
the estimated value function for that policy. Hence, TD
methods enable an agent to learn during its “lifetime” i.e.
from its individual experience interacting with the environ-
ment.

For small problems, the value function can be represented
as a table. However, the large, probabilistic domains which
arise in the real-world usually require coupling TD methods
with a function approximator, which represents the map-
ping from state-action pairs to values via a more concise,
parameterized function and uses supervised learning meth-
ods to set its parameters. Many different methods of func-
tion approximation have been used successfully, including
CMACs, radial basis functions, and neural networks [25].
However, using function approximators requires making cru-
cial representational decisions (e.g. the number of hidden
units and initial weights of a neural network). Poor de-
sign choices can result in estimates that diverge from the
optimal value function [2] and agents that perform poorly.
Even for reinforcement learning algorithms with guaranteed
convergence [3, 15], achieving high performance in prac-
tice requires finding an appropriate representation for the
function approximator. As Lagoudakis and Parr observe,
“The crucial factor for a successful approximate algorithm
is the choice of the parametric approximation architecture(s)
and the choice of the projection (parameter adjustment)
method.” [15, p. 1111] Nonetheless, representational choices
are typically made manually, based only on the designer’s
intuition.

My goal is to automate the search for effective represen-
tations by employing sophisticated optimization techniques.



In this thesis, I focus on using evolutionary methods [9]
because of their demonstrated ability to discover effective
representations [11, 21]. Synthesizing evolutionary and TD
methods results in a new approach called evolutionary func-

tion approximation, which automatically selects function ap-
proximator representations that enable efficient individual
learning. Thus, this method evolves individuals that are
better able to learn. This biologically intuitive combination
has been applied to computational systems in the past [1,
5, 8, 10, 12, 18] but never, to my knowledge, to aid the
discovery of good TD function approximators.

This thesis uses NeuroEvolution of Augmenting Topolo-
gies (NEAT) [21] to select neural network function approx-
imators for Q-learning [27], a popular TD method. The
resulting algorithm, called NEAT+Q, uses NEAT to evolve
topologies and initial weights of neural networks that are
better able to learn, via backpropagation, to represent the
value estimates provided by Q-learning.

Evolutionary computation is typically applied to off-line

scenarios, where the only goal is to discover a good policy
as quickly as possible. By contrast, TD methods are typi-
cally applied to on-line scenarios, in which the agent tries
to learn a good policy quickly and to maximize the reward
it obtains while doing so. Hence, for evolutionary function
approximation to achieve its full potential, the underlying
evolutionary method needs to work well on-line.

TD methods excel on-line because they are typically com-
bined with action selection mechanisms like ǫ-greedy selec-
tion [25]. These mechanisms improve on-line performance
by explicitly balancing two competing objectives: 1) search-
ing for better policies (exploration) and 2) gathering as much
reward as possible (exploitation). This thesis investigates a
novel approach called on-line evolutionary computation, in
which selection mechanisms commonly used by TD methods
to choose individual actions are used in evolutionary com-
putation to choose policies for evaluation. I present three
implementations, based on ǫ-greedy selection, softmax se-
lection, and interval estimation, that distribute evaluations
within a generation so as to favor more promising individu-
als.

I evaluate these contributions with extended empirical
studies in two domains: 1) mountain car and 2) server job
scheduling. Using these domains, my experiments test Q-
learning with a series of manually designed neural networks
and compare the results to NEAT+Q and regular NEAT
(which trains action selectors in lieu of value functions).
The results demonstrate that evolutionary function approx-
imation can significantly improve the performance of TD
methods. Furthermore, I test NEAT with and without ǫ-
greedy, softmax, and interval estimation versions of evolu-
tionary computation. These experiments confirm that these
techniques can significantly improve the on-line performance
of evolutionary computation.

2. BACKGROUND
I begin by reviewing Q-learning and NEAT, the algo-

rithms that form the building blocks of our implementation
of evolutionary function approximation.

2.1 Q-Learning
The experiments presented in this thesis use Q-learning

because it is a well-established, canonical TD method that
has also enjoyed empirical success [27, 6]. Like many other

TD methods, Q-learning attempts to learn a value function
Q(s, a) that maps state-action pairs to values. In the tabular
case, the algorithm uses the following update rule, applied
each time the agent transitions from state s to state s′:

Q(s, a)← (1− α)Q(s, a) + α(r + γmaxa′Q(s′, a′))

where α ∈ [0, 1] is a learning rate parameter, γ ∈ [0, 1] is
a discount factor, and r is the immediate reward the agent
receives upon taking action a. Q-learning is an off-policy

learning method, i.e. it can learn the optimal value function
regardless of what policy the agent is following, so long as
there is sufficient exploration.

In domains with large or continuous state spaces, the
value function cannot be represented in a table. Instead,
Q-learning is coupled with a function approximator that
maps state-action pairs to values via a concise, parame-
terized function. Many different methods of function ap-
proximation have been used successfully, including CMACs,
radial basis functions, and neural networks [25]. In this the-
sis, I use neural network function approximators because
they have proven successful on difficult reinforcement learn-
ing tasks [6, 26]. The inputs to the network describe the
agent’s current state; the outputs, one for each action, rep-
resent the agent’s current estimate of the value of the asso-
ciated state-action pairs. The initial weights of the network
are drawn from a Gaussian distribution with mean 0.0 and
standard deviation σ. After each action, the weights of the
neural network are adjusted using backpropagation [19] such
that its output better matches the current value estimate for
the state-action pair: r + γmaxa′Q(s′, a′).

2.2 NEAT
The implementation of evolutionary function approxima-

tion presented in this thesis relies on NeuroEvolution of Aug-
menting Topologies (NEAT) to automate the search for ap-
propriate topologies and initial weights of neural network
function approximators. NEAT is an appropriate choice be-
cause of its empirical successes on difficult reinforcement
learning tasks like pole balancing [21] and robot control [22].
In addition, NEAT is appealing because, unlike many other
optimization techniques, it automatically learns an appro-
priate representation for the solution.

In a typical neuroevolutionary system [28], the weights of
a neural network are strung together to form an individual
genome. A population of such genomes is then evolved by
evaluating each one and selectively reproducing the fittest
individuals through crossover and mutation. Most neuroevo-
lutionary systems require the designer to manually deter-
mine the network’s topology (i.e. how many hidden nodes
there are and how they are connected). By contrast, NEAT
automatically evolves the topology to fit the complexity
of the problem. It combines the usual search for network
weights with evolution of the network structure.

Unlike other systems that evolve network topologies and
weights, NEAT begins with a uniform population of sim-
ple networks with no hidden nodes and inputs connected di-
rectly to outputs. Two special mutation operators introduce
new structure incrementally. Figure 1 depicts these opera-
tors, which add hidden nodes and links to the network. Only
those structural mutations that improve performance tend
to survive; in this way, NEAT searches through a minimal
number of weight dimensions and finds the appropriate level
of complexity for the problem.
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Figure 1: Examples of NEAT’s structural mutation oper-

ators. At top, a new hidden node, shown on the right, is

added to the network by splitting an existing link in two. At

bottom, a new link, shown with a thicker black line, is added

to connect two existing nodes.

These structural mutations result in populations of net-
works with varying size and shape. Mating these heteroge-
neous topologies requires a mechanism for deciding which
genes correspond to each other. To this end, NEAT uses
innovation numbers to track the historical origin of each
structural mutation. When new genomes are created, the
genes in both parents with the same innovation number are
lined up; genes that do not match are inherited from the
fitter parent.

Since NEAT is a general purpose optimization technique,
it can be applied to a wide variety of problems. When ap-
plied to reinforcement learning problems, NEAT typically
evolves action selectors, which directly map states to the
action the agent should take in that state. Since it does not
estimate value functions, it is an example of policy search

reinforcement learning. Like other policy search methods,
e.g. [14, 24], it uses global optimization techniques to di-
rectly search the space of potential policies. In the follow-
ing section I describe how NEAT can be used to evolve Q-
learning function approximators instead of action selectors.

3. EVOLUTIONARY FUNCTION
APPROXIMATION

As described above, when evolutionary methods are ap-
plied to reinforcement learning problems, they typically evolve
a population of action selectors, each of which remains fixed
during its fitness evaluation. The central insight behind evo-
lutionary function approximation is that, if evolution is di-
rected to evolve value functions instead, then those value
functions can be updated, using TD methods, during each
fitness evaluation. In this way, the system can evolve func-
tion approximators that are better able to learn via TD. In
addition to automating the search for effective representa-
tions, evolutionary function approximation can enable syn-
ergistic effects between evolution and learning via a biolog-
ical phenomenon called the Baldwin Effect [4], which can
speed up evolutionary computation [1, 12]. When each in-
dividual can learn during its lifetime, it need not be perfect
at birth. Hence, the Baldwin Effect predicts that evolution
will find good solutions more easily. In the remainder of this
section, I describe NEAT+Q, a particular implementation of
evolutionary function approximation.

3.1 NEAT+Q
All that is required to make NEAT optimize value func-

tions instead of action selectors is a reinterpretation of its
output values. The structure of neural network action selec-
tors (one input for each state feature and one output for each
action) is already identical to that of Q-learning function
approximators. Therefore, if the weights of the networks
NEAT evolves are updated during their fitness evaluations
using Q-learning and backpropagation, they will effectively
evolve value functions instead of action selectors. Hence, the
outputs are no longer arbitrary values; they represent the
long-term discounted values of the associated state-action
pairs and are used, not just to select the most desirable ac-
tion, but to update the estimates of other state-action pairs.

Algorithm 1 neat+q(S, A, p, mn, ml, g, e, α, γ, λ, ǫ)

1: // S: set of all states, A: set of all actions, p: population size
2: // mn: node mutation rate, ml: link mutation rate, g: number

of generations
3: // e: number of episodes per generation, α: learning rate, γ:

discount factor
4: // λ: eligibility decay rate, ǫ: exploration rate
5:
6: P []← init-population(S, A, p)
7: for i← 1 to g do

8: for j ← 1 to e do

9: N, s, s′ ← P [j % p], null, init-state(S)
10: repeat

11: Q[] ← eval-net(N, s′)
12: with-prob(ǫ) a′ ← random(A)
13: else a′ ← argmaxkQ[k]
14: if s 6= null then

15: backprop(N, s, a, r + γmaxkQ[k], α, γ, λ)
16: s, a← s′, a′

17: r, s′ ← take-action(a′)
18: N.fitness← N.fitness + r
19: until terminal-state?(s)
20: N.episodes← N.episodes + 1
21: P ′[]← new array of size p
22: for j ←1 to p do

23: P ′[j]← breed-net(P [])
24: with-prob mn: add-node-mutation(P ′[j])
25: with-prob ml: add-link-mutation(P ′[j])
26: P []← P ′[]

Algorithm 1 summarizes the resulting NEAT+Q method.
Each time the agent takes an action, the network being eval-
uated is backpropagated once towards Q-learning targets
(line 15) and the agent uses ǫ-greedy selection [25] to ensure
it occasionally tests alternatives to its current policy (lines
12–13). If α and ǫ are set to zero, this method degenerates to
regular NEAT. NEAT+Q maintains a running total of the
reward accrued by the network during its evaluation (line
18). Each generation ends after e episodes, at which point
each network’s average fitness is N.fitness/N.episodes. NEAT
creates a new population by repeatedly calling the breed-

net function (line 23), which performs crossover on two
highly fit parents. The new resulting network can then un-
dergo mutations that add nodes or links to its structure
(lines 24–25).

NEAT+Q combines the power of TD methods with the
ability of NEAT to learn effective representations. Tradi-
tional neural network function approximators put all their
eggs in one basket by relying on a single manually designed
network to represent the value function. NEAT+Q, by con-
trast, explores the space of such networks to increase the
chance of finding a representation that will perform well.



3.2 Results
As an initial baseline, I conducted 25 runs in each do-

main in which NEAT attempts to discover good action se-
lectors. Next, I performed 25 runs in each domain using
NEAT+Q. To test Q-learning without NEAT, I tried 24 dif-
ferent configurations in each domain. For simplicity, the
graphs that follow show results from only the highest per-
forming Q-learning configuration.

Figure 2 shows the results of these experiments. For
each method, the corresponding line in the graph repre-
sents a uniform moving average over the aggregate utility
received in the past 1,000 episodes, averaged over all 25 runs.
Even though NEAT and NEAT+Q have populations instead
of single networks, they used exactly the same number of
episodes in training as Q-learning and hence the compari-
son is fair. These graphs show the average reward received
during those episodes and therefore reflect performance of
the entire population, not just the generation champions.
Error bars indicate 95% confidence intervals. In addition,
Student’s t-tests confirmed, with 95% confidence, the sta-
tistical significance of the performance difference between
each pair of methods.

Note that the progress of NEAT+Q consists of a series of
10,000-episode intervals. Each of these intervals corresponds
to one generation and the changes within them are due to
learning via Q-learning and backpropagation. Though each
individual learns for 100 episodes, those episodes do not oc-
cur consecutively but are spread across the entire generation.
Hence, each individual changes gradually during the gener-
ation as it is repeatedly evaluated. The result is a series of
intra-generational learning curves within the larger learning
curve.

For the particular problems tested and network config-
urations tried, evolutionary function approximation signif-
icantly improves performance over manually designed net-
works. Nonetheless, additional engineering of the network
structure and initial weights could in principle significantly
improve Q-learning’s performance. I verified this fact by
starting Q-learning with the best networks discovered by
NEAT+Q and annealing the learning rate aggressively. In
this scenario, Q-learning matched NEAT+Q’s performance
without directly using evolutionary computation. However,
it is unlikely in practice that a manual search, no matter how
extensive, would discover these successful topologies, which
contain irregular and partially connected hidden layers.

NEAT+Q also significantly outperforms regular NEAT
in both domains. In the mountain car domain, NEAT+Q
learns faster, achieving better performance in earlier gen-
erations, though they plateau at nearly the same level. In
the server job scheduling domain, NEAT+Q learns more
rapidly and also converges to substantially higher perfor-
mance. This result highlights the value of TD methods on
challenging reinforcement learning problems. Even when
NEAT is employed to find effective representations, the best
performance is achieved only when TD methods are used to
estimate a value function. Hence, the relatively poor per-
formance of Q-learning is not due to some weakness in the
TD methodology but merely to the failure to find a good
representation.

Furthermore, in the scheduling domain, the advantage of
NEAT+Q over NEAT is not directly explained just by the
learning that occurs via backpropagation within each gen-
eration. After 300,000 episodes, NEAT+Q clearly performs

better even at the beginning of each generation, before such
learning has occurred. Just as predicted by the Baldwin Ef-
fect, evolution proceeds more quickly in NEAT+Q because
the weight changes made by backpropagation, in addition
to improving that individual’s performance, alter selective
pressures and more rapidly guide evolution to useful regions
of the search space.

4. ON-LINE EVOLUTIONARY
COMPUTATION

If e is the total number of episodes conducted in each
generation and |P | is the size of the population, evolution-
ary methods typically evaluate each member of the popula-
tion for e/|P | episodes. In on-line scenarios, this strategy is
grossly suboptimal because it makes no attempt to properly
balance exploration and exploitation within a generation. In
fact, this strategy is purely exploratory, as every individual
is evaluated for exactly the same number of episodes.

In this section, I present three methods that attempt to
boost evolution’s on-line performance by balancing explo-
ration with exploitation. Instead of giving each individual
the same number of episodes, these methods exploit the
information gained from early episodes to favor the most
promising candidate policies and thereby boost the reward
accrued during learning. All three methods work by borrow-
ing action selection mechanisms traditionally used in TD
methods and applying them in evolutionary computation.
In TD methods, these mechanisms directly balance explo-
ration and exploitation by determining how often the agent
behaves greedily with respect to current value estimates and
how often it tries alternative actions.

In a sense, the problem faced by evolutionary methods
is the opposite of that faced by TD methods. Within each
generation, evolutionary methods naturally explore, by eval-
uating each member of the population equally, and so need
a way to force more exploitation. By contrast, TD meth-
ods naturally exploit, by following the greedy policy, and
so need a way to force more exploration. Nonetheless, the
ultimate goal is the same: a proper balance between the two
extremes.

To apply TD selection mechanisms in evolutionary com-
putation, we must modify the level at which selection is per-
formed. Evolutionary algorithms cannot perform selection
at the level of individual actions because, lacking value func-
tions, they have no notion of the value of individual actions.
However, they can perform selection at the level of episodes,
in which entire policies are assessed holistically. The same
selection mechanisms used to choose individual actions in
TD methods can be used to select policies for evaluation, al-
lowing evolutionary algorithms to excel on-line by balancing
exploration and exploitation within and across generations.
The rest of this section details three ways to perform on-line
evolution.

4.1 ǫ-Greedy Evolution
When ǫ-greedy selection is used in TD methods, a single

parameter ǫ controls what fraction of the time the agent
deviates from greedy behavior. Each time the agent selects
an action, it chooses probabilistically between exploration
and exploitation. With probability ǫ, it explores by selecting
randomly from the available actions. With probability 1−ǫ,
it exploits by selecting the greedy action.
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Figure 2: A comparison of the performance of manual and evolutionary function approximators in the mountain car

and server job scheduling domains.

In evolutionary computation, this same mechanism can
be used at the beginning of each episode to select a policy
for evaluation. With probability ǫ, the algorithm selects a
policy randomly. With probability 1 − ǫ, the algorithm ex-
ploits by selecting the best policy discovered so far in the
current generation. The score of each policy is just the av-
erage reward per episode it has received so far. Each time a
policy is selected for evaluation, the total reward it receives
is incorporated into that average, which can cause it to gain
or lose the rank of best policy.

To apply ǫ-greedy selection to NEAT, we need only alter
the way networks are selected for evaluation. Instead of
iterating through the population repeatedly until e episodes
are complete, NEAT selects for evaluation, at the beginning
of each episode, the policy returned by the ǫ-greedy selection
function described in Algorithm 2. This function returns a
policy p which is either selected randomly or which so far
has the highest average fitness, f(p).

Algorithm 2 ǫ-greedy selection(P, ǫ)

1: // P : population
2: // ǫ: NEAT’s exploration rate
3:
4: with-prob(ǫ) return random(P )
5: else return argmaxp∈P f(p)

Using ǫ-greedy selection in evolutionary computation al-
lows it to thrive in on-line scenarios by balancing explo-
ration and exploitation. For the most part, this method
does not alter evolution’s search but simply interleaves it
with exploitative episodes that increase average reward dur-
ing learning. The next section describes how softmax selec-
tion can be applied to evolution to create a more nuanced
balance between exploration and exploitation.

4.2 Softmax Evolution
When softmax selection is used in TD methods, an ac-

tion’s probability of selection is a function of its estimated
value. In addition to ensuring that the greedy action is cho-
sen most often, this technique focuses exploration on the
most promising alternatives. There are many ways to im-
plement softmax selection but one popular method relies on
a Boltzmann distribution [25], in which case an agent in

state s chooses an action a with probability

eQ(s,a)/τ

P

a′∈A eQ(s,a′)/τ
(1)

where A is the set of available actions, Q(s, a) is the agent’s
value estimate for the given state-action pair and τ is a
positive parameter controlling the degree to which actions
with higher values are favored in selection. The higher the
value of τ , the more equiprobable the actions are.

As with ǫ-greedy selection, we use softmax selection in
evolution to select policies for evaluation. At the begin-
ning of each generation, each individual is evaluated for one
episode, to initialize its fitness. Then, the remaining e− |P |
episodes are allocated according to a Boltzmann distribu-
tion. Before each episode, a policy p in a population P is
selected with probability

ef(p)/τ

P

p′∈P ef(p′)/τ
(2)

where f(p) is the fitness of policy p, averaged over all the
episodes for which it has been previously evaluated. In
NEAT, softmax selection is applied in the same way as ǫ-
greedy selection, except that the policy selected for eval-
uation is that returned by the softmax selection function
described in Algorithm 3, where e(p) is the total number of
episodes for which a policy p has been evaluated so far.

Algorithm 3 softmax selection(P, τ)

1: // P : population
2: // τ : softmax temperature
3:
4: if ∃ p ∈ P | e(p) = 0 then

5: return p
6: else

7: total←
P

p∈P ef(p)/τ

8: for all p ∈ P do

9: with-prob( ef(p)/τ

total ) return p

10: else total← total− ef(p)/τ

Softmax selection provides a more nuanced balance be-
tween exploration and exploitation than ǫ-greedy because
it focuses its exploration on the most promising alternative
to the current best policy. Softmax selection can quickly



abandon poorly performing policies and prevent them from
reducing the reward accrued during learning.

4.3 Interval Estimation Evolution
An important disadvantage of both ǫ-greedy and softmax

selection is that they do not consider the uncertainty of the
estimates on which they base their selections. One approach
that addresses this shortcoming is interval estimation [13].
When used in TD methods, interval estimation computes a
(100−α)% confidence interval for the value of each available
action. The agent always takes the action with the highest
upper bound on this interval. Hence, this strategy favors
actions with high estimated value and also focuses explo-
ration on the most promising but uncertain actions. The
α parameter controls the balance between exploration and
exploitation, with smaller values generating greater explo-
ration.

The same strategy can be employed within evolution to
select policies for evaluation. At the beginning of each gen-
eration, each individual is evaluated for one episode, to ini-
tialize its fitness. Then, the remaining e − |P | episodes are
allocated to the policy that currently has the highest up-
per bound on its confidence interval. In NEAT, interval
estimation is applied just as in ǫ-greedy and softmax selec-
tion, except that the policy selected for evaluation is that
returned by the interval estimation function described in Al-
gorithm 4, where [0, z(x)] is an interval within which the area
under the standard normal curve is x. f(p), σ(p) and e(p)
are the fitness, standard deviation, and number of episodes,
respectively, for policy p.

Algorithm 4 interval estimation(P, α)

1: // P : population, α: uncertainty in confidence interval
2:
3: if ∃ p ∈ P | e(p) = 0 then
4: return p
5: else
6: return argmaxp∈P [f(p) + z( 100−α

200
)

σ(p)√
e(p)

]

4.4 Results
As a baseline of comparison, I applied the original, off-line

version of NEAT to both the mountain car and server job
scheduling domains and averaged its performance over 25
runs. Next, I applied the ǫ-greedy, softmax, and interval es-
timation versions of NEAT to both domains using the same
parameter settings.

Figure 3 summarizes the results of these experiments by
plotting a uniform moving average over the last 1,000 episodes
of the total reward accrued per episode for each method.
I plot average reward because it is an on-line metric: it
measures the amount of reward the agent accrues while
it is learning. The best policies discovered by evolution,
i.e. the generation champions, perform substantially higher
than this average. However, using their performance as an
evaluation metric would ignore the on-line cost that was in-
curred by evaluating the rest of population and receiving
less reward per episode. Error bars on the graph indicate
95% confidence intervals. In addition, Student’s t-tests con-
firm, with 95% confidence, the statistical significance of the
performance difference between each pair of methods except
softmax and interval estimation.

The results clearly demonstrate that selection mechanisms
borrowed from TD methods can dramatically improve the

on-line performance of evolutionary computation. All three
on-line methods substantially outperform the off-line version
of NEAT. In addition, the more nuanced strategies of soft-
max and interval estimation fare better than ǫ-greedy. This
result is not surprising since the ǫ-greedy approach simply
interleaves the search for better policies with exploitative
episodes that employ the best known policy. Softmax se-
lection and interval estimation, by contrast, concentrate ex-
ploration on the most promising alternatives. Hence, they
spend fewer episodes on the weakest individuals and achieve
better performance as a result.

The on-line methods, especially interval estimation, show
a series of 10,000-episode intervals. Each of these inter-
vals corresponds to one generation. The performance im-
provements within each generation reflect the on-line meth-
ods’ ability to exploit the information gleaned from earlier
episodes. As the generation progresses, these methods be-
come better informed about which individuals to favor when
exploiting and average reward increases as a result.

While these intervals reveal an important feature of the
on-line methods’ behavior, they can make it difficult to com-
pare performance. For example, in the mountain car do-
main, interval estimation begins each generation with a lot
of exploration and, consequently, relatively poor performance.
However, that exploration quickly pays off and its average
performance rises slightly above that of softmax. Which of
these two methods is receiving more reward overall? It is
difficult to tell from plots of average reward. Hence, Figure 4
plots, for the same experiments, the total cumulative reward
accrued by each method over the entire run. As with the
previous graph, error bars indicate 95% confidence intervals
and Student’s t-tests confirmed, with 95% confidence, the
statistical significance of the performance difference between
each pair of methods except softmax and interval estimation.
Not surprisingly, the off-line version of NEAT accumulates
much less reward than the on-line methods and ǫ-greedy
accumulates less reward than the other on-line approaches.
These graphs also show that, in mountain car, interval esti-
mation’s exploration early in each generation pays off, as it
earns at least as much reward overall as softmax.

Overall, these results verify the efficacy of these methods
of on-line evolution. It is less clear, however, which strategy
is most useful. Softmax clearly outperforms ǫ-greedy but
may be more difficult to use in practice because the τ pa-
rameter is harder to tune, as evidenced by the need to assign
it different values in the two domains. As Sutton and Barto
write, “Most people find it easier to set the ǫ parameter
with confidence; setting τ requires knowledge of the likely
action values and of powers of e.” [25, pages 27-30]. In this
light, interval estimation may be the best choice. Our exper-
iments show that it performs as well or better than softmax
and anecdotal evidence suggests that the α parameter is not
overly troublesome to tune.

5. FUTURE WORK
There are many ways that the work presented in this the-

sis could be extended, refined, or further evaluated. This
section enumerates a few of the possibilities.

5.1 Using Different Policy Search Methods
This thesis focuses on using evolutionary methods to au-

tomate the search for good function approximator represen-
tations. However, many other forms of policy search such as
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Figure 3: The uniform moving average reward accrued by off-line NEAT, compared to three versions of on-line NEAT

in the mountain car and server job scheduling domains. In both domains, all rewards are negative so the agents strive

to get average reward as close to zero as possible.

PEGASUS [17] and policy gradient methods [24, 14] have
also succeeded on difficult reinforcement learning tasks. TD
methods could be combined with these methods in the same
way they are combined with evolutionary computation in
this thesis. In the future, I plan to test some of these alter-
native combinations.

5.2 Reducing Sample Complexity
One disadvantage of evolutionary function approximation

is its high sample complexity, since each fitness evaluation
lasts for many episodes. However, in domains where the fit-
ness function is not too noisy, each fitness evaluation could
be conducted in a single episode if the candidate function ap-
proximator was pre-trained using methods based on experi-
ence replay [16]. By saving sample transitions from the pre-
vious generation, each new generation could be be trained
off-line. This method would use much more computation
time but many fewer sample episodes. Since sample experi-
ence is typically a much scarcer resource than computation
time, this enhancement could greatly improve the practical
applicability of evolutionary function approximation.

5.3 Addressing Non-Stationarity
In non-stationary domains, the environment can change

in ways that alter the optimal policy. Since this phenomenon
occurs in many real-world scenarios, it is important to de-
velop methods that can handle it robustly. Evolutionary and
TD methods are both well suited to non-stationary tasks
and I expect them to retain that capability when combined.
In fact, I hypothesize that evolutionary function approxima-
tion will adapt to non-stationary environments better than
manual alternatives. If the environment changes in ways
that alter the optimal representation, evolutionary function
approximation can adapt, since it is continually testing dif-
ferent representations and retaining the best ones. By con-
trast, even if they are effective at the original task, manually
designed representations cannot adapt in the face of chang-
ing environments.

On-line evolutionary computation should also excel in non-
stationary environments, though some refinement will be

necessary. The methods presented in this thesis implicitly
assume a stationary environment because they compute the
fitness of each individual by averaging over all episodes of
evaluation. In non-stationary environments, older evalua-
tions can become stale and misleading. Hence, fitness es-
timates should place less trust in older evaluations. This
effect could easily be achieved using recency-weighting up-
date rules like those employed by table-based TD methods.

5.4 Using Steady-State Evolutionary
Computation

The NEAT algorithm used in this thesis is an example of
generational evolutionary computation, in which an entire
population is is evaluated before any new individuals are
bred. Evolutionary function approximation might be im-
proved by using a steady-state implementation instead [7].
Steady-state systems never replace an entire population at
once. Instead, the population changes incrementally after
each fitness evaluation, when one of the worst individuals is
removed and replaced by a new offspring whose parents are
among the best. Hence, an individual that receives a high
score can more rapidly effect the search, since it immedi-
ately becomes a potential parent. In a generational system,
that individual cannot breed until the beginning of the fol-
lowing generation, which might be thousands of episodes
later. Hence, steady-state systems could help evolutionary
function approximation perform better in on-line and non-
stationary environments by speeding the adoption of new
improvements. Fortunately, a steady-state version of NEAT
already exists [20] so this extension is quite feasible.
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