
Altering Genetic Algorithm Parameters for the Traveling
Salesman Problem: An Empirical Study

Travis Zimmerman
Department of Computer Science

University of West Florida
Pensacola, FL
(850) 225-0143

tez1@students.uwf.edu

John W. Coffey
Department of Computer Science

University of West Florida
Pensacola, FL
(850) 471-3183

jcoffey@uwf.edu

ABSTRACT
Optimization problems are an important area of research in
computer science, and genetic algorithms are becoming popular
methods for solving these problems. This paper offers a brief
introduction to optimization problems as well as genetic
algorithms. An empirical study of genetic algorithms for the
traveling salesman problem is presented, showing that genetic
algorithms are effective at solving optimization problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – Graph and tree search strategies

General Terms
Algorithms, Performance, Experimentation

Keywords
Genetic algorithms, Evolutionary algorithms, Evolutionary
computing, Traveling Salesman Problem

1. INTRODUCTION
The concept of natural selection has inspired computer scientists
to adapt mechanisms from biology to solve complex problems. A
genetic algorithm (GA) begins with a random population of
possible solutions to a problem. The algorithm then produces
successive generations of solutions, evolving toward a final
solution. As in natural selection, the fittest solutions in any given
generation are more likely to mate and pass on their genetic
material. A GA can evolve a nearly optimal solution in a
reasonable amount of time.

After describing optimization problems and GAs, a case study in
the use of a GA to solve an intractable problem will be presented.
The study compares run times involved in brute-force solutions
with those achieved by the GA. Additionally, the quality of the
solutions that the GA produces as several parameters are
manipulated will be discussed.

2. OPTIMIZATION & GENETIC
ALGORITHMS
Many problems that have multiple solutions are too
computationally complex to find the best solution in a reasonable
amount of time. It is often more practical to use a heuristic
approach to find a solution that might not be the best, but is good
enough. This is the problem of optimization. Optimization is the
process of adjusting inputs to a device, experiment, or process to
find the minimum or maximum output [1]. Because finding the
optimal solution involves minimizing or maximizing a quantity,
optimization problems are often treated as minimization
problems. If the objective is to maximize a quantity, it is easy
enough to negate the process of finding a minimum.

In mathematical terms, a certain function, commonly called the
cost function, must be minimized across an interval. This interval
is known as the search space. Searching the search space for the
lowest output of the cost function will yield the minimum
quantity. However, it is not possible to conduct an exhaustive
search for problems with search spaces that grow exponentially or
worse, hence the need for creative algorithms. There are several
current methods for solving optimization problems, such as hill-
climbing [2], simulated annealing [2], beam searches [2], and
GAs [1].

GAs are based on the principles of natural selection. A GA
begins with a random set of possible solutions to the problem (an
optimization problem has many solutions; some are better than
others). The set of solutions is called the population. Each
solution is evaluated by a fitness function, and the best solutions
have a higher chance of mating to produce the next population.
The GA repeats the process of mating to form new populations
until an acceptable solution is found, predetermined criteria are
met, or all the solutions become the same and further execution
will not yield new solutions (convergence).

Random mutations can also introduce diversity (new solutions)
into each population. GAs can be highly customized depending
on the problem. GAs can use strings of bits for basic satisfiability
problems or permutations of digits or letters for permutation
problems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, WA, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

3. TRAVELING SALESMAN PROBLEM
The traveling salesman problem (TSP) is a well-known problem
in computer science. A salesman must visit several different
cities in any order and return to the starting point. The cities
should be visited in the order that minimizes the total distance
traveled to minimize the time and cost of the journey.

The simplest way to find the optimal solution is to use a brute
force algorithm, which computes the cost of every possible
journey (tour) through all the cities, and reports the minimum.
The brute force method is a guaranteed way to find the optimal
tour, however it is unreasonable to use in practice because of the
TSP’s computational complexity. If the n cities are represented as
a list of n different digits, then the order the salesman visits the
cities would be the order of the digits. The brute force algorithm
would thus have to attempt every possible permutation (ordering)
of these digits. If there are n digits, there are n-factorial (n!) ways
to permute the list of digits. Factorially growing search spaces
require an unreasonably long amount of time for a computer to
find an optimal solution. If there are only twenty cities, the
number of possible tours to evaluate is
2,432,902,008,176,640,000. Assuming a computer can evaluate
one possible tour every second (which is not unreasonable), it
would still take over 77 billion years to find the optimal solution –
for only twenty cities!

Obviously the brute force method is not acceptable for the TSP.
A GA, however, can deliver a solution in a reasonable amount of
time. The solution is not guaranteed to be optimal, but generally
it is close enough.

The TSP is a permutation problem – the optimal solution is the
optimal ordering of the cities involved. A few precautions are
required to ensure the crossover and mutation operators generate
valid tours. The crossover operator cannot exchange cities in a
haphazard way because some cities would be deleted and others
would be repeated. Similarly, the mutation operator cannot
simply change a random city, because this could result in deletion
or repetition of a city. Both operators must be carefully designed
so that they do not invalidate any tours.

The TSP is a popular and useful way to examine the possibilities
and effectiveness of GAs. The TSP is used in the empirical study
described in the next section.

4. TSP EMPIRICAL STUDY
A brute force and a genetic algorithm were both programmed to
conduct an analysis of GAs for the TSP. The brute force program
was used to find the minimum tour lengths for small numbers of
cities, which were then compared against the results of the GA.

The GA used the crossover operator proposed by [3], the
partially-mapped crossover (PMX) operator. First, PMX chooses
two positions at random, which identifies the substrings that will
be swapped. The substring from the first tour is mapped to the
second by a series of swaps, and the same process maps the
substring from the second tour to the first. For example, consider
these two tours: a-b-c-d-e-f, and f-d-b-a-c-e. The PMX operator
might choose at random the positions three and five, which would
select the substring c-d-e from the first tour and b-a-c from the
second tour. In the second tour, c is swapped with b (resulting in
f-d-c-a-b-e), then d is swapped with a (resulting in f-a-c-d-b-e),
and then e is swapped with b (resulting in f-a-c-d-e-b). The
appropriate cities are also swapped in the first tour and the
resulting tours are d-e-b-a-c-f and f-a-c-d-e-b. Notice that the
substring c-d-e from the first tour has been imposed upon the
second tour, regardless of how it affected the rest of the second
tour. The same has happened to the first tour. Thus, by simply

rearranging cities, both tours receive genetic information from the
other. Refer to [3] for more details.

The mutation operator chose two random positions of the string
and inverted all cities including and between those positions.
This mutation operator is somewhat traumatic, especially if the
graph of cities is asymmetrical, in which case the cost of going
from city A to city B is different than the cost of going from B to
A. In the current study the graph is symmetrical, so the cost
between cities is independent of the order.

Elitism was also used in the GA. In every population, the GA
discarded the worst performing individuals and copied the top
performers into their place. Those top individuals are guaranteed
to carry over unchanged to the next population, where they will
either maintain their status as elites or be replaced by new ones.

Several experiments were performed on four different numbers of
cities: ten, thirteen, thirty, and one hundred. Each experiment
varied one of four different parameters of the GA, including the
mutation rate, population size, maximum number of generations,
and number of elites. The first experiment used default
parameters that were chosen arbitrarily. Next, a pair of
experiments was performed for each parameter, resulting in eight
more experiments. The first of each pair increased the parameter
slightly and the second increased the parameter by a large
amount, all while keeping the other parameters constant. The GA
ran fifty trials for each experiment and the best and average
minimum tour lengths were used to compute accuracy. All nine
of these experiments were performed for the 10-, 13-, 30-, and
100-city TSP. The city coordinates for the 10- and 13-city
problems were generated randomly and the brute force algorithm
was used to find their shortest tours. The city coordinates and
shortest length for the 30-city problem came from [4]. The 100-
city problem’s coordinates and shortest length were obtained from
[5]. All programs were implemented in Java and all tests were
performed on an 800 MHz computer running Fedora Core 4 ®.
The specific GA parameters used are shown in Table 1, in which
the altered parameter is shown in italics. The average results of
the experiments are shown in Table 2 and the best results are
shown in Table 3. The tour lengths found are presented as a
percentage of the optimal tour length, which is 100%. If a tour
length is reported as 200% of optimal, it is twice as long as the
optimal tour.

Table 1. Specific GA Parameters Used for each Experiment

Exp. # Mutation
Rate Pop Size Maximum

generations
Number
of elites

1 1% 50 100 2

2 25% 50 100 2

3 75% 50 100 2

4 1% 100 100 2

5 1% 500 100 2

6 1% 50 200 2

7 1% 50 500 2

8 1% 50 100 4

9 1% 50 100 20

Table 2. Average Percentage of Optimal for each Experiment

Exp # 10 cities 13 cities 30 cities 100 cities

1 105.27% 108.59% 169.23% 477.57%

2 100.00% 100.30% 136.06% 451.58%

3 100.08% 101.63% 162.17% 504.45%

4 100.84% 102.52% 147.29% 426.89%

5 100.00% 100.11% 143.75% 501.37%

6 106.28% 106.44% 169.47% 468.79%

7 105.93% 106.67% 169.37% 475.94%

8 106.85% 108.46% 174.13% 498.51%

9 108.69% 109.57% 184.02% 524.69%

Table 3. Best Percentage of Optimal for each Experiment

Exp # 10 cities 13 cities 30 cities 100 cities

1 100.00% 101.12% 143.38% 416.46%

2 100.00% 100.00% 120.10% 389.50%

3 100.00% 100.00% 141.44% 449.52%

4 100.00% 100.00% 124.02% 381.42%

5 100.00% 100.00% 111.63% 420.78%

6 100.00% 100.00% 138.70% 388.53%

7 100.00% 100.00% 137.51% 367.77%

8 100.00% 100.00% 139.76% 426.57%

9 100.00% 100.73% 149.59% 450.77%

Table 4 presents the time it took each algorithm to find its answer.
In Table 4, the brute force times for the 30- and 100-city problems
are estimated from the time it took the brute force algorithm to
solve the 13-city problem.

Table 4. Time Comparison of Brute Force and GA

Number of cities Brute force time Average GA time

10 87.02 seconds 5.93 seconds

13 2.13 days 5.64 seconds

30 2.49*1017 years 10.11 seconds

100 8.75*10145 years 69.29 seconds

The average percentages of optimal were used in the following
analysis. While the best percentages are not analyzed in detail,
similar conclusions would be drawn in a best-case analysis. As
Table 2 shows, the GA performed well on both the 10- and 13-
city TSP. The solutions were produced in a fraction of the time,
as Table 4 shows. The GA did not perform as well on the 30- and
100-city problems. The decrease in accuracy was probably

caused by the parameters of the GA. For the 30- and 100-city
problems, the GA’s accuracy improved over the default when the
population size increased and in some cases when the maximum
number of generations increased. These results suggest that
greatly increasing the population size and allowing the GA to run
longer would produce better results for larger numbers of cities.

In all cases, increasing the mutation rate to 25% (Experiment #2)
greatly improved accuracy. For the 10-city problem, increasing
the mutation rate produced perfect accuracy. Increasing the
mutation rate to 75% (Experiment #3) produced worse accuracy
than Experiment #2 in all cases, suggesting the mutation rate
provides diminishing returns if it becomes too high.

In all the problems, increasing the population size to 100
(Experiment #4) produced better accuracy than the default size of
50. In the 10-, 13-, and 30-city problems, increasing the
population size even more to 500 (Experiment #5) produced
better accuracy than Experiment #4, suggesting that accuracy will
increase as population size increases. A larger population allows
more chances for the initial random population to create
individuals with high fitness, which improves the search. In the
100-city problem, though, the population size of 500 did not
outperform the population size of 100, suggesting that increasing
population size alone is not a guaranteed way to increase
accuracy. A larger population allows more chances of producing
high-quality individuals from the start. However, even with a
large population size there is a chance that the initial population
will be filled with low-quality individuals because the initial
population is randomly created.

In the 13- and 100-city problems, increasing the maximum
number of generations to 200 and then 500 (Experiments #6 and
#7, respectively) only slightly improved accuracy. In the 10- and
30-city problems, increasing the maximum number of generations
slightly worsened the accuracy. These results suggest that
increasing the maximum number of generations does not affect
the outcome significantly. This conclusion is reasonable because
the GA might always converge before the maximum number of
generations is reached. In fact, in most of the experiments, the
average number of generations used was much less than the
maximum. However, in the 30- and 100-city problem, the
number of generations required was frequently close to the
maximum, suggesting that a larger number of generations might
be more important for larger numbers of cities.

In almost all cases, increasing the number of elites decreased the
GA’s accuracy. These results make sense because keeping too
many elites would crowd the population with the same
individuals, being copied over and over again. The GA will
converge much earlier, which increases the likelihood of
converging on an answer that is further from optimal. The
number of elites should be kept small.

One particularly interesting result came from increasing the
mutation rate for the 30- and 100-city problem (Experiment #2).
Though the average minimum tour length was still suboptimal, it
was much closer than the length produced by the default GA
values. In both the problems, the GA ran for the maximum
number of generations – 100 – for every one of the fifty runs.
This outcome and the success of the increased mutation rate for
the 10- and 13-city problems suggests that Experiment #2 might

produce lengths for the 30- and 100-city problems that are closer
to optimal if the GA is given more time (more generations).

Three more experiments were performed to test these conclusions.
Experiment #10 increased both the mutation rate and the
maximum number of generations. Experiment #11 increased the
maximum number of generations even more, and Experiment #12
increased the population size as well. This data is summarized in
Table 5, in which the parameters that are different from the
default are italicized. The average results of the experiments are
shown in Table 6 and the best results are shown in Table 7.

Table 5. GA Parameters Used for Additional Experiments

Exp. # Mutation
Rate Pop Size Maximum

generations
Number
of elites

10 25% 50 500 2

11 25% 50 5000 2

12 25% 100 500 2

Table 6. Average Percentage of Optimal for each Experiment

Exp # 30 cities 100 cities

10 104.07% 267.61%

11 101.17% 113.85%

12 106.09% 316.70%

Table 7. Best Percentage of Optimal for each Experiment

Exp # 30 cities 100 cities

10 100.00% 228.74%

11 100.00% 107.35%

12 100.00% 285.14%

Once again, only the average percentages of optimal were used in
the analysis, but analysis of the best percentages would yield
similar conclusions. In both the 30- and 100-city problems,
increasing the mutation rate and maximum generations
(Experiment #10) greatly improved accuracy. The GA produced
the greatest accuracy when the maximum number of generations
was increased even more (Experiment #11). Increasing the
population size in Experiment #12 had a negative affect on the
accuracy, affirming the conclusion that increasing the population
size does not always increase accuracy. It appears the most
important factor was increasing the maximum number of
generations, i.e. the time the algorithm is allowed to run.

Allowing the GA to run until it converges (no restriction on
maximum generations) can take a long time depending on the
number of cities. For large numbers of cities, such a GA might
have the same problem the brute force algorithm has:
unreasonably long computation times. The maximum number of
generations should be large enough so that the GA finds an
accurate answer, but it should also be small enough to find an
answer in a reasonable amount of time.

5. CONCLUSIONS
Some of the parameters of the GA must be finely tuned in order to
produce a TSP solution that is close to optimal. Various
crossover operators and mutation operators can also be used to
obtain better results. Specialized crossover operators such as [6]’s
heuristic crossover and [7]’s very greedy crossover have shown
promising results for the TSP. Mutation operators could be made
simpler or even more drastic than the one used in this study.
There are numerous possibilities for customizing any GA. Initial
populations can be heuristically created instead of randomly,
giving the GA a better place to start. A crossover operator can be
made to produce either one or two children each time. There are
many different ways the GA can rank individuals and select
which ones to reproduce. [5] used a “man-machine” approach, in
which the GA was customized to interact with human users in
order to produce the best possible solution. Future work will
examine further possibilities of customizing a GA for the TSP.

6. ACKNOWLEDGMENTS
Thanks to my student colleagues who proofread this paper for me
many times.

7. REFERENCES
[1] Haupt, R. L. & Haupt, S. E. Practical Genetic Algorithms

(2nd ed.). John Wiley & Sons, Hoboken, NJ, 2004.
[2] Russell, S. J. & Norvig, P. Artificial Intelligence: A Modern

Approach (2nd ed.). Pearson Education, Upper Saddle River,
NJ, 2003.

[3] Goldberg, D. E. & Lingle, R., Jr. Alleles, loci, and the
traveling salesman problem. In J. J. Grefenstette (Ed.),
Proceedings of the first international conference on genetic
algorithms and their applications (ICGA ‘85) (Pittsburgh,
PA, USA, July 24-26, ’85). Lawrence Erlbaum Associates,
Hillsdale, NJ, 1985, 154-159.

[4] Oliver, I. M., Smith, D. J., & Holland, J. R. C. (1987). A
study of permutation crossover operators on the traveling
salesman problem. In J. J. Grefenstette (Ed.), Genetic
algorithms and their applications: Proceedings of the second
international conference on genetic algorithms (ICGA ‘87)
(Cambridge, MA, USA, July 28-31 ‘87). Lawrence Erlbaum
Associates, Hillsdale, NJ, 1987, 224-230.

[5] Krolak, P., Felts, W., & Marble, G. A man-machine
approach toward solving the traveling salesman problem
[Electronic version]. Communications of the ACM, 14, (May
1971), 324-327.

[6] Grefenstette, J., Gopal, R., Rosmaita, B., & Van Gucht, D.
Genetic algorithms for the traveling salesman problem. In J.
J. Grefenstette (Ed.), Proceedings of the first international
conference on genetic algorithms and their applications
(ICGA ’85) (Pittsburgh, PA, USA, July 24-26, ‘85).
Lawrence Erlbaum Associates, Hillsdale, NJ, 1985, 160-168.

[7] Julstrom, B. A. Very greedy crossover in a genetic
algorithm for the traveling salesman problem [Electronic
version]. In Symposium on applied computing: Proceedings
of the ACM symposium on applied computing (SAC ‘95)
(Nashville, TN, USA, Feb. 26-28, ‘95). ACM Press, New
York, NY, 324-328.

	INTRODUCTION
	OPTIMIZATION & GENETIC ALGORITHMS
	TRAVELING SALESMAN PROBLEM
	TSP EMPIRICAL STUDY
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

