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ABSTRACT 
Optimization problems are an important area of research in 
computer science, and genetic algorithms are becoming popular 
methods for solving these problems.  This paper offers a brief 
introduction to optimization problems as well as genetic 
algorithms.  An empirical study of genetic algorithms for the 
traveling salesman problem is presented, showing that genetic 
algorithms are effective at solving optimization problems. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – Graph and tree search strategies 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Genetic algorithms, Evolutionary algorithms, Evolutionary 
computing, Traveling Salesman Problem 

1. INTRODUCTION 
The concept of natural selection has inspired computer scientists 
to adapt mechanisms from biology to solve complex problems.  A 
genetic algorithm (GA) begins with a random population of 
possible solutions to a problem.  The algorithm then produces 
successive generations of solutions, evolving toward a final 
solution.  As in natural selection, the fittest solutions in any given 
generation are more likely to mate and pass on their genetic 
material.  A GA can evolve a nearly optimal solution in a 
reasonable amount of time. 

After describing optimization problems and GAs, a case study in 
the use of a GA to solve an intractable problem will be presented.  
The study compares run times involved in brute-force solutions 
with those achieved by the GA.  Additionally, the quality of the 
solutions that the GA produces as several parameters are 
manipulated will be discussed. 

2. OPTIMIZATION & GENETIC 
ALGORITHMS 
Many problems that have multiple solutions are too 
computationally complex to find the best solution in a reasonable 
amount of time.  It is often more practical to use a heuristic 
approach to find a solution that might not be the best, but is good 
enough.  This is the problem of optimization.  Optimization is the 
process of adjusting inputs to a device, experiment, or process to 
find the minimum or maximum output [1].  Because finding the 
optimal solution involves minimizing or maximizing a quantity, 
optimization problems are often treated as minimization 
problems.  If the objective is to maximize a quantity, it is easy 
enough to negate the process of finding a minimum. 

In mathematical terms, a certain function, commonly called the 
cost function, must be minimized across an interval.  This interval 
is known as the search space.  Searching the search space for the 
lowest output of the cost function will yield the minimum 
quantity.  However, it is not possible to conduct an exhaustive 
search for problems with search spaces that grow exponentially or 
worse, hence the need for creative algorithms.  There are several 
current methods for solving optimization problems, such as hill-
climbing [2], simulated annealing [2], beam searches [2], and 
GAs [1]. 

GAs are based on the principles of natural selection.  A GA 
begins with a random set of possible solutions to the problem (an 
optimization problem has many solutions; some are better than 
others).  The set of solutions is called the population.  Each 
solution is evaluated by a fitness function, and the best solutions 
have a higher chance of mating to produce the next population.  
The GA repeats the process of mating to form new populations 
until an acceptable solution is found, predetermined criteria are 
met, or all the solutions become the same and further execution 
will not yield new solutions (convergence). 

Random mutations can also introduce diversity (new solutions) 
into each population.  GAs can be highly customized depending 
on the problem.  GAs can use strings of bits for basic satisfiability 
problems or permutations of digits or letters for permutation 
problems. 
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3. TRAVELING SALESMAN PROBLEM 
The traveling salesman problem (TSP) is a well-known problem 
in computer science.  A salesman must visit several different 
cities in any order and return to the starting point.  The cities 
should be visited in the order that minimizes the total distance 
traveled to minimize the time and cost of the journey. 

 



The simplest way to find the optimal solution is to use a brute 
force algorithm, which computes the cost of every possible 
journey (tour) through all the cities, and reports the minimum.  
The brute force method is a guaranteed way to find the optimal 
tour, however it is unreasonable to use in practice because of the 
TSP’s computational complexity.  If the n cities are represented as 
a list of n different digits, then the order the salesman visits the 
cities would be the order of the digits.  The brute force algorithm 
would thus have to attempt every possible permutation (ordering) 
of these digits.  If there are n digits, there are n-factorial (n!) ways 
to permute the list of digits.  Factorially growing search spaces 
require an unreasonably long amount of time for a computer to 
find an optimal solution.  If there are only twenty cities, the 
number of possible tours to evaluate is 
2,432,902,008,176,640,000.  Assuming a computer can evaluate 
one possible tour every second (which is not unreasonable), it 
would still take over 77 billion years to find the optimal solution – 
for only twenty cities! 

Obviously the brute force method is not acceptable for the TSP.  
A GA, however, can deliver a solution in a reasonable amount of 
time.  The solution is not guaranteed to be optimal, but generally 
it is close enough. 

The TSP is a permutation problem – the optimal solution is the 
optimal ordering of the cities involved.  A few precautions are 
required to ensure the crossover and mutation operators generate 
valid tours.  The crossover operator cannot exchange cities in a 
haphazard way because some cities would be deleted and others 
would be repeated.  Similarly, the mutation operator cannot 
simply change a random city, because this could result in deletion 
or repetition of a city.  Both operators must be carefully designed 
so that they do not invalidate any tours. 

The TSP is a popular and useful way to examine the possibilities 
and effectiveness of GAs.  The TSP is used in the empirical study 
described in the next section. 

4. TSP EMPIRICAL STUDY 
A brute force and a genetic algorithm were both programmed to 
conduct an analysis of GAs for the TSP.  The brute force program 
was used to find the minimum tour lengths for small numbers of 
cities, which were then compared against the results of the GA. 

The GA used the crossover operator proposed by [3], the 
partially-mapped crossover (PMX) operator.  First, PMX chooses 
two positions at random, which identifies the substrings that will 
be swapped.  The substring from the first tour is mapped to the 
second by a series of swaps, and the same process maps the 
substring from the second tour to the first.  For example, consider 
these two tours: a-b-c-d-e-f, and f-d-b-a-c-e.  The PMX operator 
might choose at random the positions three and five, which would 
select the substring c-d-e from the first tour and b-a-c from the 
second tour.  In the second tour, c is swapped with b (resulting in 
f-d-c-a-b-e), then d is swapped with a (resulting in f-a-c-d-b-e), 
and then e is swapped with b (resulting in f-a-c-d-e-b).  The 
appropriate cities are also swapped in the first tour and the 
resulting tours are d-e-b-a-c-f and f-a-c-d-e-b.  Notice that the 
substring c-d-e from the first tour has been imposed upon the 
second tour, regardless of how it affected the rest of the second 
tour.  The same has happened to the first tour.  Thus, by simply 

rearranging cities, both tours receive genetic information from the 
other.  Refer to [3] for more details. 

The mutation operator chose two random positions of the string 
and inverted all cities including and between those positions.  
This mutation operator is somewhat traumatic, especially if the 
graph of cities is asymmetrical, in which case the cost of going 
from city A to city B is different than the cost of going from B to 
A.  In the current study the graph is symmetrical, so the cost 
between cities is independent of the order. 

Elitism was also used in the GA.  In every population, the GA 
discarded the worst performing individuals and copied the top 
performers into their place.  Those top individuals are guaranteed 
to carry over unchanged to the next population, where they will 
either maintain their status as elites or be replaced by new ones. 

Several experiments were performed on four different numbers of 
cities: ten, thirteen, thirty, and one hundred.  Each experiment 
varied one of four different parameters of the GA, including the 
mutation rate, population size, maximum number of generations, 
and number of elites.  The first experiment used default 
parameters that were chosen arbitrarily.  Next, a pair of 
experiments was performed for each parameter, resulting in eight 
more experiments.  The first of each pair increased the parameter 
slightly and the second increased the parameter by a large 
amount, all while keeping the other parameters constant.  The GA 
ran fifty trials for each experiment and the best and average 
minimum tour lengths were used to compute accuracy.  All nine 
of these experiments were performed for the 10-, 13-, 30-, and 
100-city TSP.  The city coordinates for the 10- and 13-city 
problems were generated randomly and the brute force algorithm 
was used to find their shortest tours.  The city coordinates and 
shortest length for the 30-city problem came from [4].  The 100-
city problem’s coordinates and shortest length were obtained from 
[5].  All programs were implemented in Java and all tests were 
performed on an 800 MHz computer running Fedora Core 4 ®.  
The specific GA parameters used are shown in Table 1, in which 
the altered parameter is shown in italics.  The average results of 
the experiments are shown in Table 2 and the best results are 
shown in Table 3.  The tour lengths found are presented as a 
percentage of the optimal tour length, which is 100%.  If a tour 
length is reported as 200% of optimal, it is twice as long as the 
optimal tour. 

Table 1. Specific GA Parameters Used for each Experiment 

Exp. # Mutation 
Rate Pop Size Maximum 

generations 
Number 
of elites 

1 1% 50 100 2 

2 25% 50 100 2 

3 75% 50 100 2 

4 1% 100 100 2 

5 1% 500 100 2 

6 1% 50 200 2 

7 1% 50 500 2 

8 1% 50 100 4 

9 1% 50 100 20 



Table 2. Average Percentage of Optimal for each Experiment 

Exp # 10 cities 13 cities 30 cities 100 cities 

1 105.27% 108.59% 169.23% 477.57% 

2 100.00% 100.30% 136.06% 451.58% 

3 100.08% 101.63% 162.17% 504.45% 

4 100.84% 102.52% 147.29% 426.89% 

5 100.00% 100.11% 143.75% 501.37% 

6 106.28% 106.44% 169.47% 468.79% 

7 105.93% 106.67% 169.37% 475.94% 

8 106.85% 108.46% 174.13% 498.51% 

9 108.69% 109.57% 184.02% 524.69% 
 

Table 3. Best Percentage of Optimal for each Experiment 

Exp # 10 cities 13 cities 30 cities 100 cities 

1 100.00% 101.12% 143.38% 416.46% 

2 100.00% 100.00% 120.10% 389.50% 

3 100.00% 100.00% 141.44% 449.52% 

4 100.00% 100.00% 124.02% 381.42% 

5 100.00% 100.00% 111.63% 420.78% 

6 100.00% 100.00% 138.70% 388.53% 

7 100.00% 100.00% 137.51% 367.77% 

8 100.00% 100.00% 139.76% 426.57% 

9 100.00% 100.73% 149.59% 450.77% 
 

Table 4 presents the time it took each algorithm to find its answer.  
In Table 4, the brute force times for the 30- and 100-city problems 
are estimated from the time it took the brute force algorithm to 
solve the 13-city problem. 

Table 4. Time Comparison of Brute Force and GA 

Number of cities Brute force time Average GA time 

10 87.02 seconds 5.93 seconds 

13 2.13 days 5.64 seconds 

30 2.49*1017 years 10.11 seconds 

100 8.75*10145 years 69.29 seconds 
 

The average percentages of optimal were used in the following 
analysis.  While the best percentages are not analyzed in detail, 
similar conclusions would be drawn in a best-case analysis.  As 
Table 2 shows, the GA performed well on both the 10- and 13-
city TSP.  The solutions were produced in a fraction of the time, 
as Table 4 shows.  The GA did not perform as well on the 30- and 
100-city problems.  The decrease in accuracy was probably 

caused by the parameters of the GA.  For the 30- and 100-city 
problems, the GA’s accuracy improved over the default when the 
population size increased and in some cases when the maximum 
number of generations increased.  These results suggest that 
greatly increasing the population size and allowing the GA to run 
longer would produce better results for larger numbers of cities. 

In all cases, increasing the mutation rate to 25% (Experiment #2) 
greatly improved accuracy.  For the 10-city problem, increasing 
the mutation rate produced perfect accuracy.  Increasing the 
mutation rate to 75% (Experiment #3) produced worse accuracy 
than Experiment #2 in all cases, suggesting the mutation rate 
provides diminishing returns if it becomes too high. 

In all the problems, increasing the population size to 100 
(Experiment #4) produced better accuracy than the default size of 
50.  In the 10-, 13-, and 30-city problems, increasing the 
population size even more to 500 (Experiment #5) produced 
better accuracy than Experiment #4, suggesting that accuracy will 
increase as population size increases.  A larger population allows 
more chances for the initial random population to create 
individuals with high fitness, which improves the search.  In the 
100-city problem, though, the population size of 500 did not 
outperform the population size of 100, suggesting that increasing 
population size alone is not a guaranteed way to increase 
accuracy.  A larger population allows more chances of producing 
high-quality individuals from the start.  However, even with a 
large population size there is a chance that the initial population 
will be filled with low-quality individuals because the initial 
population is randomly created. 

In the 13- and 100-city problems, increasing the maximum 
number of generations to 200 and then 500 (Experiments #6 and 
#7, respectively) only slightly improved accuracy.  In the 10- and 
30-city problems, increasing the maximum number of generations 
slightly worsened the accuracy.  These results suggest that 
increasing the maximum number of generations does not affect 
the outcome significantly.  This conclusion is reasonable because 
the GA might always converge before the maximum number of 
generations is reached.  In fact, in most of the experiments, the 
average number of generations used was much less than the 
maximum.  However, in the 30- and 100-city problem, the 
number of generations required was frequently close to the 
maximum, suggesting that a larger number of generations might 
be more important for larger numbers of cities. 

In almost all cases, increasing the number of elites decreased the 
GA’s accuracy.  These results make sense because keeping too 
many elites would crowd the population with the same 
individuals, being copied over and over again.  The GA will 
converge much earlier, which increases the likelihood of 
converging on an answer that is further from optimal.  The 
number of elites should be kept small. 

One particularly interesting result came from increasing the 
mutation rate for the 30- and 100-city problem (Experiment #2).  
Though the average minimum tour length was still suboptimal, it 
was much closer than the length produced by the default GA 
values.  In both the problems, the GA ran for the maximum 
number of generations – 100 – for every one of the fifty runs.  
This outcome and the success of the increased mutation rate for 
the 10- and 13-city problems suggests that Experiment #2 might 



produce lengths for the 30- and 100-city problems that are closer 
to optimal if the GA is given more time (more generations). 

Three more experiments were performed to test these conclusions.  
Experiment #10 increased both the mutation rate and the 
maximum number of generations.  Experiment #11 increased the 
maximum number of generations even more, and Experiment #12 
increased the population size as well.  This data is summarized in 
Table 5, in which the parameters that are different from the 
default are italicized.  The average results of the experiments are 
shown in Table 6 and the best results are shown in Table 7. 

Table 5. GA Parameters Used for Additional Experiments 

Exp. # Mutation 
Rate Pop Size Maximum 

generations 
Number 
of elites 

10 25% 50 500 2 

11 25% 50 5000 2 

12 25% 100 500 2 
 

Table 6. Average Percentage of Optimal for each Experiment 

Exp # 30 cities 100 cities 

10 104.07% 267.61% 

11 101.17% 113.85% 

12 106.09% 316.70% 
 

Table 7. Best Percentage of Optimal for each Experiment 

Exp # 30 cities 100 cities 

10 100.00% 228.74% 

11 100.00% 107.35% 

12 100.00% 285.14% 
 

Once again, only the average percentages of optimal were used in 
the analysis, but analysis of the best percentages would yield 
similar conclusions.  In both the 30- and 100-city problems, 
increasing the mutation rate and maximum generations 
(Experiment #10) greatly improved accuracy.  The GA produced 
the greatest accuracy when the maximum number of generations 
was increased even more (Experiment #11).  Increasing the 
population size in Experiment #12 had a negative affect on the 
accuracy, affirming the conclusion that increasing the population 
size does not always increase accuracy.  It appears the most 
important factor was increasing the maximum number of 
generations, i.e. the time the algorithm is allowed to run. 

Allowing the GA to run until it converges (no restriction on 
maximum generations) can take a long time depending on the 
number of cities.  For large numbers of cities, such a GA might 
have the same problem the brute force algorithm has: 
unreasonably long computation times.  The maximum number of 
generations should be large enough so that the GA finds an 
accurate answer, but it should also be small enough to find an 
answer in a reasonable amount of time. 

5. CONCLUSIONS 
Some of the parameters of the GA must be finely tuned in order to 
produce a TSP solution that is close to optimal.  Various 
crossover operators and mutation operators can also be used to 
obtain better results.  Specialized crossover operators such as [6]’s 
heuristic crossover and [7]’s very greedy crossover have shown 
promising results for the TSP. Mutation operators could be made 
simpler or even more drastic than the one used in this study. 
There are numerous possibilities for customizing any GA.  Initial 
populations can be heuristically created instead of randomly, 
giving the GA a better place to start.  A crossover operator can be 
made to produce either one or two children each time.  There are 
many different ways the GA can rank individuals and select 
which ones to reproduce.  [5] used a “man-machine” approach, in 
which the GA was customized to interact with human users in 
order to produce the best possible solution.  Future work will 
examine further possibilities of customizing a GA for the TSP. 
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