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ABSTRACT 
Inverse problems are relatively challenging to solve due to 
inherent ill-posedness and computational intractability. In this 
paper we adopt the use of a simulation-optimization approach that 
couples a numerical simulation model with evolutionary 
algorithms for solution of the inverse problem. In this approach, 
the simulation model is solved iteratively during the evolutionary 
search, which in general can be computationally intensive since 
several hundreds to thousands of forward model evaluations are 
typically required for solution. Numerical search methods such as 
parallel hybrid methods and noisy genetic algorithms are 
investigated for optimization algorithm improvement. Given the 
potential computational intractability of such a simulation-
optimization approach, grid computing and surrogate models are 
explored as a means to facilitate computationally tractable 
solution of such problems. In this paper, the solution of a 
groundwater inverse problem is explored to test and illustrate the 
methods. The computational experiments were performed on the 
National Scientific Foundation’s TeraGrid. The results 
demonstrate the performance of the grid-enabled simulation-
optimization approach in terms of solution quality and 
computational performance. A set of preliminary results from 
ongoing research is discussed. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence] Heuristic methods, D.3.2 
[Programming Languages], G.4 [Mathematical Software] 

General Terms 
Algorithms, Management, Design 

Keywords 
Inverse problem, Simulation-Optimization, Algorithms, Grid 
Computing, Surrogate Modeling 

1. INTRODUCTION 
System characterization from sparse observational data collected 
at measurement stations is generally classified as an inverse 
problem. Solving inverse problems is relatively complex due to 
the ill-posedness present in the problem [1] [15].  Among several 
available methods, simulation-optimization (S-O) approach is a 
technique utilized to solve inverse problems by formulating and 
solving them as an optimization model.  Simulation models, 
usually referred to as forward models, are a system of partial 
differential equations (PDEs) that describes the governing 
processes of a system and defines the relationship between system 
inputs and outputs. The inverse problem is solved using an S-O 
approach via search algorithms to identify the best system 
characteristics that minimize the error between the model 
predictions and the system observations. While this approach is 
generic and robust, it is computationally expensive as it requires 
iterative executions of the forward model. 

Many instances of inverse problems are present in real world 
applications.  For example, in groundwater contamination 
characterization problems, the unknown contamination location 
and the release profile are estimated based on observation data. 
Similarly, in drinking water distribution system security 
management, monitoring data from a contamination sensor 
network is used to determine the contamination location and 
characteristics so that appropriate evasive actions could be 
determined quickly. Another application is in medical imaging 
where the exact properties of internal organs are assessed via non-
invasive screening and diagnosis. 

In this study, instances of groundwater containment source 
identification (CSI) problems are used to test and illustrate the 
methodologies. Also the problems utilized to test the performance 
of the computational framework that developed as part of my 
dissertation research. The CSI is important in environmental 
forensics and characterization of contamination for the purposes 
of regulatory enforcement and assessing liability. In this problem 
context, source locations and contaminant release concentration 
are unknown model inputs, which are resolved from the spatially 
and temporally distributed observational data collected at 
monitoring wells.  This paper discusses the solution of the 
containment source identification problem in two and three 
dimensional groundwater domains. 
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The solution complexity of such problems is proportional to the 
number of system inputs to be determined.  An optimization 
search paired with a detailed numerical simulation model poses 



extreme computational burdens since each simulation model 
execution can be expensive. In this study, evolutionary 
algorithms-based search procedures are employed to solve inverse 
problems using an S-O approach.  The focus of my dissertation is 
to investigate novel approaches to address the algorithmic and 
related computational issues associated with the proposed solution 
method. This consists of three major components: improving the 
effectiveness and efficiency of the search algorithms; improving 
the execution efficiency of the simulation model; and facilitating 
a distributed computational framework to support the S-O 
approach. 

While evolutionary algorithms (EAs) are good global searchers, 
they are inefficient, when compared with local search procedures, 
in refining the solutions beyond a certain degree of convergence. 
This research investigates new techniques for integrating the good 
features of the global and local searchers such that the overall 
search efficiency is improved. In real world application, inverse 
problems occur under noisy environment. Thus, another 
methodological investigation of this dissertation research is to 
develop a new algorithm for search under noisy conditions. In 
addition, this research investigates techniques to improve the 
computational efficiency of the simulation model. A fine-grained 
parallel coding of the simulation model and a fast surrogate model 
to approximate the simulation model are being explored.  

Finally, given the computational resources demands and the 
inherent parallelism present in the proposed S-O approach, an 
appropriate parallel/distributed computing framework can help 
improve the computational efficiency. Recent investments in 
national high-speed network infrastructure have allowed the 
aggregation of geographically distributed high-performance 
computing resources into computational grids.  In part, because 
computational grids promote reliable and economical access to, 
and sharing of, high-end computing resources, they have emerged 
as a new paradigm in scientific and engineering computation [6]. 
Computational grids have the potential to enable the solution of 
inverse problems that previously would not have been possible. 
Results based on computational experiments performed on the 
National Science Foundation’s (NSF) TeraGrid demonstrate the 
efficiency of the grid-enabled S-O approach in terms of 
accurately solving the unknown system inputs and improving the 
computational performance. 

Section 2 describes the overall problem complexity and the 
supporting methodology. The new algorithms are presented in 
Section 3. Methods for efficiency improvements in simulation 
models are discussed in Section 4. The computational framework 
and paradigms are explained in Section 5. Section 6 describes an 
instance of the groundwater contaminant source characterization 
problems, followed by preliminary results in Section 7. Section 8 
provides some final remarks along with a discussion on on-going 
and future work. 

2. PROBLEM COMPLEXITY AND 
METHODOLOGY 

Generally speaking, inverse problems could be described as 
problems where the answer is known, but not the conditions that 
led to it. In mathematical modeling, finding model input 
parameter values given output data can be categorized as a 
problem of time inversion. This means that we have to solve the 

governing equations backward in time through “inverse 
modeling” [1]. The process of determining system characteristics 
from observation data is known as inverse problems. Inverse 
problems are generally difficult to solve due to ill-posedness. A 
problem is categorized as ill-posed if: (1) the solution does not 
exist; (2) the solution is nonunique; and (3) the solution is 
unstable [1][15]. Solving inverse problem is based on observation 
data, thus the solution have discontinuous reliance on data and are 
sensitive to errors in the data. In real world applications, errors in 
the observation could result from data measurement error or 
model parameter uncertainty. Solving inverse problems in a noisy 
environment adds another level of complexity to the problems. 

Research over the past three decades has presented several 
solution methods for inverse problems, including simulation-
optimization techniques, probabilistic procedures, analytical 
methods, and direct inversion approaches [8]. This dissertation 
research explores solution using the simulation-optimization 
approach. This is a general term used to describe a family of 
optimization techniques that utilizes simulation models for the 
evaluation of objective and constraint functions.  In this approach, 
the simulation model is coupled loosely/tightly with optimization 
techniques to determine the model inputs that best approximate 
the observed data. This process is applied iteratively until some 
stopping criteria are met. Several different search procedures have 
been explored, however, and the emphasis of this study is on EA-
based heuristic search approaches.  

An S-O approach to solve an inverse problem is several orders of 
magnitude more computationally challenging than the solution of 
the corresponding forward model, since several hundreds to 
thousands of forward model evaluations, usually requiring 
solution to a system of PDFs, are typically required. Given the 
potential computational intractability of such an S-O approach, 
improving efficiency for both simulation model and optimization 
method is required. 

Recent research had shown that inverse problems may have 
several local minima and a highly discontinuous decision space. 
Evolutionary algorithms show a significant efficiency in getting 
near global minimum; however, they may require fine-tuning near 
global minimum for better results. Hybrid methods show 
considerable success in this aspect, where EAs may be efficient in 
getting near global optimum and gradient-based local 
optimization approaches are efficient for fine-tuning near that 
global optimum [10]. Since the solution of inverse problems is 
highly dependent on the errors in the measurements, the search 
methods must consider noise in the system. Noisy GAs show a 
considerable success in addressing more realistic inverse 
problems [11]. Therefore investigating embedded hybrid and 
noisy GA methods is becoming essential to enable an S-O 
approach. 

High performance computing technologies can help expedite the 
execution time by harnessing the fine and coarse gained 
parallelism exhibited by the simulation model. In addition to 
simulation model parallelism, surrogate models are explored to 
improve the simulation model efficiency by reducing the solution 
time. Ultimately a computational grid-based S-O framework with 
multiple levels of parallelism is used to ease the solution of 
inverse problem. We would like to highlight that some 
components of this framework is currently under development.  



3. GA-BASED OPTIMIZATION METHODS 
In this section, the development of embedded hybrid and noisy 
genetic algorithms methods are described. While there are several 
hybridization techniques, the emphasis of my dissertation 
research is on algorithms that directly embed the local search 
steps into any standard genetic algorithm such that the inherent 
parallelism of GAs is maintained [16]. Similarly, my research is 
also investigating a new approach for a noisy GA, which in 
conjunction with the embedded hybrid procedure or by itself, is 
applicable to solving inverse problems under conditions of 
uncertainty.  

3.1 Embedded Hybrid Methods 
Previous studies had shown that sequential hybrid methods are 
successful in solving inverse problems [10][16]. While they are 
effective, these sequential methods do not necessarily maintain 
the parallelism to attain maximum computational efficiency.  
Alternatively, embedded hybrid methods are designed such that 
the local search steps are integrated into the global search 
mechanism of a GA. In the following section, two parallel hybrid 
methods are discussed.  

3.1.1 Hooks-Jeeves GA Procedure 
Prior research efforts [16] report that the crossover operator could 
be adjusted to increased local exploitation. In this procedure an 
alternative crossover operator is developed. This operator is 
designed based on the Hooks-Jeeves pattern search that explores 
the immediate neighborhood of a selected solution [5]. The new 
operator is applied to a subset of the population while the rest of 
the population undergoes the standard GA crossover operator. 
The subset size increases dynamically with the number of 
generations. The main steps of the algorithm are described in the 
following pseudo code:  

Hooks-Jeeves GA{ 
while {termination criteria is not met 

Evaluate the population (); 
Selection (); 
Sort population (); 
Elitism(); 
Crossover { 
Create two populations: 
Population 1: top 5-10% of the sorted population  
Population 2: 95-90% of the population, randomly picked  
Hooks-Jeeves Crossover() on Population 1 
Standard GA Crossover() on Population 2 
} 
Mutation () 

} 
} 

3.1.2 Conjugate Direction GA Procedure 
Similar to the Hooks-Jeeves hybrid GA procedure, an alternative 
crossover operator is developed based on Powell’s method of 
conjugate direction to optimize along successive direction that are 
conjugate with respect to all previous directions [14]. Again, the 
new operator is applied to a subset of the population while the rest 
of the population undergoes the standard GA crossover operator. 
The main steps of the algorithm are described in the following 
pseudo code:  

Conjugate Direction GA{ 
while {termination criteria is not met 
… 

Crossover { 
Create two populations: 
Population 1: top 5-10% of the sorted population.  
Population 2: 95-90% of the population, randomly picked  
Conjugate Direction Crossover() on Population 1 
Standard GA Crossover() on Population 2 
} 

... 
} 

} 
3.2 Archived Noisy Genetic Algorithms 
A GA-based noisy search method is developed to address real 
world problems, where uncertainty in the simulation model input 
parameters exists. In this approach, multiple realizations of the 
uncertain parameter are generated. Each generation of the 
algorithm uses a single realization, and the best solution for each 
generation is stored in a separate set called the “archive pool”. 
The main steps of the algorithm are described below: 

Step 1. Generate a number of realizations (R1, 2, 3 … rn), where rn is 
realization number, for the uncertain parameter.  

Step 2. Initialize the GA by creating an initial population with 
population size (pgn), where gn is generation number, for this step 
gn = 1. 

Step 3. Run the simulation model to determine the calculated 
output. Only one realization is used per generation without 
replacement, i.e. a realization will be used at most one time then 
discarded, thus total number of realization (TR) = total number of 
generation (TG).  

Step 4. Evaluate the fitness of the calculated data from step 3 
using the observed data. Several fitness error functions could be 
used, one of the common error function is root square error (RSE) 

RSE = 2

1
(

n
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i

obs cal
=
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Step 5. The most fit solution, i.e., the best individual (BI), will be 
stored in the archive pool (AP).  

Step 6. The standard GA is applied to the “selection poll” to 
generate new pgn (gn > 1) individuals. The selection pool (SP) 
contains (pgn-1+ar) individuals, where pgn-1 is the number of 
individuals in the previous population, and ar is the number of 
individuals in the archive pool. 

Step 7. Repeat steps 3, 4, 5, and 6 until gn = TG. Note that the 
selection pool size increases as the generation increases. Thus, the 
selection population size is not a constant as in the standard GA.  

The solution at the end of generation number TG will hopefully 
converge to an optimal solution for the problem. An alternative is 
to define a termination criterion for the procedure. This criterion 
could depend on number of realizations, sensitivity of the best 
solution or the improvement of the solution. 

As explain above, the procedure utilized only one realization per 
generation. For more reliable and mature solution many 



realizations could be used for a number of generations. Therefore 
some modifications are needed to enhance the procedure and 
make it more robust. For example, in Step3, instead of one 
realization, a number of realizations (NR) could be used for a 
number of generations (NG). For more conservative error 
function, Min Max error function could be used instead of RSE in 
Step 4. As a result of these modifications, BI in Step 5 should be 
stored in AS every NG generations. 

4. SIMULATION MODEL EFFIECINCY 
IMPROVEMENT 

Considering the computational burden of the S-O approach, two 
approaches are investigated to improve the execution time of the 
simulation model. The first approach is based on fine and coarse 
grained parallelism of the simulation model. The second is based 
on substituting the simulation model with fast surrogate models.  

4.1 Simulation Model Parallelism 
The simulation model used as an illustration in solving a 
groundwater inverse problem in this study is the Parallel 
Groundwater transport and REMediation codes (PGREM3D), a 
suite of massively parallel codes used for numerical simulation of 
three-dimensional groundwater transport and remediation 
problems [9]. These codes are based on the finite element 
methods (FEM). This transport module simulator is parallelized 
using a two-dimensional domain decomposition (in the x and y 
directions). Explicit message passing interface library (MPI) was 
utilized to exchange information between these domains. The 
codes are written in FORTRAN using double-precision arithmetic 
[9]. 

The simulation model is implemented to accommodate fine and 
coarse grained parallelism. Fine grained parallelism is applied by 
executing the simulation model on multiple computer processors 
via the MPI communication library [7]. The coarse grained 
parallelism is implemented using the MPI Group library, in which 
multiple instances of the simulation model are executed 
simultaneously in groups. In this technique, one processor P0 acts 
as a model master while the remaining processors (total number 
of available processors -1) will be divided into a number of 
groups. Thus, each group consists of number of processors equal 
to (total number of processors -1)/ (number of group). Within 
each group one processor acts as a group master to establish 
interprocessor communication with P0 (Figure 1). 

4.2 Surrogate Modeling  
In addition to simulation model parallelism, surrogate modeling is 
being investigated to address the excessive computational 
intractability resulting from iterative evaluation of the simulation 
model. Improving simulation model efficiency could be addressed 
by constructing a surrogate model that is able to estimate quickly 
the simulation model output.  A feed forward neural network-
based procedure is used for constructing and training a surrogate 
model.  As the level of complexity of a simulation model 
increases, the effort and resources needed to construct and train a 
surrogate model increase as well. This increase, however, occurs 
prior to the iterative search procedure, thus not contributing to the 
computational burden during the S-O procedure. In this study a 
preliminary investigation is done utilizing a two-dimensional 

numerical simulation groundwater transport and remediation code 
implemented in MATLAB to construct a surrogate model. 

5. COMPUTATIONAL FRAMEWORK 

5.1 Framework Architecture 
This study is built upon the LAarge Scale Simulation-
Optimization framework (LASSO) (Figure 2) [12]. LASSO 
consists of a centralized optimization application that utilizes a 
master-worker task distribution strategy.  The optimization, 
master, and worker processes are executed on grid-based 
computational resources. The worker processes interface with 
instances of the forward model for distributed task execution.  
Results are returned to the master for processing by the 
centralized optimization application. In the following sections, 
key components of the application architecture are described in 
greater detail. 
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Figure 1. A Schematic of Simulation Model Parallelization 

Several different search procedures have been implemented in 
Java, making up the centralized optimization application.  Here, 
the optimization model representation of the inverse problem is 
solved using evolution strategies (ES) − a stochastic search 
heuristic conceptually similar to natural evolution [2].  An ES-
based procedure encodes within an individual the decision 
variables that describe a potential solution to the inverse problem. 
The ES search starts with a collection of individuals, referred to 
as a population.  The objective function (representing prediction 
error) of the optimization model is used to quantify a fitness value 
indicating how well an individual solves the inverse problem. 
Fitness values are calculated using the results of forward model 
evaluations.  During the search process, the population is 
iteratively subjected to stochastic selection and mutation search 
operators. Each iteration of the algorithm constitutes a generation. 
This search process continues until a predefined convergence 
criterion is satisfied. The application of an ES-based search to 
inverse problems is advantageous because of their robustness and 
global search characteristics.  Some drawbacks, however, include 
the computational intensity of a typical ES search and slow final 
convergence prior to termination. 

5.2 Framework Parallelism 
The optimization application is coupled with the forward model 
(PGREM3D) for fitness evaluation. Each forward model 
evaluation is handled by a number of processors (typically 1-8) 
called number of processors per group. The MPI is used to group 



processors, associate processors to computational domains, and 
for fine grained message passing within each of these groups. The 
solution procedure adopted here involves three levels of 
parallelism: one level exhibited by the search procedure and the 
other two levels exhibited by the forward model.  Each iteration 
of the search procedure exhibits a coarse grained parallel structure 
that requires an uncoupled forward model evaluation for each 
individual in the population.  The optimization application acts as 
the master process in the master-worker task distribution strategy.  
The master, worker, and task pool used in the framework were 
designed and implemented as part of Vitri [3].  The master 
maintains a pool of remote tasks − a bundle of individuals 
requiring evaluation. Aggregating individuals in this manner 
reduces communications overhead.  Worker processes running on 
distributed grid resources, having established a TCP-IP socket 
connection with the master, signal their readiness and draw tasks 
from the task pool [13].  The worker process transfers the remote 
task to the MPI zeroth processor.  From this point forward, 
standard MPI group communications are utilized.  The forward 
model manages multiple MPI groups, and each group evaluates an 
individual in the task bundle.  The results of these simulations are 
then aggregated into a result bundle and returned to the 
optimization application for processing by the search algorithm.  
Finally, the next generation of the search is initiated. 

The computational experiments presented here were performed on 
the NSF TeraGrid, NCSA. The TeraGrid is a heterogeneous 
agglomeration of computational resources distributed across the 
United States and connected through a specialized interconnection 
network designed for high-band width data transfer [6]. 
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Figure 2. A Schematic of the Framework Architecture 

6. APPLICATION DESCRIPTION AND 
EXPERIMENT SETTING 

In this study a groundwater contaminant source characterization 
inverse problem is considered, where the forward model 
PGREM3D is employed for 3-dimensional problem while a 2-
dimensional MATLAB version of the code is used for ongoing 
research investigation. The governing equations describing the 
groundwater transport are fully explained by [4] and [9]. 

6.1 Application Description  
In the groundwater contaminant source identification (CSI) 
problem, an unknown contaminant release at a single source 
location is resolved from spatially and temporally distributed 
concentration observations collected at monitoring wells. The 
problem assumes that the contaminant source location and the 
contaminant release at the sources are unknown.  Concentration 
observations at monitoring wells are collected to generate a 
concentration time-series at each monitoring location. The 
problem assumes that the source location and contamination 
release at the source are unknown. Furthermore, the signature of 
the source embedded in the monitoring data is a function of the 
source characteristics.  For a three dimensional version of the 
problem, we attempt to model the observed concentration at the 
18 monitoring wells (see the cross-sections of the domain in 
Figure 3) using PGREM3D, which describes the relation Cm = f 
(xj, yj, zj, Cr), where xj, yj and zj are the coordinates of the expected 
source location, j =1, 2 denotes the vertices at opposite corners of 
the extent of the source, Cr is the source concentration, and Cm is 
the time series of modeled monitoring concentrations. For a two 
dimensional version of the problem, we model the observed 
concentration at the seven monitoring wells (Figure 3) using 
MATLAB version, which describes the relation Cm = f (xj, yj, 
Cr), where xj, and yj  are the coordinates of the expected source 
location. The inverse problem is posed as an optimization model 
where the RSE between the observed and calculated 
concentrations (Equation 2) is minimized. The following 
constraints are included to enforce decision variable bounds and 
feasibility. 
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Subjected to: 

0  ≤  C0  ≤  Cmax     (3) 
0  ≤  xj  ≤  xmax; 0  ≤  yj  ≤  ymax; 0  ≤  zj  ≤  zmax j=1,2 (4) 
x1  ≤  x2;  y1  ≤  y2;  z1  ≤  z2    (5) 
Depending on the number of contaminant sources, the number of 
decision variables is equal to the product of the number of 
contaminant sources times the number of unknowns used to 
describe each source. Thus, there are 7 and 5 unknown decisions 
variables and for 3D case and 2D case, respectively. 

Table 1. Hypothetical Domain Parameters 

Parameter Values for 
2-D problem 

Values for 
3-D problem 

Problem size 51x31 grids 51x31x11 grids 
Number of time steps 100 100 
Time step size (dt) 2 day 0.15day 
Grid spacing (dx, dy, dz) 2 m 2 m 
Dispersion parameters 

αL, αT, Dm 
1m, 1m, 
0.01m2/d 

0.1m,0.1m, 
0.001m2/d 

Velocity 1 m/day 1 m/day 
True source location x1=8, y1=30, 

x2=12, 
y2=34, 
C0=70mg/L 

x1=2, y1=15, z1=6 
x2=5, y2=17, z2=8 
8, C0=70mg/L 



6.2 Description of the Test Problem Domain 
Hypothetical 2D and 3D fields were considered in this study. 
Detailed geometrical and hydraulic parameters are shown in 
Table 1, and in Figures 3 and 4. 

6.3 Forward Model and Search Parameter 
Setting 

For the 2D applications, the grid resolution for the simulation 
model resulted in 1,581 finite element nodes within the 
groundwater domain, and the simulation duration was 100 time 
steps, using 7 monitoring wells located close to the downstream 
end of the field (Figure 3). The population size for the MATLAB 
GA toolbox was 200 and the algorithm was executed for 100 
generations.  Other GA parameters and the boundary parameters 
used for this problem are shown in Tables 3 and 2, respectively. 

Table 2. Allowable Range of Decision Variables Values for 2D 
and 3D Problems 

Variables Ranges 
x axis 0-100 
y axis 0-60 
z axis 0-30 
C0 0-100 

 
Table 3. GA Settings for the 2D Problem 

Parameter Setting for the 
MATLAB GA Toolbox 

Population Size 200 
Population Type Double vector 
Generation 100 
Selection Stochastic uniform 
Crossover Heuristic crossover, 0.8 
Mutation Gaussian mutation, 0.2 

 
Table 4. ES Settings used for the 3D Problem 

Parameter Setting for the ES 
Population Size 300 
Population Type Double 
Generation 100 
Sigma 3.0 

 

 
Figure 3. Hypothetical Two-Dimensional Domain 

 

For the 3D applications, the grid resolution for the simulation 
model resulted in 17,391 finite element nodes within the 
groundwater domain, and the simulation duration was 100 time 
steps, using 18 monitoring wells located in the middle and farthest 
end of the field (Figure 4). The population size for the LASSO 
evolution strategies was set at 300 and the algorithm was 
executed for 100 generations. Other ES parameters and the 
boundary parameters used for this problem are shown in Tables 4 
and 2, respectively. The best solution was found at a sigma setting 
of 3.0. 
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Figure 4. Hypothetical Three-Dimensional Domain 

7. PRELIMINARY RESULTS 
The results section consists of the application results and the 
framework performance results. In the application results, we 
report the computational framework results obtained for the 3D 
case. Also preliminary results of the Hooks-Jeeves hybrid GA 
procedure and surrogate model for the 2D case are reported. 

7.1 Application Results 
7.1.1 3D Problem Result using LASSO Framework 
A set of runs were conducted on the TeraGrid NCSA site to 
address 3D inverse problems. Several trials were first conducted 
by tweaking the LASSO evolution strategies parameters, 
population size, number of generations and sigma.  Figure 5 
shows the true and the calculated values for the problem; 
noticeably the true and the estimated values are slightly different. 
The unknowns in the problem are the source location and 
concentrations, which make the problem more complex due to 
nonuniqueness. Based on deductions from the groundwater 
governing equations, the concentration has a linear trend while 
the source location has a nonlinear trend, which makes, in 
general, the estimation of source location more complex than 
concentration. While the RSE error is not fully minimized yet, 
improved sigma value could result in better solution performance 
since sigma is found to be more sensitive than the other 
parameters.  

The number of forward model evaluations performed during a 
search is a function of population size times the number of 
generations. For each, we had a total of 30,000 evaluations 
distributed among 32 parallel forward simulation model groups 
with 2 processors per group (thus utilizing a total of 64 
processors). On a normalized basis, an evaluation took around 

x 

y

Source 
Flow Direction 

Observation wells  
Contaminant location  



0.0696 second, versus 1.6668 second on a single processor, i.e. 
solving the problem took around 35 minutes instead of 14 hours. 

7.1.2 Hooks-Jeeves Hybrid GA Procedure Results 
The new procedure was applied to the 2-dimensional source 
identification problem and the results are compared with those 
obtained via a standard GA. Table 5 shows the estimated 
parameters along with the objective function and solution errors 
for both GA and Hooks-Jeeves Hybrid GA. Using the same 
number of evaluations, the results illustrate that both algorithms 
are able to predict the source location and concentration with less 
than 5% error, and the Hybrid GA is able to find the solution with 
less than 1% error.  

Table 5. Hooks-Jeeves Hybrid GA and Standard GA Results 
for the 2D problem 

True Location GA Toolbox Hooks-Jeeves GA 
x1 = 6 6.01 6 

Y1 = 28 27.89 28 
Y1 = 10 10.52 10 
Y2 = 32 31.94 32 
C0 = 70 61.27 67.2 

Objective Fun. Error 0.011 0.004 
Solution Error 3.49 % 0.8 % 

7.1.3 Neural Network-Based Surrogate Model 
Results 

A surrogate model constructed and trained using neural network 
(NN) is compared with the 2D simulation model [8]. Both models 
were then used with a standard GA with same number of function 
evaluations to solve the 2D CSI problem. The GA parameters are 
shown in Tables 3. Table 6 shows that the overall quality of the 
solutions obtained with the two models are almost similar; 
however, the evolution time for the search method coupled with 
the simulation model is almost 2.5 longer than that required for 
the search coupled with the surrogate model. The result shows a 
significant success of neural network in predicting the simulation 
model accurately and relatively fast. 

Table 6. Source Characterization Based on the Surrogate 
Model and Simulation Model for the 2D Problem 

True Location Simulation 
Model 

Surrogate 
Model (NN) 

x1 = 6 6.01 5.97 
y1 = 28 27.89 27.79 
y1 = 10 10.52 10.41 
y2 = 32 31.94 32.22 
C0 = 70 61.27 60.73 

Objective Function Error 0.011 0.023 
Solution Error 3.49% 3.68% 

7.2 Framework Performance Results  
Additional sets of runs were conducted on the TeraGrid NCSA 
site to measure the performance of the current S-O framework in 
terms of fine and coarse grained parallelism. One set of runs was 
used to investigate fine grained parallelism within the FEM 
simulator. In this study, we determined wall time corresponding 
to increasing number of processors per group while number of 
groups and number of tasks remained constant. Figure 6 illustrates 

that evaluation time decreases until 4 processors per group then 
increases thereafter. That is because improvement in fine grained 
parallelism is associated with the problem size.  As the problem 
size used is relatively small in this study, the improvement is 
limited. 

The second set of runs was used to investigate coarse grained 
parallelism.  Here we determine the evaluation time while we 
increased the number of groups. Other parameters such as number 
of evaluations, number of processors per group and number of 
tasks per group were kept unchanged. Theoretically, the 
application should scale linearly with the number of processors 
used. Scalability results shown in Figure 7 indicate that the 
framework scales almost identical to the theoretical scale until 32 
groups, and then scales slight sub-linearly when the number of 
group exceeds 64. This could be due to the effect of 
communication that plays an important role in increasing the wall 
time when more than 32 groups are used. 
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Figure 5. Estimated and True Source location for the Problem  

8. FINAL REMARKS AND FUTURE 
WORK 

This paper describes my dissertation research that is focused on 
addressing inverse problems using a S-O approach where the 
optimization is conducted using evolutionary algorithms. 
Methodological and computational investigations were performed 
to improve the time efficiency of the simulation component and 
the EA-based search procedures. The development of a 
distributed computational framework implemented on the 
TeraGrid site at NCSA is reported, where the solution procedure 
employs a distributed version of the EA-based search procedure. 
The preliminary results indicate that the effect of nonuniqueness 
in the solution for 3D contaminant source identification problem 
is significant. Grid-enabled parallelized framework was 
investigated in two ways: coarse grained within the population-
based search algorithm; and fine and coarse grained within the 
simulation model. Overall, these implementations reduced the 
evaluation time drastically to minutes instead of hours, while 
maintaining the solution quality. 

A set of preliminary results for the hybrid GA procedure and a 
neural network-based surrogate model was also presented. 
Preliminary results for the Hook-Jeeves hybrid GA method show 
that the new local-global search hybrid algorithm is able to 
achieve high-quality solutions for a 2D application problem. This 
investigation is being extended to the more complex 3D 
application problem. Results for solving an inverse problem, 



which couples an evolution strategies-based search procedure 
with a 2D simulation model and a neural network surrogate 
model, shows identical solution quality, while the use of the 
surrogate model yielded significantly faster convergence. 

Future work includes incorporating the embedded hybrid methods 
and the proposed procedure for a noisy GA into the parallel 
computational framework.  These methods will be tested for a set 
of 2D and 3D groundwater contaminant source identification 
problems with varying degree of problem complexity. The 
surrogate modeling approach will be extended to 3D simulation 
cases, and then coupled with the search procedures to solve 3D 
inverse problems.  Finally, this dissertation research plan intends 
to extend the framework to run in multiple TeraGrid sites to 
utilize both the fine and coarse grained parallelism to solve a 
highly complex groundwater source characterization problem 
with relatively more unknowns to resolve. 
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Figure 6. Fine Grained Parallelism, Number of Group =1, 

Task/Group=1:1 
 

0.01

0.1

1

10

1 2 4 8 16 32 64 128
Number of Groups

Ti
m

e 
(s

ec
)

Framework Time 
Ideal Speedup

 
Figure 7. Coarse Grained Parallelism, Procs/Group =1:1, 

Tasks/Group= 1:1 
 

9. ACKNOWLEDGEMENTS 
This work was supported by National Science Foundation under 
Grant Numbers BES-0312841 and BES-0238623. The authors are 
grateful for the TeraGrid supercomputer resources provided by 
NCSA. 

10. REFERENCES 
[1] Atmadja, J. and Bagtzoglou, A.C. (2001), “State of Art 

Report on Mathematical Methods for Groundwater Pollution 
source identification”, Environmental Forensics, 2(3) 205-
214, 2001b. 

[2] Back, T. (1997), editor. “Handbook of Evolutionary 
Computation”, IOP Publishing Ltd. and Oxford University 
Press. 

[3] Baugh, J.W. (2003), “Vitri 2.0.”, Available: 
http://www4.ncsu.edu/ jwb/vitri/. 

[4] Bear, J. (1979), “Hydraulics of groundwater”, New York: 
MCGraw-Hill. 

[5] Belegundu, D.A. and Chandrupatla, R.T. (1999), 
“Optimization concepts and applications in engineering”, 
Prentice Hall Inc. 

[6] Catlett, C. (2002), “The TeraGrid: A primer”, Available: 
http://www.teragrid.org/. 

[7] Gropp, W., Lusk, W. and Skjellum, A. (1999), “Using MPI: 
Portable Parallel Programming with the Message –Passing 
Interface”, 2nd The MIT Press, Cambridge, MA. 

[8] Johnson, V.M. and Rogers, L.L. (2000), “Accuracy of neural 
network approximation in simulation-optimization”, Journal 
of Water Resources planning and Management-ASCE, 
126(2):48-56 Mar/Apr. 

[9] Mahinthakumar, G. (1999), “PGREM3D: Massively Parallel 
Codes for Groundwater Flow and Transport”, Available: 
http://www4.ncsu.edu/~gmkumar/pgrem3d.pdf. 

[10] Mahinthakumar, G. and Sayeed M. (2005), “Hybrid genetic 
algorithm local search methods for solving groundwater 
source identification inverse problems”, Water Resource. 
Plng. and Mgmt., vol. 131, no. 1, pp. 45–57, Jan/Feb. 

[11] Miller, B.L. (1997), “Noise, sampling and genetic 
algorithms”, PhD Thesis, University of Illinois at Urbana-
Champaign. 

[12]  Mirghani, B., Tryby, M., Ranjithan, R., Baessler, D., 
Nicholas, K. and Mahinthakumar, K. (2005), “A Grid-
enabled Simulation-Optimization Framework for 
Environmental Characterization Problems”, Poster 
presentation at Super Computing Conf., Seattle WA. 

[13] Mirghani, B., Tryby, M., Baessler, D., Karonis, N., 
Ranjithan, R. and Mahinthakumar K. (2005), “Development 
and Performance Analysis of a Simulation-Optimization 
Framework on TeraGrid Linux Clusters”, The 6th LCI 
International Conference, Chapel Hill, NC. 

[14] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and 
Flannery, B.P. (1996), “Numerical   recipes in Fortran”, 
Second edition. Cambridge University Press, New York, 
NY. 

[15] Sun, N.Z. (1994), “Inverse problem in groundwater 
modeling, Theory and application of Transport in porous 
media”, (Ed. Jacob Bear), Vol. 6, Kluwer Academic 
Publishers, 337p. 

[16] Talbi, E.G. (2002), “A taxonomy of hybrid metaheuristics”, 
Journal of Heuristics Volume 8, P541-564. 

http://www.teragrid.org/
http://www4.ncsu.edu/~gmkumar/pgrem3d.pdf

	Evolutionary Algorithms-Based Computational Framework for So
	Baha Y. Mirghani
	Department of Civil, Construction and Environmental Engineer
	North Carolina State University, Raleigh, NC 27695
	+1-919-515-4342
	bmirgha@ncsu.edu
	ABSTRACT
	Inverse problems are relatively challenging to solve due to 
	Categories and Subject Descriptors
	I.2.8 [Artificial Intelligence] Heuristic methods, D.3.2 [Pr
	General Terms
	Algorithms, Management, Design
	Keywords
	Inverse problem, Simulation-Optimization, Algorithms, Grid C
	Permission to make digital or hard copies of all or part of 
	Conference’04, Month 1–2, 2004, City, State, Country.
	Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.
	INTRODUCTION
	System characterization from sparse observational data colle
	Many instances of inverse problems are present in real world
	In this study, instances of groundwater containment source i
	The solution complexity of such problems is proportional to 
	While evolutionary algorithms (EAs) are good global searcher
	Finally, given the computational resources demands and the i
	Section 2 describes the overall problem complexity and the s
	PROBLEM COMPLEXITY AND METHODOLOGY
	Generally speaking, inverse problems could be described as p
	Research over the past three decades has presented several s
	An S-O approach to solve an inverse problem is several order
	Recent research had shown that inverse problems may have sev
	High performance computing technologies can help expedite th
	GA-BASED OPTIMIZATION METHODS
	In this section, the development of embedded hybrid and nois
	Embedded Hybrid Methods

	Previous studies had shown that sequential hybrid methods ar
	Hooks-Jeeves GA Procedure

	Prior research efforts [16] report that the crossover operat
	Hooks-Jeeves GA{
	while {termination criteria is not met
	Evaluate the population ();
	Selection ();
	Sort population ();
	Elitism();
	Crossover {
	Create two populations:
	Population 1: top 5-10% of the sorted population
	Population 2: 95-90% of the population, randomly picked
	Hooks-Jeeves Crossover() on Population 1
	Standard GA Crossover() on Population 2
	}
	Mutation ()
	}
	}
	Conjugate Direction GA Procedure

	Similar to the Hooks-Jeeves hybrid GA procedure, an alternat
	Conjugate Direction GA{
	while {termination criteria is not met
	…
	Crossover {
	Create two populations:
	Population 1: top 5-10% of the sorted population.
	Population 2: 95-90% of the population, randomly picked
	Conjugate Direction Crossover() on Population 1
	Standard GA Crossover() on Population 2
	}
	...
	}
	}
	Archived Noisy Genetic Algorithms

	A GA-based noisy search method is developed to address real 
	Step 1. Generate a number of realizations (R1, 2, 3 … rn), w
	Step 2. Initialize the GA by creating an initial population 
	Step 3. Run the simulation model to determine the calculated
	Step 4. Evaluate the fitness of the calculated data from ste
	RSE =   (1)
	Step 5. The most fit solution, i.e., the best individual (BI
	Step 6. The standard GA is applied to the “selection poll” t
	Step 7. Repeat steps 3, 4, 5, and 6 until gn = TG. Note that
	The solution at the end of generation number TG will hopeful
	As explain above, the procedure utilized only one realizatio
	SIMULATION MODEL EFFIECINCY IMPROVEMENT
	Considering the computational burden of the S-O approach, tw
	Simulation Model Parallelism

	The simulation model used as an illustration in solving a gr
	The simulation model is implemented to accommodate fine and 
	Surrogate Modeling

	In addition to simulation model parallelism, surrogate model
	COMPUTATIONAL FRAMEWORK
	Framework Architecture

	This study is built upon the LAarge Scale Simulation-Optimiz
	Figure 1. A Schematic of Simulation Model Parallelization
	Several different search procedures have been implemented in
	Framework Parallelism

	The optimization application is coupled with the forward mod
	The computational experiments presented here were performed 
	Figure 2. A Schematic of the Framework Architecture
	APPLICATION DESCRIPTION AND EXPERIMENT SETTING
	In this study a groundwater contaminant source characterizat
	Application Description

	In the groundwater contaminant source identification (CSI) p
	(2)
	Subjected to:
	0  ≤  C0  ≤  Cmax     (3)
	0  ≤  xj  ≤  xmax; 0  ≤  yj  ≤  ymax; 0  ≤  zj  ≤  zmax j=1,
	x1  ≤  x2;  y1  ≤  y2;  z1  ≤  z2    (5)
	Depending on the number of contaminant sources, the number o
	Table 1. Hypothetical Domain Parameters
	Parameter
	Values for
	2-D problem
	Values for
	3-D problem
	Problem size
	51x31 grids
	51x31x11 grids
	Number of time steps
	100
	100
	Time step size (dt)
	2 day
	0.15day
	Grid spacing (dx, dy, dz)
	2 m
	2 m
	Dispersion parameters
	αL, αT, Dm
	1m, 1m, 0.01m2/d
	0.1m,0.1m,
	0.001m2/d
	Velocity
	1 m/day
	1 m/day
	True source location
	x1=8, y1=30,
	x2=12, y2=34, C0=70mg/L
	x1=2, y1=15, z1=6
	x2=5, y2=17, z2=8
	8, C0=70mg/L
	Description of the Test Problem Domain

	Hypothetical 2D and 3D fields were considered in this study.
	Forward Model and Search Parameter Setting

	For the 2D applications, the grid resolution for the simulat
	Table 2. Allowable Range of Decision Variables Values for 2D
	Variables
	Ranges
	x axis
	0-100
	y axis
	0-60
	z axis
	0-30
	C0
	0-100
	Table 3. GA Settings for the 2D Problem
	Parameter
	Setting for the MATLAB GA Toolbox
	Population Size
	200
	Population Type
	Double vector
	Generation
	100
	Selection
	Stochastic uniform
	Crossover
	Heuristic crossover, 0.8
	Mutation
	Gaussian mutation, 0.2
	Table 4. ES Settings used for the 3D Problem
	Parameter
	Setting for the ES
	Population Size
	300
	Population Type
	Double
	Generation
	100
	Sigma
	3.0
	Figure 3. Hypothetical Two-Dimensional Domain
	For the 3D applications, the grid resolution for the simulat
	Figure 4. Hypothetical Three-Dimensional Domain
	PRELIMINARY RESULTS
	The results section consists of the application results and 
	Application Results
	3D Problem Result using LASSO Framework


	A set of runs were conducted on the TeraGrid NCSA site to ad
	The number of forward model evaluations performed during a s
	Hooks-Jeeves Hybrid GA Procedure Results

	The new procedure was applied to the 2-dimensional source id
	Table 5. Hooks-Jeeves Hybrid GA and Standard GA Results for 
	True Location
	GA Toolbox
	Hooks-Jeeves GA
	x1 = 6
	6.01
	6
	Y1 = 28
	27.89
	28
	Y1 = 10
	10.52
	10
	Y2 = 32
	31.94
	32
	C0 = 70
	61.27
	67.2
	Objective Fun. Error
	0.011
	0.004
	Solution Error
	3.49 %
	0.8 %
	Neural Network-Based Surrogate Model Results

	A surrogate model constructed and trained using neural netwo
	Table 6. Source Characterization Based on the Surrogate Mode
	True Location
	Simulation Model
	Surrogate Model (NN)
	x1 = 6
	6.01
	5.97
	y1 = 28
	27.89
	27.79
	y1 = 10
	10.52
	10.41
	y2 = 32
	31.94
	32.22
	C0 = 70
	61.27
	60.73
	Objective Function Error
	0.011
	0.023
	Solution Error
	3.49%
	3.68%
	Framework Performance Results

	Additional sets of runs were conducted on the TeraGrid NCSA 
	The second set of runs was used to investigate coarse graine
	Figure 5. Estimated and True Source location for the Problem
	FINAL REMARKS AND FUTURE WORK
	This paper describes my dissertation research that is focuse
	A set of preliminary results for the hybrid GA procedure and
	Future work includes incorporating the embedded hybrid metho
	Figure 6. Fine Grained Parallelism, Number of Group =1, Task
	Figure 7. Coarse Grained Parallelism, Procs/Group =1:1, Task
	ACKNOWLEDGEMENTS
	This work was supported by National Science Foundation under
	REFERENCES
	Atmadja, J. and Bagtzoglou, A.C. (2001), “State of Art Repor
	Back, T. (1997), editor. “Handbook of Evolutionary Computati
	Baugh, J.W. (2003), “Vitri 2.0.”, Available: http://www4.ncs
	Bear, J. (1979), “Hydraulics of groundwater”, New York: MCGr
	Belegundu, D.A. and Chandrupatla, R.T. (1999), “Optimization
	Catlett, C. (2002), “The TeraGrid: A primer”, Available: htt
	Gropp, W., Lusk, W. and Skjellum, A. (1999), “Using MPI: Por
	Johnson, V.M. and Rogers, L.L. (2000), “Accuracy of neural n
	Mahinthakumar, G. (1999), “PGREM3D: Massively Parallel Codes
	Mahinthakumar, G. and Sayeed M. (2005), “Hybrid genetic algo
	Miller, B.L. (1997), “Noise, sampling and genetic algorithms
	Mirghani, B., Tryby, M., Ranjithan, R., Baessler, D., Nichol
	Mirghani, B., Tryby, M., Baessler, D., Karonis, N., Ranjitha
	Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery,
	Sun, N.Z. (1994), “Inverse problem in groundwater modeling, 
	Talbi, E.G. (2002), “A taxonomy of hybrid metaheuristics”, J

