
An Artificial Life Classifier System for Real-Valued Inputs
 Julian Bishop

Artificial Intelligence Center
University of Georgia

Athens, GA 30602-7415
+1 706 254 0546

julian1@uga.edu

ABSTRACT
Classification problems with real-valued inputs still represent a
challenge for Learning Classifier Systems (LCS), particularly
when the training data is distributed non-uniformly or different
classes cover different proportions of the input space. This
motivates the design of a new LCS following an Artificial Life
model. Initial results are encouraging and future work is outlined.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning - concept learning; I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and
Search – heuristic methods.

General Terms
Algorithms

Keywords
ALCSR, A-Life, Learning Classifier System, Endogenous fitness,
Reinforcement Learning (RL), Genetic Based Machine Learning.

1. INTRODUCTION
This paper presents ongoing work towards the development of a
Michigan-style LCS for handling real-valued inputs and discrete
actions. This work grew from a project to implement Wilson’s
XCSR [3][6][7] which provides many ideas that are important
here. However, this work is guided by its own artificial life
model, and the resulting LCS, named ALCSR, is not an XCS
variant in my opinion. ALCSR employs an endogenous fitness
scheme inspired by Holland’s ECHO model [4]. A similar
endogenous fitness scheme has already been shown to work in an
LCS by Booker [1][2], although Booker’s system is quite
different overall handling binary inputs (0,1,#) and employing
partial matching which is not used here.

Section 2 sets out the goals of this work. Section 3 describes
ALCSR, guided by an abstract model of how a population of
artificial organisms might evolve usefully in the RL setting. Initial
experiments are presented in Section 4. Section 5 discusses the
results and Section 6 concludes and outlines ongoing work.

2. SYSTEM DEVELOPMENT GOALS
(1) Problem: The first version of ALCSR (presented here) should
handle noise-free single-step classification problems with discrete
fixed reward levels P over the space of continuous input values X
and discrete actions A.

(2) Extensions: The system should be extensible to handle noisy
problems and also multi-step problems with delayed rewards.

(3) Model: ALCSR should learn a complete map (X × A => P) of
the reward levels that is independent of any exploitation policy
(like an accuracy-based system such as XCS).

(4) Performance: In the absence of noise, ALCSR should achieve
stable perfect performance using a simple exploitation policy (at
least in single-step classification problems).

(5) Niching: All niches in the input space should be discovered
and populated regardless of their relative sizes, or the relative
frequencies with which representative inputs occur. In other
words, if a niche exists, ALCSR should learn accurate rules to
cover it even if it is small and surrounded by much larger niches
of different types.

(6) Optimality: The population should continually evolve toward
the minimal set of maximally general rules that could solve the
problem without becoming stalled on a sub-optimal population.

(7) Currency: Each rule in the population should have its own
reservoir of currency (like a strength-based system) so that
ALCSR could be extended to investigate ways in which
transactions between rules might improve the system’s
capabilities and performance.

(8) EA Scope: ALCSR is intended to serve as a platform for
broadening the scope of the evolutionary algorithm within an
LCS. It would be interesting to extend the rule’s genetic
representation to facilitate the evolution of new features. This
agenda will include the evolution of condition morphologies and
cooperative interactions between rules.

3. SYSTEM DESCRIPTION
3.1 Natural Problem Topography

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

A-Life Model: Each data-point/training example experienced by
ALCSR is a vector X of n real values, and is taken to represent a
single unit of food welling up from the ground. The n real values
locate the unit of food on an n-dimensional landscape in the space
of possible system inputs. If the system has c potential actions,
then c completely separate landscapes are considered to exist, one
for each action. The type of food is not determined until ALCSR

has executed an action and a non-zero reward has been returned to
it. The reward level identifies the type of food; the quantity is
always 1 unit.

Each landscape is to be colonized by a population of organisms
that cannot move around once established. Organisms on different
landscapes are considered to be completely different major
species and are never permitted to interact in any way. Within
each landscape, organisms may be adapted to eating just one type
of food. Organisms that are adapted to eating different types of
food are considered to be different sub-species. In order to
survive, each organism must maintain positive strength by feeding
on the appropriate food-type for its sub-species.

Each organism has a body which covers a region of the landscape
within which it can feed. The size of an organism is defined as the
n-dimensional hyper-volume it covers on the landscape. Multiple
organisms can cover the same region of landscape.

A-Life term LCS Analogue
Landscape Map of reward levels over the space of

system inputs for a single action.
Organism Rule / Classifier
Body Rule / Classifier condition
Size Rule generality
Food, 1 unit Data-point / training example
Food-type Reward level
Major species Rules predicting for the same action
Population Set of all rules predicting for the same action
Sub-species Rules predicting same reward re same action

Rule Implementation: A rule is completely described by
{Condition, Action, Prediction, Strength, Experience, Mature,
Starved, CanBreed, Damaged}. Condition is the conjunction of n
half-open intervals [li, ui), each represented as an ordered pair of
bounds, which is satisfied if li ≤ xi < ui. The entire condition
describes a hyper-rectangle in the space of possible inputs. The
generality of a rule is the hyper-volume of its condition. Hyper-
volumes are maintained in normalized form such that a volume of
1 covers the entire known landscape. Action is actually implied
by a rule’s containing population where it is represented as an
integer code. Prediction is a real number representing the
expected reward level should Action be executed. Strength is a
real number representing the rule’s state of health. Experience is
an integer representing how many times the rule has been in the
action set. The remaining four attributes are Boolean flags.

3.2 Performance System
Implementation: For each population, all rules whose condition
is satisfied by the input vector are added to a potential action set;
there is a separate potential action set for each possible action. If
any of the potential action sets are empty, one of the
corresponding actions is selected at random for exploration. If no
potential action set is empty then with probability P(explore) an
action is chosen at random for exploration. With probability 1-
P(explore) this operating cycle is treated as a test problem and the
rules in each potential action set take a weighted vote on what the
reward level will be if their corresponding action is executed. The
weight for each rule is calculated as its strength per unit hyper-
volume of its condition. A rule that is not mature is allowed to
vote, but the weight of its vote is reduced by a factor of 10. The
action with the highest predicted reward level is selected. This

exploitation scheme is based on the prediction array used in XCS
but with strength per unit hyper-volume replacing fitness. ALCSR
presents its selected action to its environment which returns one
of a finite set of real-valued reward levels. All experiments so far
have used {+1000, -1000}. In test problems, this is the end of the
operating cycle.

3.3 Accuracy Pressure
A-Life Model: Each single unit of food is evenly split m ways
between all m organisms covering the location of the food on the
landscape corresponding to the action just executed by the
system. Whether or not the consuming organisms benefit from
this food depends upon how well adapted they are to metabolizing
food of that type. The gain in strength to each organism is offset
by a fixed cost of metabolism and the potentially fatal loss of
strength that occurs if an organism is poisoned by food of a type it
is not well adapted for. The less well adapted the more loss
occurs. An organism whose strength becomes negative is
considered to have died. This is the death pressure against mal-
adaptation. The fixed cost of metabolism introduces an additional
pressure against overcrowding.

A-Life term LCS Analogue
Feeding organisms Rules in the action set
Number of times fed Action set experience
Degree of adaptation Accuracy of reward prediction
Poisoned by food Inaccurate reward prediction
Starved rl.Strength <= 0
Damaged rl.Error > 0.01
Organism dies Rule removed from population

Reinforcement Implementation: The strength of each rule rl in
the action set is updated using:

rl.Strength += (1 – rl.Error · ErrorCost) / m – MetabolismCost

rl.Error is the rule’s prediction error as a fraction of the reward
actually returned; ErrorCost is the damage that would occur for a
100% error; m is the number of rules in the action set;
MetabolismCost is a flat cost set to 1/50. If the action set contains
more than 49 rules, then they cannot gain in strength even if they
all make zero error, and it is possible for the weaker rules to
starve to death due to overcrowding. ErrorCost is set to 2000 to
provide a very strong death pressure against inaccurate rules; it is
insensitive to relative accuracy (differing from XCS).

3.4 Genetic Generalization Pressure
3.4.1 Creating More General Rules
A-Life Model: A breeding pool is formed by an organism and its
kb-nearest neighbors on the landscape any time a sufficient
proportion of them satisfy breeding criteria (currently half or
more). Breeding criteria are that all organisms that will participate
in a breeding pool must be of the same sub-species and must have
their strength and experience above fixed thresholds per unit
hyper-volume of their bodies. Setting these thresholds per unit
hyper-volume is intended to result in all organisms being fairly
evaluated for breeding. Furthermore, if food is uniformly
distributed over the landscape then the breeding rate should be
about the same in all niches regardless of their size. Requiring
that a certain proportion of an organism’s kb-nearest neighbors
satisfy breeding criteria should focus breeding within niches
rather than between them. In our experiments kb = 12.

Once a breeding pool is formed, breeding events occur in it until
the breeding criteria are no longer satisfied by enough of its
members. A breeding event consists of two distinct parents
randomly selected (but not removed) from the breeding pool
producing a single offspring of the same sub-species by crossover,
mutation and strength transfer. Crossover provides the genetic
pressure toward the production of increasingly large organisms,
i.e. offspring tend to be larger than their parents. If the resulting
offspring’s body precisely duplicates that of another organism
then small mutations are applied until the offspring is unique.

A-Life term LCS Analogue
Distance between
organisms

Euclidean distance between geometric
centers of rule conditions

Mature rl.Experience > MatureLevel · Generality
CanBreed rl.Strength >= BreedLevel · Generality

Implementation: MatureLevel = 500. Crossover: the condition of
the offspring is formed such that with probability 2/3 in each
dimension, it will be a generalization of its parents. With
probability 1/3 in each dimension, the offspring’s condition will
be a copy of one of its parents, picked randomly as in uniform
crossover. Mutation: with probability 1/12 each condition bound
is independently mutated by a random amount, at most 1% of the
corresponding input’s value range. Strength Transfer: the strength
each parent transfers to the offspring is calculated as

P1.Transfer = stf · BreedLevel · Min(P1.Gen, O.Gen · P1.RelSize)
P2.Transfer = stf · BreedLevel · Min(P2.Gen, O.Gen · P2.RelSize)

P1 and P2 denote the parents; O denotes the offspring; Gen
denotes generality which is a normalized hyper-volume; stf
denotes StrengthTransferFraction = 0.43; BreedLevel = 376; and

Px.RelSize = Px.Gen / (P1.Gen + P2.Gen)

The offspring’s experience is set to zero and all its flags are set to
False.

3.4.2 Removing Less General Rules
A-Life Model: Organisms of the same sub-species that cover the
same region of the landscape are in competition for the same units
of food, and so the larger organisms constantly initiate combat
with the smaller ones, attempting to kill and eat them. However,
such attacks are only made by mature organisms against other
mature organisms, and are only successful if the aggressor has
greater strength than its intended victim. Conveniently, the cost to
the aggressor of killing another organism is equal to that
organism’s strength and therefore precisely replenished by eating
its dead body. A further constraint on successful attacks is that the
aggressor must fully engulf (logically subsume) its victim. (This
could be relaxed to investigate fuzzy subsumption schemes and a
stochastic combat model.) In the present model, all constraints are
enforced and all possible fights are always played out among the
feeding organisms on each system cycle. This is the death
pressure against needlessly small organisms (over specific rules).

3.5 Covering Pressure for Specificity
A-Life Model: When an organism dies due to eating too much of
the wrong type of food its corpse remains inactive on the
landscape, and those parts of its body that caused it to die are
wizened and infertile. However, any part of the organism’s body
that had allowed it to gain strength from feeding is considered to

have the potential to sprout new organisms of the same sub-
species. Such sprouting only occurs in the absence of other rules
of that sub-species on that part of the landscape. Sprouting is
intended to produce new organisms with at least one surface of
their body likely to be in the region of the boundary between
different food-types on the landscape. This is the pressure toward
the production of organisms that are small enough to eat only a
single type of food (rules that are specific enough to make no
prediction errors). Additionally, sprouting should increase the
chance of introducing useful alleles into the sub-species’ gene
pool as new organisms are created progressively closer to the
food-type boundaries the sub-species cannot cross.
When ALCSR is initiated there are no organisms and the
landscapes are completely undiscovered so a seeding process is
required to get the populations started. Seeding is stopped when
there are enough corpses for sprouting to take over.

A-Life term LCS Analogue
Seeding Traditional random covering
Sprouting ALCSR Adaptive covering
Food-type boundary Concept decision surface

Implementation: This step is only performed if the system has
just explored the action corresponding to an empty potential
action set. A new rule is created with zero strength, zero
experience and all flags set to False. Its prediction is set to the
reward level just returned. Defining the new rule’s condition is
more complicated. Each population has associated with it a set,
termed mausoleum, for storing rules that have died due to making
inaccurate predictions. The new rule’s condition bounds are
randomly generated as

li = xi – Rnd[0, LowerCoverFractioni·ri) and
ui = xi + Rnd[0, UpperCoverFractioni·ri) where ri is input i’s range

If there are fewer than 20 rules in the relevant mausoleum, then
all CoverFractions are set to 0.5. If there are 20 or more rules in
the relevant mausoleum then the CoverFractions are set by
adaptive covering. This is the most challenging part of the
artificial life model to implement because it requires the rules in
the mausoleum to know in which regions of their conditions their
predictions were accurate or inaccurate, which must be estimated.

Each dimension i of a rule’s condition has four attributes:
StrengthCenteri, WeaknessCenteri, LowerCoverFractioni and
UpperCoverFractioni. StrengthCenteri and WeaknessCenteri are
maintained as the average ordinate value in each dimension i of
all correct and incorrect predictions respectively. When a rule dies
with Damaged set to True, it is added to the appropriate
mausoleum and its CoverFractions are set to represent its size in
each dimension as fractions of each full attribute range. The
dimension in which StrengthCenter and WeaknessCenter are
furthest apart is guessed as being most likely to span a decision
surface, and one of the rule’s CoverFractions in that dimension is
reduced accordingly by a factor of 2. If the StrengthCenter has a
lower value than the WeaknessCenter then the
UpperCoverFraction is chosen as the one to be reduced, otherwise
the LowerCoverFraction is reduced. The CoverFractions of the
dead rule’s kc-nearest neighbors in the mausoleum are updated to
reflect this new information using a Widrow-Hoff update in
which the learning rate is inversely proportional to the distance of
the neighbor.

When adaptive covering creates a new rule, the kc corpses in the
mausoleum nearest to the input vector X take an inverse-distance
weighted vote on what values should be assigned to the new
rule’s CoverFractions, which are then used to generate the
condition bounds. If a condition lower or upper bound is
generated that lies outside the range of values that ALCSR has
experienced in that dimension, the bound is set to the minimum or
maximum value experienced respectively. Note that this
increases the probability of generating a bound equal to the range
limit as discussed in [5]. In our experiments kc = 5.

4. INITIAL EXPERIMENTS
In [7], Wilson presented the results of two experiments in which
XCSR learned a real-valued version of the Boolean 6-multiplexer
function. Instead of 6 binary values, the input vector consists of 6
real values 0.0 ≤ xi < 1.0, generated randomly with uniform
distribution. In each dimension i a decision threshold is used to
interpret the component value as 0 or 1 so that the multiplexer can
be applied. In order to present our initial results in an established
context, Wilson’s experiments have been repeated using the
implementation of ALCSR described in Section 3, run for
300,000 system cycles with P(Explore) = 0.9. As in [7], each
experiment was run five times. Results with ALCSR were found
to vary very little between runs, so the figures below present
results from single representative runs.

In the following results percentage performance is the
classification rate over the previous 50 test problems. Where 50
test problems do not provide sufficient precision to report results,
other measures are stated specifically. System error is calculated
as a moving average, also over the previous 50 test problems, and
is presented as a fraction of the reward range (2000) in these
experiments.

Experiment 1: All decision thresholds are set to 0.5. In [7]
Wilson reports that XCSR achieves a maximum performance of
approximately 98% after about 15,000 explore problems. Figure 1
presents typical performance and system error for ALCSR. In
15,000 explore problems ALCSR achieves a lower performance
of approximately 95%, but continues to improve reaching 98%
after about 35,000 explore problems. For the last 10,000 test
problems in a run (after about 180,000 explore problems),
ALCSR typically provides the correct classification for more than
9,970.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50000 100000 150000 200000 250000

Explore Problems

Performance: fraction correctly classified

System Error: prediction error / 2000

Figure 1. ALCSR Performance and System Error in Experiment 1

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50000 100000 150000 200000 250000

Explore Problems

Total Population

Births from GA

Deaths from Inaccuracy

Births from Covering

Deaths from Subsumption

Figure 2. ALCSR Population Dynamics in Experiment 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50000 100000 150000 200000 250000

Explore Problems

Performance: fraction correctly classified

System Error: prediction error / 2000

Figure 3. ALCSR Performance and System Error in Experiment 2

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50000 100000 150000 200000 250000

Explore Problems

Deaths from Inaccuracy

Births from GA

Births from Covering

Deaths from Subsumption

Total Population

Figure 4. ALCSR Population Dynamics in Experiment 2

Figure 2 shows how the population size varies during a typical
run, and also the number of births and deaths. The total rule count
peaks around 2,000 after about 20,000 explore problems and then
falls to around 535 by the end of the experiment, although this
varies more than the performance results: the smallest final
population was 452, and the largest was 607.

Experiment 2: The decision thresholds are set at 0.25 and 0.75 in
alternate dimensions which skews the probability of generating
example points in the different niches. In [7] Wilson reports that
XCSR achieves a maximum performance of approximately 93%
after about 10,000 explore problems. Figure 3 presents typical
performance and system error for ALCSR. In 10,000 explore
problems ALCSR also achieves 93% performance, but again,
continually improves thereafter, reaching 98% after about 50,000
explore problems. Over the last 10,000 test problems in a run,
ALCSR’s performance is the same as in Experiment 1.

Figure 4 shows how the population size varies during a typical
run, and also the number of births and deaths. The total rule count
peaks around 2,100 after about 27,000 explore problems and then
falls to around 950 by the end of the experiment. The smallest
final population was 859, and the largest was 1112.

5. DISCUSSION
The version of XCSR used in [7] employed a center-spread
representation for its condition bounds, while ALCSR uses
ordered bounds. In [5], Stone and Bull investigate these
representations for XCSR and also an unordered bounds
representation, providing many useful insights. They found
system performance for the real-valued 6-multiplexor consistent
with Wilson’s results in [7] and affected very little by the choice
of representation (although other measures were affected as was
performance on other problems).

The fact that ALCSR’s best reached classification performance in
Experiment 2 is as good as Experiment 1 is encouraging with
respect to the Niching goal (5). However, Experiment 2 does
cause ALCSR to learn at a slower rate than in Experiment 1, and
produce slightly larger populations.

Compared to XCSR, ALCSR learns much more slowly but
eventually improves beyond XCSR’s maximum performance
achieving 99.7% measured over 10,000 test problems, which is
encouraging with respect to the Performance goal (4). An analysis
of why ALCSR still makes any mistakes at all would be of
interest.

Examinations of the final populations from both experiments have
identified very good representatives of all niches, even the
smallest, which is encouraging with respect to the Model goal (3).
However, the majority of the rules in the final populations are
very specific rules clustered around the decision surfaces in the
input space. The adaptive covering scheme was designed to have
this effect so that increasingly useful condition bounds (alleles)
would continue to be discovered throughout the run. However, in
its current implementation adaptive covering appears to be too
aggressive for the system to achieve the Optimality goal (6),
unnecessarily bloating the population. About half the rules in each
final population are so specific that they very rarely participate in
system operation and are mostly a drain on computing resources.
If the persistence of these rules could be avoided, the Optimality
goal (6) would be within reach.

6. CONCLUSIONS AND ONGOING WORK
ALCSR has a number of features that make it unusual among
learning classifier systems. Specifically: ALCSR identifies
individuals suitable for breeding by the use of speciation and by

exploiting the natural topography of the problem; ALCSR
employs an endogenous fitness scheme; GA timing and
population size are emergently controlled; ALCSR uses adaptive
covering which continues throughout training to provide the GA
with increasingly useful alleles so mutation is not relied upon for
allele discovery and is just used to avoid duplicate conditions;
Since there are no duplicate rules, numerosity is obviated.

Although some of the goals set out in Section 2 have not yet been
addressed, inroads have been made towards goals 1, 3, 4, 5, 6 and
7, and Section 2 represents an agenda for ongoing research.
Additionally, a minimal set of necessary system parameters for
ALCSR needs to be identified, and self-adaptive parameter
schemes investigated.

The immediate priority for ALCSR is an analysis of the current
implementation’s population dynamics in order to understand and
correct undesirable characteristics such as slow learning and over
specialization at the decision surfaces. Such analysis will
probably result in modifications to the implementation and
possibly to the artificial life model as well. The modified ALCSR
should also be tested against a wider range of problems such as
more challenging multiplexers and the Checkerboard problem
described in [5].

7. ACKNOWLEDGEMENTS
I am grateful to Alwyn Barry, Stewart Wilson, Khaled Rasheed,
Don Potter, Brian Smith and Daniel Tuohy for helpful comments
and discussions about this work and/or related issues.

8. REFERENCES
[1] Booker, L.B. (2000). “Do We Really Need to Estimate Rule

Utilities in Classifier Systems?” Lanzi, P.L., Stolzmann, W.,
Wilson, S.W. (eds.) Learning Classifier Systems: From
Foundations to Applications, pp 125-141

[2] Booker, L.B. (2001). “Classifier systems, endogenous
fitness, and delayed rewards: A preliminary investigation” In
Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt,
H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon,
M.H., Burke, E., eds., Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001),
pages 921-926, San Francisco, California, USA, 7-11 July
2001.

[3] Butz, V.B., Wilson, S.W. (2001). “An algorithmic
Description of XCS” in Lanzi, P.L., Stolzmann, W., Wilson,
S.W. (eds.) Advances in Learning Classifier Systems, pp
253-272

[4] Holland, J.H. (1995). “Hidden Order: How Adaptation
Builds Complexity” Helix Books.

[5] Stone, C., Bull, L. (2003). “For Real! XCS with Continuous-
Valued Inputs” Evolutionary Computation 11(3): 299-336

[6] Wilson, S.W. (1995). “Classifier Fitness Based on
Accuracy” Evolutionary Computation 3(2): 149-175

[7] Wilson, S.W. (2000). “Get Real! XCS with Continuous-
Valued Inputs”. Lanzi, P.L., Stolzmann, W., Wilson, S.W.
(eds.) Learning Classifier Systems: From Foundations to
Applications, pp 209-219

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

