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ABSTRACT 
Classification problems with real-valued inputs still represent a 
challenge for Learning Classifier Systems (LCS), particularly 
when the training data is distributed non-uniformly or different 
classes cover different proportions of the input space. This 
motivates the design of a new LCS following an Artificial Life 
model. Initial results are encouraging and future work is outlined. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning - concept learning; I.2.8 
[Artificial Intelligence]: Problem Solving, Control Methods, and 
Search – heuristic methods. 

General Terms 
Algorithms 

Keywords 
ALCSR, A-Life, Learning Classifier System, Endogenous fitness, 
Reinforcement Learning (RL), Genetic Based Machine Learning. 

1. INTRODUCTION 
This paper presents ongoing work towards the development of a 
Michigan-style LCS for handling real-valued inputs and discrete 
actions. This work grew from a project to implement Wilson’s 
XCSR [3][6][7] which provides many ideas that are important 
here. However, this work is guided by its own artificial life 
model, and the resulting LCS, named ALCSR, is not an XCS 
variant in my opinion. ALCSR employs an endogenous fitness 
scheme inspired by Holland’s ECHO model [4]. A similar 
endogenous fitness scheme has already been shown to work in an 
LCS by Booker [1][2], although Booker’s system is quite 
different overall handling binary inputs (0,1,#) and employing 
partial matching which is not used here. 

Section 2 sets out the goals of this work. Section 3 describes 
ALCSR, guided by an abstract model of how a population of 
artificial organisms might evolve usefully in the RL setting. Initial 
experiments are presented in Section 4. Section 5 discusses the 
results and Section 6 concludes and outlines ongoing work. 

2. SYSTEM DEVELOPMENT GOALS 
(1) Problem: The first version of ALCSR (presented here) should 
handle noise-free single-step classification problems with discrete 
fixed reward levels P over the space of continuous input values X 
and discrete actions A. 

(2) Extensions: The system should be extensible to handle noisy 
problems and also multi-step problems with delayed rewards. 

(3) Model: ALCSR should learn a complete map (X × A => P) of 
the reward levels that is independent of any exploitation policy 
(like an accuracy-based system such as XCS). 

(4) Performance: In the absence of noise, ALCSR should achieve 
stable perfect performance using a simple exploitation policy (at 
least in single-step classification problems). 

(5) Niching: All niches in the input space should be discovered 
and populated regardless of their relative sizes, or the relative 
frequencies with which representative inputs occur. In other 
words, if a niche exists, ALCSR should learn accurate rules to 
cover it even if it is small and surrounded by much larger niches 
of different types. 

(6) Optimality: The population should continually evolve toward 
the minimal set of maximally general rules that could solve the 
problem without becoming stalled on a sub-optimal population. 

(7) Currency: Each rule in the population should have its own 
reservoir of currency (like a strength-based system) so that 
ALCSR could be extended to investigate ways in which 
transactions between rules might improve the system’s 
capabilities and performance. 

(8) EA Scope: ALCSR is intended to serve as a platform for 
broadening the scope of the evolutionary algorithm within an 
LCS. It would be interesting to extend the rule’s genetic 
representation to facilitate the evolution of new features. This 
agenda will include the evolution of condition morphologies and 
cooperative interactions between rules. 

3. SYSTEM DESCRIPTION 
3.1 Natural Problem Topography 
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A-Life Model: Each data-point/training example experienced by 
ALCSR is a vector X of n real values, and is taken to represent a 
single unit of food welling up from the ground. The n real values 
locate the unit of food on an n-dimensional landscape in the space 
of possible system inputs. If the system has c potential actions, 
then c completely separate landscapes are considered to exist, one 
for each action. The type of food is not determined until ALCSR 

 



has executed an action and a non-zero reward has been returned to 
it. The reward level identifies the type of food; the quantity is 
always 1 unit.  

Each landscape is to be colonized by a population of organisms 
that cannot move around once established. Organisms on different 
landscapes are considered to be completely different major 
species and are never permitted to interact in any way. Within 
each landscape, organisms may be adapted to eating just one type 
of food. Organisms that are adapted to eating different types of 
food are considered to be different sub-species. In order to 
survive, each organism must maintain positive strength by feeding 
on the appropriate food-type for its sub-species. 

Each organism has a body which covers a region of the landscape 
within which it can feed. The size of an organism is defined as the 
n-dimensional hyper-volume it covers on the landscape. Multiple 
organisms can cover the same region of landscape.  

A-Life term LCS Analogue 
Landscape Map of reward levels over the space of 

system inputs for a single action. 
Organism Rule / Classifier 
Body Rule / Classifier condition 
Size Rule generality 
Food, 1 unit Data-point / training example 
Food-type Reward level 
Major species Rules predicting for the same action 
Population Set of all rules predicting for the same action 
Sub-species Rules predicting same reward re same action 

Rule Implementation: A rule is completely described by 
{Condition, Action, Prediction, Strength, Experience, Mature, 
Starved, CanBreed, Damaged}. Condition is the conjunction of n 
half-open intervals [ li, ui ), each represented as an ordered pair of 
bounds, which is satisfied if li ≤ xi < ui. The entire condition 
describes a hyper-rectangle in the space of possible inputs. The 
generality of a rule is the hyper-volume of its condition. Hyper-
volumes are maintained in normalized form such that a volume of 
1 covers the entire known landscape. Action is actually implied 
by a rule’s containing population where it is represented as an 
integer code. Prediction is a real number representing the 
expected reward level should Action be executed. Strength is a 
real number representing the rule’s state of health. Experience is 
an integer representing how many times the rule has been in the 
action set. The remaining four attributes are Boolean flags. 

3.2 Performance System 
Implementation: For each population, all rules whose condition 
is satisfied by the input vector are added to a potential action set; 
there is a separate potential action set for each possible action. If 
any of the potential action sets are empty, one of the 
corresponding actions is selected at random for exploration. If no 
potential action set is empty then with probability P(explore) an 
action is chosen at random for exploration. With probability 1-
P(explore) this operating cycle is treated as a test problem and the 
rules in each potential action set take a weighted vote on what the 
reward level will be if their corresponding action is executed. The 
weight for each rule is calculated as its strength per unit hyper-
volume of its condition. A rule that is not mature is allowed to 
vote, but the weight of its vote is reduced by a factor of 10. The 
action with the highest predicted reward level is selected. This 

exploitation scheme is based on the prediction array used in XCS 
but with strength per unit hyper-volume replacing fitness. ALCSR 
presents its selected action to its environment which returns one 
of a finite set of real-valued reward levels. All experiments so far 
have used {+1000, -1000}. In test problems, this is the end of the 
operating cycle. 

3.3 Accuracy Pressure 
A-Life Model: Each single unit of food is evenly split m ways 
between all m organisms covering the location of the food on the 
landscape corresponding to the action just executed by the 
system. Whether or not the consuming organisms benefit from 
this food depends upon how well adapted they are to metabolizing 
food of that type. The gain in strength to each organism is offset 
by a fixed cost of metabolism and the potentially fatal loss of 
strength that occurs if an organism is poisoned by food of a type it 
is not well adapted for. The less well adapted the more loss 
occurs. An organism whose strength becomes negative is 
considered to have died. This is the death pressure against mal-
adaptation. The fixed cost of metabolism introduces an additional 
pressure against overcrowding. 

A-Life term LCS Analogue 
Feeding organisms Rules in the action set 
Number of times fed Action set experience 
Degree of adaptation Accuracy of reward prediction 
Poisoned by food Inaccurate reward prediction 
Starved rl.Strength <= 0 
Damaged rl.Error > 0.01 
Organism dies Rule removed from population 

Reinforcement Implementation: The strength of each rule rl in 
the action set is updated using:  

rl.Strength += (1 – rl.Error · ErrorCost) / m – MetabolismCost 

rl.Error is the rule’s prediction error as a fraction of the reward 
actually returned; ErrorCost is the damage that would occur for a 
100% error; m is the number of rules in the action set;  
MetabolismCost is a flat cost set to 1/50. If the action set contains 
more than 49 rules, then they cannot gain in strength even if they 
all make zero error, and it is possible for the weaker rules to 
starve to death due to overcrowding. ErrorCost is set to 2000 to 
provide a very strong death pressure against inaccurate rules; it is 
insensitive to relative accuracy (differing from XCS). 

3.4 Genetic Generalization Pressure 
3.4.1 Creating More General Rules 
A-Life Model: A breeding pool is formed by an organism and its 
kb-nearest neighbors on the landscape any time a sufficient 
proportion of them satisfy breeding criteria (currently half or 
more). Breeding criteria are that all organisms that will participate 
in a breeding pool must be of the same sub-species and must have 
their strength and experience above fixed thresholds per unit 
hyper-volume of their bodies. Setting these thresholds per unit 
hyper-volume is intended to result in all organisms being fairly 
evaluated for breeding. Furthermore, if food is uniformly 
distributed over the landscape then the breeding rate should be 
about the same in all niches regardless of their size. Requiring 
that a certain proportion of an organism’s kb-nearest neighbors 
satisfy breeding criteria should focus breeding within niches 
rather than between them. In our experiments kb = 12. 



Once a breeding pool is formed, breeding events occur in it until 
the breeding criteria are no longer satisfied by enough of its 
members. A breeding event consists of two distinct parents 
randomly selected (but not removed) from the breeding pool 
producing a single offspring of the same sub-species by crossover, 
mutation and strength transfer. Crossover provides the genetic 
pressure toward the production of increasingly large organisms, 
i.e. offspring tend to be larger than their parents. If the resulting 
offspring’s body precisely duplicates that of another organism 
then small mutations are applied until the offspring is unique. 

A-Life term LCS Analogue 
Distance between 
organisms 

Euclidean distance between geometric 
centers of rule conditions 

Mature rl.Experience > MatureLevel · Generality 
CanBreed rl.Strength >= BreedLevel · Generality 

Implementation: MatureLevel = 500. Crossover: the condition of 
the offspring is formed such that with probability 2/3 in each 
dimension, it will be a generalization of its parents. With 
probability 1/3 in each dimension, the offspring’s condition will 
be a copy of one of its parents, picked randomly as in uniform 
crossover.  Mutation: with probability 1/12 each condition bound 
is independently mutated by a random amount, at most 1% of the 
corresponding input’s value range. Strength Transfer: the strength 
each parent transfers to the offspring is calculated as 

P1.Transfer = stf · BreedLevel · Min(P1.Gen, O.Gen · P1.RelSize) 
P2.Transfer = stf · BreedLevel · Min(P2.Gen, O.Gen · P2.RelSize) 

P1 and P2 denote the parents; O denotes the offspring; Gen 
denotes generality which is a normalized hyper-volume; stf 
denotes StrengthTransferFraction = 0.43; BreedLevel = 376; and 

Px.RelSize = Px.Gen / (P1.Gen + P2.Gen) 

The offspring’s experience is set to zero and all its flags are set to 
False. 

3.4.2 Removing Less General Rules 
A-Life Model: Organisms of the same sub-species that cover the 
same region of the landscape are in competition for the same units 
of food, and so the larger organisms constantly initiate combat 
with the smaller ones, attempting to kill and eat them. However, 
such attacks are only made by mature organisms against other 
mature organisms, and are only successful if the aggressor has 
greater strength than its intended victim. Conveniently, the cost to 
the aggressor of killing another organism is equal to that 
organism’s strength and therefore precisely replenished by eating 
its dead body. A further constraint on successful attacks is that the 
aggressor must fully engulf (logically subsume) its victim. (This 
could be relaxed to investigate fuzzy subsumption schemes and a 
stochastic combat model.) In the present model, all constraints are 
enforced and all possible fights are always played out among the 
feeding organisms on each system cycle. This is the death 
pressure against needlessly small organisms (over specific rules). 

3.5 Covering Pressure for Specificity 
A-Life Model: When an organism dies due to eating too much of 
the wrong type of food its corpse remains inactive on the 
landscape, and those parts of its body that caused it to die are 
wizened and infertile. However, any part of the organism’s body 
that had allowed it to gain strength from feeding is considered to 

have the potential to sprout new organisms of the same sub-
species. Such sprouting only occurs in the absence of other rules 
of that sub-species on that part of the landscape. Sprouting is 
intended to produce new organisms with at least one surface of 
their body likely to be in the region of the boundary between 
different food-types on the landscape. This is the pressure toward 
the production of organisms that are small enough to eat only a 
single type of food (rules that are specific enough to make no 
prediction errors). Additionally, sprouting should increase the 
chance of introducing useful alleles into the sub-species’ gene 
pool as new organisms are created progressively closer to the 
food-type boundaries the sub-species cannot cross. 
When ALCSR is initiated there are no organisms and the 
landscapes are completely undiscovered so a seeding process is 
required to get the populations started. Seeding is stopped when 
there are enough corpses for sprouting to take over. 

A-Life term LCS Analogue 
Seeding Traditional random covering 
Sprouting ALCSR Adaptive covering 
Food-type boundary Concept decision surface 

Implementation: This step is only performed if the system has 
just explored the action corresponding to an empty potential 
action set. A new rule is created with zero strength, zero 
experience and all flags set to False. Its prediction is set to the 
reward level just returned. Defining the new rule’s condition is 
more complicated. Each population has associated with it a set, 
termed mausoleum, for storing rules that have died due to making 
inaccurate predictions. The new rule’s condition bounds are 
randomly generated as 

li = xi – Rnd[0, LowerCoverFractioni·ri) and  
ui = xi + Rnd[0, UpperCoverFractioni·ri) where ri is input i’s range 

If there are fewer than 20 rules in the relevant mausoleum, then 
all CoverFractions are set to 0.5. If there are 20 or more rules in 
the relevant mausoleum then the CoverFractions are set by 
adaptive covering. This is the most challenging part of the 
artificial life model to implement because it requires the rules in 
the mausoleum to know in which regions of their conditions their 
predictions were accurate or inaccurate, which must be estimated. 

Each dimension i of a rule’s condition has four attributes: 
StrengthCenteri, WeaknessCenteri, LowerCoverFractioni and 
UpperCoverFractioni. StrengthCenteri and WeaknessCenteri are 
maintained as the average ordinate value in each dimension i of 
all correct and incorrect predictions respectively. When a rule dies 
with Damaged set to True, it is added to the appropriate 
mausoleum and its CoverFractions are set to represent its size in 
each dimension as fractions of each full attribute range. The 
dimension in which StrengthCenter and WeaknessCenter are 
furthest apart is guessed as being most likely to span a decision 
surface, and one of the rule’s CoverFractions in that dimension is 
reduced accordingly by a factor of 2. If the StrengthCenter has a 
lower value than the WeaknessCenter then the 
UpperCoverFraction is chosen as the one to be reduced, otherwise 
the LowerCoverFraction is reduced. The CoverFractions of the 
dead rule’s kc-nearest neighbors in the mausoleum are updated to 
reflect this new information using a Widrow-Hoff update in 
which the learning rate is inversely proportional to the distance of 
the neighbor. 



When adaptive covering creates a new rule, the kc corpses in the 
mausoleum nearest to the input vector X take an inverse-distance 
weighted vote on what values should be assigned to the new 
rule’s CoverFractions, which are then used to generate the 
condition bounds. If a condition lower or upper bound is 
generated that lies outside the range of values that ALCSR has 
experienced in that dimension, the bound is set to the minimum or 
maximum value experienced respectively.  Note that this 
increases the probability of generating a bound equal to the range 
limit as discussed in [5]. In our experiments kc = 5. 

4. INITIAL EXPERIMENTS 
In [7], Wilson presented the results of two experiments in which 
XCSR learned a real-valued version of the Boolean 6-multiplexer 
function. Instead of 6 binary values, the input vector consists of 6 
real values 0.0 ≤ xi < 1.0, generated randomly with uniform 
distribution. In each dimension i a decision threshold is used to 
interpret the component value as 0 or 1 so that the multiplexer can 
be applied. In order to present our initial results in an established 
context, Wilson’s experiments have been repeated using the 
implementation of ALCSR described in Section 3, run for 
300,000 system cycles with P(Explore) = 0.9. As in [7], each 
experiment was run five times. Results with ALCSR were found 
to vary very little between runs, so the figures below present 
results from single representative runs. 

In the following results percentage performance is the 
classification rate over the previous 50 test problems. Where 50 
test problems do not provide sufficient precision to report results, 
other measures are stated specifically. System error is calculated 
as a moving average, also over the previous 50 test problems, and 
is presented as a fraction of the reward range (2000) in these 
experiments.  

Experiment 1: All decision thresholds are set to 0.5. In [7] 
Wilson reports that XCSR achieves a maximum performance of 
approximately 98% after about 15,000 explore problems. Figure 1 
presents typical performance and system error for ALCSR. In 
15,000 explore problems ALCSR achieves a lower performance 
of approximately 95%, but continues to improve reaching 98% 
after about 35,000 explore problems. For the last 10,000 test 
problems in a run (after about 180,000 explore problems), 
ALCSR typically provides the correct classification for more than 
9,970.  
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Figure 1. ALCSR Performance and System Error in Experiment 1 
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Figure 2. ALCSR Population Dynamics in Experiment 1 
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Figure 3. ALCSR Performance and System Error in Experiment 2 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50000 100000 150000 200000 250000

Explore Problems

Deaths from Inaccuracy

Births from GA

Births from Covering

Deaths from Subsumption

Total Population

 
Figure 4. ALCSR Population Dynamics in Experiment 2 

Figure 2 shows how the population size varies during a typical 
run, and also the number of births and deaths. The total rule count 
peaks around 2,000 after about 20,000 explore problems and then 
falls to around 535 by the end of the experiment, although this 
varies more than the performance results: the smallest final 
population was 452, and the largest was 607. 



Experiment 2: The decision thresholds are set at 0.25 and 0.75 in 
alternate dimensions which skews the probability of generating 
example points in the different niches. In [7] Wilson reports that 
XCSR achieves a maximum performance of approximately 93% 
after about 10,000 explore problems. Figure 3 presents typical 
performance and system error for ALCSR. In 10,000 explore 
problems ALCSR also achieves 93% performance, but again, 
continually improves thereafter, reaching 98% after about 50,000 
explore problems. Over the last 10,000 test problems in a run, 
ALCSR’s performance is the same as in Experiment 1. 

Figure 4 shows how the population size varies during a typical 
run, and also the number of births and deaths. The total rule count 
peaks around 2,100 after about 27,000 explore problems and then 
falls to around 950 by the end of the experiment. The smallest 
final population was 859, and the largest was 1112. 

5. DISCUSSION 
The version of XCSR used in [7] employed a center-spread 
representation for its condition bounds, while ALCSR uses 
ordered bounds. In [5], Stone and Bull investigate these 
representations for XCSR and also an unordered bounds 
representation, providing many useful insights. They found 
system performance for the real-valued 6-multiplexor consistent 
with Wilson’s results in [7] and affected very little by the choice 
of representation (although other measures were affected as was 
performance on other problems). 

The fact that ALCSR’s best reached classification performance in 
Experiment 2 is as good as Experiment 1 is encouraging with 
respect to the Niching goal (5). However, Experiment 2 does 
cause ALCSR to learn at a slower rate than in Experiment 1, and 
produce slightly larger populations. 

Compared to XCSR, ALCSR learns much more slowly but 
eventually improves beyond XCSR’s maximum performance 
achieving 99.7% measured over 10,000 test problems, which is 
encouraging with respect to the Performance goal (4). An analysis 
of why ALCSR still makes any mistakes at all would be of 
interest. 

Examinations of the final populations from both experiments have 
identified very good representatives of all niches, even the 
smallest, which is encouraging with respect to the Model goal (3). 
However, the majority of the rules in the final populations are 
very specific rules clustered around the decision surfaces in the 
input space. The adaptive covering scheme was designed to have 
this effect so that increasingly useful condition bounds (alleles) 
would continue to be discovered throughout the run. However, in 
its current implementation adaptive covering appears to be too 
aggressive for the system to achieve the Optimality goal (6), 
unnecessarily bloating the population. About half the rules in each 
final population are so specific that they very rarely participate in 
system operation and are mostly a drain on computing resources. 
If the persistence of these rules could be avoided, the Optimality 
goal (6) would be within reach. 

6. CONCLUSIONS AND ONGOING WORK 
ALCSR has a number of features that make it unusual among 
learning classifier systems. Specifically: ALCSR identifies 
individuals suitable for breeding by the use of speciation and by 

exploiting the natural topography of the problem; ALCSR 
employs an endogenous fitness scheme; GA timing and 
population size are emergently controlled; ALCSR uses adaptive 
covering which continues throughout training to provide the GA 
with increasingly useful alleles so mutation is not relied upon for 
allele discovery and is just used to avoid duplicate conditions; 
Since there are no duplicate rules, numerosity is obviated. 

Although some of the goals set out in Section 2 have not yet been 
addressed, inroads have been made towards goals 1, 3, 4, 5, 6 and 
7, and Section 2 represents an agenda for ongoing research. 
Additionally, a minimal set of necessary system parameters for 
ALCSR needs to be identified, and self-adaptive parameter 
schemes investigated.  

The immediate priority for ALCSR is an analysis of the current 
implementation’s population dynamics in order to understand and 
correct undesirable characteristics such as slow learning and over 
specialization at the decision surfaces. Such analysis will 
probably result in modifications to the implementation and 
possibly to the artificial life model as well. The modified ALCSR 
should also be tested against a wider range of problems such as 
more challenging multiplexers and the Checkerboard problem 
described in [5]. 
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