
Distributed and Hardware Genetic Algorithms Applied 

 to the DNA Code Word Library Generation Problem
Daniel J. Burns 

Air Force Research Laboratory/IFTC 
525 Brooks Rd. 

Rome, NY 13441 
315-330-2335 

burnsd@rl.af.mil 

Morgan Bishop 
JEANSEE Corp. 
525 Brooks Rd. 

Rome, NY 13441 
315-330-1556 

bishopm@rl.af.mil 
 
 

ABSTRACT 
Two high speed implementations of the genetic algorithm (GA) 
are described and their performances are evaluated on a highly 
constrained DNA Code Word Library Generation test case 
problem. The first is a distributed, or  multi-deme, Island Model 
GA coded in C that uses the Message Passing Interface (MPI) 
protocol and runs on multiple processors in a cluster.  The second 
is a single population GA coded in VHDL that implements both 
the GA and the fitness function evaluator in hardware on a single 
Field Programmable Logic Array (FPGA) chip.  While the  
distributed GA is generally applicable to many problem types, the 
hardware GA is especially applicable to problems characterized 
by a fitness function requiring the calculation of a matrix of 
relatively simple integer-only or Boolean logic functions that can 
be efficiently implemented in a hardware systolic array.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving - Control 
Methods and Search  - heuristic methods; B.2.4 [Hardware]: 
Arithmetic and logic structures – High speed Arithmetic – 
algorithms;B.7.1. [Hardware]: Integrated Circuits - Types and 
Design Styles – Gate Arrays 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Genetic Algorithm, distributed, parallel, hardware, systolic array, 
speedup, DNA Codes. 

1. INTRODUCTION 
The Genetic Algorithm (GA) is  one of many algorithms available 
attacking hard optimization problems. The simple operators used 
for selection, mating, and mutation suggest that the GA may 
ultimately hold a speed advantage over algorithms with more 
complex arithmetic content, especially when implemented in 
hardware to achieve high speed solutions.  This may be important 
in applications where real-time decisions are critical, or where 
best solution times are now hours or months.  Fitness function 
evaluation may consume a large portion of the total solution time 
for many problems. In such cases it may be useful to parallelize 
the application, or to implement it in hardware.   At this point it 
becomes an open question whether the GA or any other algorithm 
can ultimately yield the fastest possible solutions.  The relative 
advantage of one optimization algorithm over another depends in  
part on the set of arithmetic operations required by the algorithm, 
and on how efficiently the operations can be executed by a typical 
CPU or when implemented in special purpose hardware. For 
example, an algorithm requiring floating point multiplications or 
gradient calculations involving division may be slower than one 
with only integer arithmetic and Boolean operations.  Similarly, 
the nature of the application problem fitness function also 
influences whether a problem is a good candidate for hardware 
acceleration. In this paper we describe a DNA Code Word Library 
generation problem that has an integer-only, array type fitness 
function. Then we describe two GA solvers for this problem that 
pursue extreme speed-ups. The first is a distributed, Island Model  
GA that runs on a cluster and achieves ~30x speedup.  The second 
is a hardware implementation of both the GA and fitness function 
evaluator that achieves ~700X speedup. This work represents 
preliminary steps toward a third version that targets a hybrid 
cluster architecture incorporating FPGAs at each processing node.  
This architecture should be able to achieve speedups of over 
10,000, and reduce computation times from months to minutes.   

The remainder of this paper is organized as follows.  Section 2 
describes the test case DNA Code Word Library Generation 
Problem,  its mapping to a GA solution, and results using a 
baseline software GA run on one processor.  Section 3 discusses 
the parallel GA implementation used in the present work.  Section 
4 discusses the Hardware GA used in the present work.  Section 5 
discusses the systolic array fitness function evaluator used in the 
Hardware GA.  Section 6 presents results on the test case problem 
for the two GA versions. Finally, we offer suggestions for future 
work in Section 7, conclusions in Section 8, and in Section 9 
acknowledge others who made contributions to this work. 

 

(c) 2006 Association for Computing Machinery. ACM acknowledges 
that this contribution was authored or co-authored by a contractor or 
affiliate of the [U.S.] Government. As such, the Government retains a 
nonexclusive, royalty-free right to publish or reproduce this article, or to 
allow others to do so, for Government purposes only. 

GECCO’06, July 8–12, 2004, Seattle, WA, USA. 

Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00. 

 



2. DNA CODE WORD LIBRARY 
GENERATION PROBLEM 
DNA code word libraries contain multiple pairs of Watson-Crick 
complementary DNA sequences that are free from undesired 
cross-hybridization between any two non-complementary pairs.  
They play vital roles in the development of biological and hybrid 
information systems that operate at the nanoscale [2], e.g. in 
biological microarrays, nano-circuits, memory devices, robust 
DNA tags, in breadth-first parallel filtering schemes for solving 
optimization problems with bio-molecules, and in nano-
fabrication schemes that would use self-assembled DNA 
templates to organize the layout of nano-devices.  Various 
methods have been proposed for building such codes, including 
the GA [6],  Markov generated [2], and Stochastic [13] methods. 
Recent work [9] has shown that a hybrid GA blended with 
Conways lexicode algorithm [4] achieves better performance than 
either alone in terms of generating useful codes quickly.  
Exhaustive checking is impractical for finding large libraries of 
code words of lengths greater than about 12 base pairs.   

The core of difficulty for this problem is searching the very large 
number of candidate strands that might be added to the library, 
and the computational cost of calculating strand binding free 
energies from thermodynamics in all of the n2 possible secondary 
structures which may form from any two DNA strands of equal 
length. The Levenshtein distance, or edit distance metric is a 
reasonable but computationally more efficient tool for screening 
candidate strings during code design. The edit distance defines the 
minimum number of insertions, deletions, or substitutions needed 
to transform one string into another.  Edit distance can be 
considered a generalization of the Hamming distance (HD), and a 
minimum edit distance constraint is much more difficult to meet 
than HD.  HD only considers substitution edits with the strands 
aligned fully side by side, and it can be calculated in O(2n) time.  
The Levenshtein distance covers all ‘slidings’ of two strands past 
each other, and it utilizes the dynamic procedure shown in Figure 
1, which completes in O(n2) time (in a sequential program).  

 

 
cell entry Mi,j = max(Mi-1,j,   Mi,j-1 , k + Mi-1,j-1) 

where k = 1 if  s1i = s2j else k = 0, and  

s1 = sequence along top row,  s2 = sequence along left column 

Figure 1.  Calculation of the Levenshtein edit distance metric. 

 

The DNA code word problem can be mapping to a GA by 
representing a strand as a string of bits using a substitution such as 
A=00, C=01, G=10, T=11.  Thus a strand with 16 bases can be 
represented by a 32 bit integer. Well known GA operators such as 
single point crossover and bit flip mutations are applicable, with  

modifications.  We allow single point crossover to cut only at base 
pair boundaries, and we use a mutation operator that selects the 
best of all possible single base mutations. The code design 
requirement specifies the desired length of the strands or words, 
e.g. n = 16 bases, and the desired  edit distance, e.g. d = 10. In 
order for a pair of complimentary code words to enter the library, 
the new word and its reverse compliment (RC) word must meet 
the edit distance requirement when tested against each other and   
against each word and each RC word already in the library.   

The GA fitness function consists of two numbers that are 
tabulated for each candidate word in the population.  The first is 
the maximum of the absolute differences between the desired edit 
distance and the actual edit distances measured between the 
candidate word and its RC and every word and every RC word 
already in the library, which we call the max_match.  The second 
is the number of words in already in the library that reject the new 
word, which we call the number_of_rejecters.  A new word and 
its RC word can enter the library when the number of rejecters = 
0.  We pack the two numbers into one 32 bit word, with the 
number_of_rejecters in the upper bits and max_match in the lower 
bits to obtain a fitness metric that goes to 0 as a word gets ‘better’.   

Figure 2 shows the results of a typical run (on one processor node, 
in compiled C) in terms of # Words Found vs. Time, for good 
parameter tunings of both the baseline software Stochastic (top  
left curve), Markov (middle), and GA (lower) algorithms. Here 
the GA uses a population size of 100, no mating, and 1% 
mutations.  The GA is slower at the beginning, about 10-100 
times faster in the middle, and about the same near the end of the 
run.  Since optimal (the largest possible) code word sets are not 
needed in practical applications, one could say that the GA is 
superior at finding practical code sets. A version of the stochastic 
method was coded and compared, but was not competitive with 
these times.  Stochastic is similar to GA with only mutation, 
except that it starts with a full library and seeks to improve the 
fitness of all words, which requires more checks from the start.  

 

 
Figure 2. Relative performance of GA, Stochastic,  and 
Markov methods. 

 

To get a sense of problem difficulty, we can calculate the number 
of edit distance calculations that must be made between a word 
and its RC and all pairs in the library during a generation.  
Assuming a population size of 100, a mating probability of 80%, a 



mutation probability 1%, and an existing library of 100 pairs, 
mating requires (80 children x 2 checks) x (100 words x  2 
checks)  or  32,000 checks.  Mutation requires another (0.01 x 
100) x (47 possible mutations x 2 checks) x (100 words x 2 
checks) = 18800 checks.  At 10 us per check this takes 0.5 
seconds, but the constraints are so severe that many words must 
be checked to find one that can be added to the library, leading to 
run times of hours to assemble large libraries.  Since the edit 
distance calculation consumes a large portion of the computation 
time involved in building such codes, regardless of the search 
algorithm used, this problem is a good candidate for speedup by 
parallel and hardware implementations, which are discussed next.  

3. THE PARALLEL GA 
Both the DNA Code Word Library generation problem and the 
GA are embarrassingly parallel.  Much previous work has been 
done on parallel and distributed GAs [5,7].    

We use an Island Model GA that passes the top 5 individuals to 
adjacent nodes in one direction in a ring configuration after 
epochs of 40 generations.  We choose the population size so that 
the minimum number on individuals at each processor node was 
about 100.  We typically use from 1 to 30 nodes in the cluster, 
with a total population size of 3000 individuals, split as evenly as 
possible among the processors.  In our version of the Island 
Model, communication occurs between a master node and all 
other nodes at startup, when one of the  termination criteria is met 
(maximum time, maximum # of generations, or desired # words 
found), and also in two other cases.  First, when any processor 
finds a word, it is shared immediately with all other processors in 
order to keep them all working on extending identical libraries.  
Second, the top 5 individuals are passed around the ring in one 
direction at epoch boundaries.  We did limited experiments with 
epoch lengths between 3 and 100 and found that 40 worked well.  
We observed that single point crossover mating was very 
disruptive to average population fitness, so we typically set 
crossover to a low value, or used only mutation.   We replace 
clones in the population with new random individuals at the end 
of each generation.  We used either rank or fitness based 
selection, with neither clearly better.  Our experiments typically 
did 30 runs using 1 processor, 30 runs using 2 processors, etc., 
and we averaged the results over all 30 runs for each # of 
processors.   

Figure 3 shows typical results in terms of the average # words 
found vs time (left), and a speed-up curve (right).  The different 
plots at the left correspond to different #’s of processors, and each 
point in each curve is the average over 15 runs.  The speedup 
curve shows the average time to find 200 words vs # processors 
used, normalized to the value for 15 processors. The 3 speedup 
curves show ideal linear speedup (red), uncensored speedup 
(blue), and censored speedup (green). Censored speedup was 
intended to exclude atypical runs.  The 2 rows of boxes (lower 
right) show the number of runs at each processor value that found 
all 200 words (all did), and the lower row of boxes show the 
number of runs that finished in a time within one standard 
deviation of the average time of all successful runs. In this 
experiment the # processors was scanned from 15 to 30, the code 
words were 16 bases long with a desired  max_match edit distance 
of 10, the GA used a population of 3000, there was no crossover, 
the mutation probability was 1% , and the 5 best individuals were 
passed at epochs of 40 generations.  These results show an 
approximately linear speedup with # processors.  

 
Figure 3.  Average # words found vs # processors and speedup 
curve for an experiment  scanning the # processors from 15 to 
30 (average of 15 runs at each # processor value).  

This code was instrumented with MPI extensions that allow 
logging the time of the beginning and end of events at each 
processor during execution.  This analysis is useful for optimizing 
the type and placement of MPI communication events.  Figure 4 
shows typical results after tuning the MPI communication calls.  
This tuning decreased the generation time from ~65 ms to ~8 ms.  

 
Figure 4. Timing of communication (blue and green) and 
calculation (red line) during a GA generation for nodes 0-9.  
Generation boundary is at the beginning of the green area. 

 

The communication overhead is about 25% for the cycle shown in 
Figure 4. There is skew and jitter in the total generation times 
among the processors due to startup effects, MPI response 
latencies, and due to the stochastic nature of the GA. This analysis 
is also useful for determining a population size large enough to 
guarantee that communication delays do not dominate the total 
generation time.  Finally, the code was instrumented with GNU 
Gprof [8] to observe the duration of various tasks in the 
generation cycle (black in Fig. 4).  This analysis showed that the 
subroutine that calculates the edit distance consumed 98.13% of 
the generation time.  Therefore, the fitness function evaluator 
could be sped up (e.g. by hardware acceleration) by a factor of 
about 98.13/(100-98.13) = 112 before the GA algorithm time 
would be equal the fitness function evaluation time. Significant 
speedup beyond that would require both hardware fitness function 
evaluator and a hardware GA, which we discuss next. 

 



4. THE HARDWARE GA 
There has been some interest in speeding up GAs by 
implementing them in hardware.  Reviews and examples of past 
work can be found in [12,11,1,14].  These studies are usually 
coupled with a particular type of GA and problem, and the results 
are often highly problem dependant. Overall speedups of 3-1000X 
have been reported. 

Our design is different than previous work in that we have 
targeted a single chip FPGA implementation with the population 
stored and manipulated in fast, on-chip SRAMs that avoid delays 
associated with using off chip memory.  Also, we use a systolic 
array on the same chip for the fitness function evaluator.   We 
used the relatively inexpensive, commercially available Annapolis 
Microsystems Wildcard (PCMCIA) FPGA board that contains a 
Xilinx Virtex-II X2CV3000 FPGA chip.  Basically, in this 
approach a PC executes a C ‘Host’ program that passes run 
parameters to an FPGA processing element ‘PE’ that implements 
the GA and DNA Code Word application.  The Host then receives 
reports from the PE when words are found, and when the 
hardware application terminates.  The PE function is described in 
VHDL, which we composed and simulated using the Mentor 
Graphics ModelSim tool.  We used the Xilinx ISE Webpack or 
Synplicity Synplify tools for synthesis. 

The FPGA design effort was focused mainly on implementing a 
fast function evaluator because the total execution time is 
dominated by fitness function evaluation. Details of the design 
will be described elsewhere, but here we give an outline of the 
main processes.  They are initialization, checking fitness, picking 
up good words from the population into the library, mutation, 
decloning, and reporting results to the host.  The FPGA chip 
contains static block RAMs (BRAMs) that can be configured as 
96 separate 512 word x  32 bit  RAMs.  We use one   BRAM to 
hold the population (up to 512 individuals), a second BRAM to 
hold the fitnesses, and third BRAM to hold the code word library.  
We use an overall architecture that was simply a pipeline of 
processes connected between sets of these 3 BRAM types.   The 
BRAMs are dual ported, which facilitates connection between 
separate input and output processes.  We determined that with a 
population size of 100 and with 100 words in the library, the time 
overhead for passing the entire population, fitness, and library 
BRAMs around the pipeline was less than 2% of generation time. 

A 32 bit pseudo-random number generator (PRNG) was 
implemented in this design by an array of 32 32 bit linear 
feedback shift registers. The output word is formed by 
concatenating one bit from each of the 32 registers.  The PRNG 
can be seeded by the Host to repeat a run with the same sequence 
of random numbers, or with a different set.  A new random 
number is available at each PE clock edge, and all possible 32 bit 
numbers are represented in the sequence before it repeats.   The 
population can be initialized with random individuals,  and the 
library can be initialized as empty, or it can be seeded by the Host 
with an existing partial library.    

The main GA is a tight loop of three processes, the first picking 
up good new words from the population into the library, the 
second for mutation,  and the third for decloning.  The pickup 
process looks for new good words in the population, and when it  

find one it moves it to the library and replaces it with a new 
random individual.  When a new word enters the library, all of the 
fitnesses must be recalculated.  In this step operand pairs are read 
from the population and library BRAMs and presented to the 
fitness evaluator at the PE clock rate, as described in the next 
Section.  Each population word is checked against its own RC, 
and against each library word and each RC library word.  The 
results are also analyzed and the fitness metrics are determined at 
the PE clock rate and stored in the fitness BRAM.  During the 
mutation process words are selected from the population, and for 
each word all 47 possible single base mutations are assembled 
into a BRAM and their finesses are checked in a manner similar to 
population checking.  The mutation that results in the best 
improved fitness is used to replace the original word, or if no 
mutation improves fitness, one of the 47 mutations is chosen 
randomly to replace the original word.   When the required 
number of words are mutated, or if a mutation is found with 0 
fitness that can enter the library, the mutation process ends and the 
decloning process starts.  This process actually does several 
things.  First it finds and records the best fitness in the population 
(without sorting). Then it replaces any words in the population 
that are already in the library with new random individuals.  Such 
words will have quite good fitness, since only two words in the 
library will reject them, but their fitness will never be good 
enough. Finally, any clones in the population are replaced with 
new random individuals because there is no point in keeping 
clones given the type of mutation we use.   We do not use mating, 
so the next generation then starts with the pickup up process.      

Although we don’t typically use mating for this problem, it was 
implemented in VHDL.  In the interest of speed, we used a table 
look up method that implements rank based selection from the top 
k individuals of a population of n individuals, where k and n are 
BRAM addresses between 0 and 511.  For example, for the case 
of selection from the top 10 individuals in a population of 100,  a 
table of 10 9 bit numbers is calculated from the appropriate 
cumulative selection probabilities. The index of a parent is chosen 
by sampling a 9 bit random number from the lower bits of the 32 
bit PRNG, and running an index pointing into the table up from 0 
until it points to tabled value larger than the random number. One 
less than this index is used as the parent’s index.  Using this 
approach the Host can calculate the tabled values for any k and n 
<=511 and pass them in to the PE at the start of a run.  This avoids 
resynthesis of the FPGA, which takes time.    

All communication between the Host and PE is handled by an 
interface that is supplied as an example with the Wildcard 
software. It allows both the Host and PE to read and write to a 
common 32b register and a common BRAM that reside in the PE.  
Communication occurs at the beginning of a run to set GA and 
code design parameters, again when the PE finds each word, and 
finally at the end of a run.  The PE records the generation each 
new word is found on, and also the best fitness in the population 
vs generation, and it passes this information back to the Host.  

At this writing the entire design has been composed and 
simulated.  The PRNG and fitness evaluator described in the next 
section have been synthesized.  Together they use less than 20% 
of the FPGA chip resources, and the maximum clock frequency is 
higher than our 100MHz goal.     



5. THE HARDWARE SYSTOLIC ARRAY 
FITNESS FUNCTION EVALUATOR  
Systolic arrays [10] basically can perform calculations in a 3 
dimensional array of cells simultaneously (2 physical dimensions 
and the time dimension).  They are driven with fast streams of 
operands flowing into two edges of an array. In the case of the 
Levenshtein calculation, the results corresponding to any two 
operands flow as a diagonal front away from those edges toward 
the opposite corner of the array where a stream of results is read 
out from the lower right cell output.  After a latency period of 18 
clocks an answer for each set of input operands appears in the 
output stream at every clock period.  

Figure 5 shows a block diagram of the systolic array fitness 
function evaluator and its feeder registers.  Register arrays are 
needed along the top and bottom edges to sequence portions of the 
operands into the inputs of the edge cells at the right times.  Bases 
in the input words at the right along the top edge and toward the 
bottom along the left edge must be delayed in a staggered manner 
before being presented to the edge cells.  Each cell in the array 
contains the circuitry for calculating the max() function shown in 
Figure 1, as well as registers for passing bases in the operands 
down along columns and to the right along rows through the 
array. The array operates in a checkerboard fashion, with the cells 
on the even rows on even columns and odd rows on odd columns 
in one group, and the others in a second group.  The first group 
loads inputs on one clock edge, and latches outputs on the next 
clock edge.  The cells in the second group do the opposite. 

     

 
Figure 5. Block diagram of hardware systolic array for fitness 
function evaluation. 

 

In the present design we actually use two instances of the fitness 
function evaluator, one for pickup process, and one for the 
mutation process.  This is a side effect of writing the source code 
with ‘hierarchical’ structure (with multiple processes that can be 
added or debugged and changed easily), rather than in a ‘flat’ 
structure (with all functionality in one big process).  Since only  
one hardware process can drive a signal, we need to duplicate or 
multiplex the inputs and outputs of any component that is used by 
more than one process. Multiplexing adds delay and complexity 
and can make routing interconnects more difficult, so we 
duplicated the fitness evaluator to avoid that potential problem.   

6. RESULTS AND DISCUSSION 
Results for the baseline software GA DNA Code Word 
application run on one processor were shown in Figure 2 and 
compared favorably with results using the best known algorithm 
found in the literature, the Markov method.  Figure 3 also showed 
that the performance of the distributed version of the GA scales 
approximately linearly with the number of processors used.  These 
results are shown again in Figure 6 along with a performance 
curve for 1 run of a simulation of the hardware version (blue), and 
one run of the baseline software GA run on 1 processor using the 
same conditions as the hardware for comparison (lower red).  
These two new curves were for a population size 16, vs 100 for 
the previous (upper) GA curve in Figure 6.   

The results show that the hardware version is about 100 times 
faster in the early stage of the problem with few words found.  
The hardware version (lowest curve) was not extended because 
the simulation is too slow to run out to more than a few words.  

 

 
Figure 6. Relative performance of GA, Markov, and hardware 
GA. 

 
To get a better idea of how the hardware version should perform 
in the later stages of the problem, we analyzed the simulated 
waveforms of the hardware version and constructed a clock cycle 
accurate spreadsheet model that calculates total generation time as 
a function of population size and the number of words in the 
library.  We then used the model to construct a curve of 
generation time vs # words in the library, for the case of 
population size 100.    The clock frequency of the FPGA was 
assumed to be 100MHz.  We also measured the corresponding 
actual generation times for the baseline software GA run on one 
processor, also for  population size 100.  The results are shown in 
Figure 7, and they indicate that the hardware version (lower 
curve) should be about 700X faster than the software version 
(upper curve).  
 



 
Figure 7.  Comparison of generation time # words in library 
for software and hardware GA DNA Code Word application. 
(Population size = 100, composing 16/10 RC codes, no mating, 
1% mutations). 

 

7. FUTURE WORK 
We plan to synthesize the hardware version and evaluate its 
performance.   It would be desirable to add thermodynamic 
binding free energy calculations and other metrics used in the 
Markov method, such as tabulating stacked pairs, which are 
adjacent bases that bind between two words.  This would enable a 
search for an improved (faster) mutation heuristic that would seek 
to eliminate stacked pairs.  An exhaustive search option would 
also be useful.   Presently there is no way to know whether 
another word exists that can be added to a library without 
searching.  We estimate that with about 250 words in the library 
the present hardware systolic fitness function evaluator could 
check all 2^(32-1) candidate words in about 3 hours.  This would 
actually be faster than the using the present algorithms, which can 
run for days before finding words. This would be useful to those 
interested in improving the known bounds on the size of optimal 
code word libraries.  Finally, it would be of interest to implement 
a distributed hardware GA version.  It might be possible to 
process more than one population on the same chip.  Another 
approach would be to use fast FPGA to FPGA communication 
mechanisms to implement a mutli-chip distributed hardware GA.  
It would also be of interest to explore hardware versions of the 
Markov method, or other evolutionary algorithms.   

8. CONCLUSIONS: 
We have shown that a GA approach to solving the DNA Code 
Generation Problem is competitive with the best known methods 
in the literature.  We have described a hardware systolic array 
implementation of the Levenstrein matrix calculation that 
achieves about a factor of 1000X speedup of the fitness function 
evaluator for this problem. We have shown that distributed and 
hardware GAs offer significant performance improvements of 
30X and ~700X, respectively.      

9. ACKNOWLEDGEMENTS 
Larry Merkle of Rose Hulman Institute of Technology contributed 
valuable guidance and encouragement to this project during a 
Summer Research Faculty assignment at AFRL.  Kevin May 
contributed to the coding of the distributed and hardware GA 

 fitness function evaluator, and he tested the distributed GA while 
an undergraduate at Clarkson University studying Computer 
Engineering.  Tony Macula of the Mathematics Dept. of SUNY 
Genesseo contributed suggestions for the fitness function and 
developed the Markov generated algorithm. 

10. REFERENCES 
[1] Aporntewan, C. and Chongstitvatana, P. , “A Hardware 

Implementation of the Compact Genetic Algorithm”, 
Proceedings of the 2001 Congress on Evolutionary 
Computation, pp. 624-629, 2001. 

[2] Bishop, M. , Macula, A. , Pogozelski, W. , and Rykov, V. , 
“DNA Codeword Library Design”, Proc. Foundations of 
Nanoscience – Self Assembled Architectures and Devices, 
(FNANO), April 2005. 

[3] Brenneman, A. and Condon, A.E., “Strand Design for Bio-
Molecular Computation” , Theoretical Computer Science, 
Vol. 287, Issue 1, Sept. 2002, Natural computing, pp. 39-58. 

[4] Brualdi, R.  and Pless, V. , Greedy Codes, Journal of 
Combinatorial Theory,(A) 64:10-30, 1993. 

[5] Cant-Paz, E. , Efficient and Accurate Parallel Genetic 
Algorithms, Kluwer Academic Publishers,Norwell, MA, 
2000. 

[6] Deaton, R., Garzon, M, Murphy, R.C., Rose, J. A. 
Franceschetti, D. R. and Stevens, S. E., Jr., "Genetic search 
of reliable encodings for DNA-based computation," Koza, 
John R., Goldberg, David E., Fogel, David B., and Riolo, 
Rick L. (editors), Proceedings of the First Annual 
Conference on Genetic Programming 1996. 

[7] De Jong, K.A.  and Sarma, J. , “On Decentralizing Selection 
Algorithms”, Genetic Algorithms: Proceedings of the Sixth 
International Conference (ICGA95), pp. 17-23. Morgan 
Kaufmann, July, 1995 

[8] gprof: http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html. 
[9] Houghten, S.K. , Ashlock, D.  and Lennarz, J. , Bounds on 

Optimal Edit Metric Codes, Brock University Tech. Rept. # 
CS-05-07, July, 2005. 

[10] Kung, S.Y. , VLSI Array Processors, Prentice-Hall, Inc., 
Upper Saddle River, NJ, 1987. 

[11] Megson, G.M.  and Bland, I.M. , “Synthesis of a Systolic 
Array Genetic Algorithm”, 12th International Parallel 
Processing Symposium / 9th Symposium on Parallel and 
Distributed Processing (IPPS/SPDP '98), pp. 316-320, 
Proceedings. IEEE Computer Society 1998. 

[12] Scott, S. D. , Samal, A., and Seth, S. , "HGA: A hardware 
based genetic algorithm", Proc. ACM/SIGDA 3rd Int. Symp. 
FPGA's, 1995, pp. 53-59. 

[13] Tulpan, D.C. , Hoos, H. , Condon, A. ,“Stochastic Local 
Search Algorithms for DNA Word Design”, Eighth 
International Meeting on DNA Based Computers(DNA8), 
June 2002.  

[14] Wells, E.B., et. al., "Applying a Genetic Algorithm to 
Reconfigurable Hardware -- a Case Study", paper 179,  2004 
MAPLD Conference, Washington, DC, 2004. 
http://klabs.org/mapld04/papers/e/e169_wells_p.doc 

 


