Analysis of Attack Graphs using Evolutionary Computation

[Extended Abstract]

Melissa Danforth
California State University, Bakersfield
Bakersfield, CA, USA

mdanforth@csub.edu

ABSTRACT

Attack graphs are a tool to evaluate the security of the net-
work as a whole rather than looking at individual machines.
They can discover “foothold” situations where an attacker
compromises a series of machines to use as a platform within
the network to achieve the final goal(s). Attack graphs are
visually complex for all but the smallest networks. Analyz-
ing the graphs to determine a set of actions to take would
provide administrators with a plan of action to secure a sys-
tem. However, determining the minimal set of hardening
measures is a reduction of the set cover problem and thus
NP. This work explores the use of genetic algorithms to de-
termine a set of hardening measures that maximize the se-
curity benefit while minimizing the cost.

Categories and Subject Descriptors

K.6.1 [Management of Computing and Information

Systems]: Project and People Management; 1.6.4 [Simulation

and Modeling]: Model Validation and Analysis

General Terms
Security

Keywords

attack graphs, evolutionary computation, patch manage-
ment, network design

1. INTRODUCTION

Most vulnerability scanners only evaluate individual ma-
chines without considering the network as a whole. Attack
graphs are a tool to evaluate the composition of vulnerabil-
ities across the entire network. An attacker could use such
compositions to achieve further penetration into the network
than he might if he were only compromising individual ma-
chines. For example, an attacker could penetrate a public
server, and use that as a platform to attack internal servers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO'06 July 8-12, 2006, Seattle, Washington, USA.

Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

he would otherwise not be able to reach. Attack graphs can
show such “foothold” situations and thus are useful at sev-
eral stages of network planning and management. Attack
graphs can be used to evaluate new network designs to see
which provides more security, assist patch management by
determining the critical set of vulnerabilities with respects
to mission resources, identify what steps an attacker most
likely took during a forensics evaluation and correlate in-
trusion detection system (IDS) alerts into an overall attack
pattern.

Attack graphs represent exploit paths an attacker can take
through the network to achieve a goal such as “root on server
x”. Originally the graphs were created by hand during net-
work analysis by a team of experts. These hand-created
graphs were often quite large and prone to human error.
Several methods [9, 3, 8, 7, 1, 6, 10, 2] have been proposed to
generate attack graphs automatically. Automatic methods
typically have a library of potential exploits, and they match
these attack templates to the properties of the network be-
ing evaluated. Typically the templates are represented in a
“requires/provides” [4] which defines a set of preconditions
required for the exploit to be executed and a set of post-
conditions defining the consequences of the exploit being
executed. The automatic methods repeatedly find matches
for preconditions of the templates and apply the postcondi-
tions until the attacker’s goal is met or no more matches are
possible.

This method further supports filtering the exploit paths
within the graph to assist the analyst in visualizing the at-
tack graph. Specific edges on the attack graph can be hidden
in order to reduce the complexity of the visualization of the
graph. This can be done automatically via two main viewing
modes, “tactical” and “strategic” views, or interactively by
the user. The tactical view shows all possible exploit paths
through the network. This is useful for situations which
require knowledge of all possible ways an attacker might ob-
tain a specific capability. Figure 1(a) shows an example of
a tactical view. The strategic view is a “there exists” view
which shows all capabilities an attacker can obtain, but not
all possible ways in which he can obtain each capability.
Thus it shows only that there exists a way for the attacker
to obtain a capability. Figure 1(b) shows an example of a
strategic view. Both views for any given network will have
the same capability nodes. Through a user-defined filter a
hybrid view between tactical and strategic views can be gen-
erated. An analyst could show all possible exploit edges for
certain capability nodes (tactical view) while showing only
specific exploit edges for other nodes (strategic view).

Initial Conditions

e
=)

XTERM 2

1: Trust between Host 1 and All 3: Root on Host 2

== 1:RootonHost 1

(a) Tactical

1: Trust between Host 2 and All

1: Trust between Host 1 and All

XTERM 2

(b) Strategic

Figure 1: Strategic and tactical attack graph views for three node network presented in [9, 3, 8].

2. ANALYSISPROBLEM

Presenting an attack graph to an administrator is often
not helpful as the graph is highly complex for all but the
most trivial networks. Even with intricate visualization meth-
ods, it is desirable to perform some sort of analysis on the
attack graph to give the user some direction to take. The
type of analysis is dependent on the use of attack graphs.
The two most common uses of attack graphs is for network
design and patch management. With these uses, the desired
outcome of the analysis is a more secure network. For foren-
sics and intrusion detection correlation, the analysis would
be to predict further paths the attacker could have taken in
the network and provide a list of items to investigate fur-
ther. For intrusion response, the analysis should predict the
next steps of the attacker and chose the most reasonable
responses to block the attacker.

For each of these points of view, different methods of anal-
ysis are required. This work focuses on the network design
and patch management point of view. The goal of the anal-
ysis for network design and patch management is to come
up with a set of hardening measures that will prevent the
attacker from reaching his goals. A hardening measure is an
action which removes a precondition from an atomic attack.
Three typical hardening measures are patching a vulnerabil-
ity, firewalling a port and placing an IDS sensor such that
it would detect the exploit. Every hardening measure has
a cost associated with it. Typically these costs are deter-
mined by the policy of the network. For example, if the
policy states the web server on machine A must be pub-
licly acceptable, the hardening measure “firewall port 80 to
machine A” should have an infinite cost associated with it
so that hardening measure is not used. The costs can also
reflect the reality of the network, such as the availability of
patches or ease of deploying patches. Even if two networks
have the same attack graph, they may have different sets of
hardening measures depending on their policies. The analy-
sis algorithm must allow for this site specific customization.

Several prior works [6, 9, 8] have shown that determining
the minimum set of hardening measures is a reduction of the
set cover problem and thus NP. An approximation method
must be used to determine the minimum set of hardening
measures. This work explores the use of evolutionary com-
putation to derive the set of hardening measures.

3. IMPLEMENTATION

A genetic algorithm was used to determine a set of hard-
ening measures that maximize the security of the network
while minimizing the cost. The security of the network
is measured by how well the goal nodes are disconnected
from the graph by the hardening measures. This work fo-
cuses on deriving hardening measures during the course of
patch management or network design. Therefore, the possi-
ble hardening measures are:

e Install patch = against an initial condition (vulnerabil-
ity). This removes a node from the graph correspond-
ing to that vulnerability.

e Firewall connection between hosts a and b on a spec-
ified port. This will remove attack edges that depend
on network connectivity.

e Place an IDS sensor for attack x occurring between
hosts @ and b. This will mark edges in the graph as
being “watched”. The attack can still succeed but will
be detected by the IDS.

Each of these measures has a cost associated with it, as
defined by the policy of the network. If the policy does not
define a cost, then default costs are assigned depending on
the purpose for analyzing the attack graph. If the purpose
is to aid the design of a new network, firewalling connections
is preferred and gets a lower cost. If the purpose is to de-
termine which patches to install on an existing system, then
installing patches is preferred and has a lower cost.

The chromosome is the concatenation of three bitmaps
corresponding to each type of hardening measure. The first
bitmap contains one bit per node in the initial capabilities
of the network. If bit ¢ is 1, this means the patch for the
vulnerability in the initial capability node ¢ will be installed.
If the bit is 0, no patch will be installed. The second bitmap
corresponds to the edges in the attack graph. If bit 4 is 1,
then the network connection required for edge i’s attack will
be firewalled. If it is 0, then there will be no firewall for that
connection. The third bitmap also corresponds to the edges
in the attack graph. If bit ¢ is 1, then an IDS rule that will
detect the attack between the two hosts in edge ¢ will be
enabled. If the bit is 0, no IDS rule for that attack will be
enabled.

Some hardening measures will be prevented by the policy
of the network or by the nature of an attack. The policy may
prohibit the installation of certain patches or it may spec-
ify connectivity requirements for a host that would make it
impossible to use certain firewall rules. Additionally, not
all attacks occur over the network. Some attacks are local
to a specific host. For these attacks, a firewall would be
ineffective. An IDS would have to be host-based to detect
local attacks as well. There are two approaches to handle
this. Either the cost associated with such a prohibited ac-
tion can be set to infinity or the bits corresponding to such
actions can be removed from the bitmap or ignored. Both
approaches will be explored.

In order to evaluate how the hardening measures indicated
in the chromosome affect the security of the network, the
fitness function must first apply the actions and then see how
the actions affect the goal node(s). For patches, the node
corresponding to the patched vulnerability is removed from
the graph along with all of its outgoing and incoming edges.
For firewall rules, the edge corresponding to the attack that
depends on that connectivity is removed. The process of
removing edges will affect the in-degree on other nodes in
the attack graph. If the in-degree becomes 0, in other words
all incoming edges for that node have been removed, then
that node is also removed. For IDS rules, the edge is marked
as “watched”. Each node contains a bitmap of the incoming
edges that are watched. The node to which the edge points
sets the corresponding bit in the bitmap to 1. If all incoming
edges to a node are watched, the node marks all outgoing
edges as watched.

The fitness function determines the sum of the costs for
all enabled hardening measures and looks at the goal nodes
to determine how well the measures improved the security
of the system. The sum of the costs is the total cost for
applying those hardening measures. The improvement to
the security of the system is the benefit. The ideal result
is to have all goal nodes removed from the attack graph. A
goal node will only be removed if all its incoming edges are
removed. If not all edges can be removed, say due to policy
restrictions, then next best result is to have all remaining
edges watched. Thus the benefit to the system is based on
how many incoming edges have been removed from the goal
nodes and how many of the remaining edges are watched.
Removing an edge is given a higher weight than watching
an edge so that removing all edges will have a higher benefit
than having a mixture of removed and watched edges. The
fitness function returns benefit/cost so that the more fit
individuals are the ones which maximize the benefit and/or
minimize the cost.

A genetic algorithm using deterministic rank selection and
single point crossover has been selected to evolve the pop-
ulation. For purposes of the crossover operation, all three
bitmaps are viewed as a single contiguous bit string. The
crossover will occur at some random point along that string.
For the mutation operation, a randomly chosen single bit
along the string is flipped. This will result in the activation
or removal of hardening measures. The initial population is
generated by randomly setting the bits in the string.

4. CONCLUSION

Previous analysis methods have ranged from the “try and
test” approach using a simulation tool [6], greedy approxi-
mation algorithms [9, 8, 3, 1] and expressing the graph as

a logical expression of the initial capabilities [2, 5]. The
“try and test” method requires extensive interaction by the
user. The greedy approximation algorithms of [9, 8, 3] have
runtimes that are exponential in terms of the size of the net-
work and their methods do not scale well to larger networks.
Ammann’s [1] method is quadratic in terms of the number
of attacks, but it only finds the set of minimal critical at-
tacks, not the lowest cost set of hardening measures. The
logical expression algorithm of [2, 5] only looks at patching
the initial vulnerabilities, not at applying other hardening
measures. None of the prior methods consider the policy
of the network when determining a set of hardening mea-
sures. The genetic algorithm method uses multiple harden-
ing procedures and considers the policy of the network in
determining the plan of action.

5. ACKNOWLEDGMENTS

Melissa Danforth’s work was supported in part by a United
States Department of Education Government Assistance in
Areas of National Need (DOE-GAANN) grant #P200A980307.

6. REFERENCES

[1] P. Ammann, D. Wijesekara, and S. Kaushik. Scalable,
Graph-Based Network Vulnerability Analysis. In Proceedings
CCS02: 9th ACM Conference on Computer and
Communication Security, pages 217 — 224, Washington, DC,
November 2002. ACM.

[2] S. Jajodia, S. Noel, and B. O’Berry. Managing Cyber Threats:
Issues, Approaches and Challenges, chapter Topological
Analysis of Network Attack Vulnerability. Kluwer Academic
Publisher, 2003.

[3] S. Jha, O. Sheyner, and J. Wing. Two Formal Analyses of
Attack Graphs. In IEEE Computer Security Foundations
Workshop, pages 49-63, Cape Brenton, Nova Scotia, Canada,
June 2002.

[4] S. J.Templeton and K. Levitt. A Require/Provides Model for

Computer Attacks. In Proceedings New Security Paradigms

Workshop, Cork Island, September 2000.

S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. Efficient

Minimum-Cost Network Hardening Via Exploit Dependency

Graphs. In Proceedings of the 19th Annual Computer

Security Applications Conference, Las Vegas, NV, USA,

December 2003.

C. Phillips and L. Swiler. A Graph-Based System for

Network-Vulnerability Analysis. In Proceedings of the New

Security Paradigms Workshop, Charlottesville, VA, 1998.

[7] R. W. Ritchey and P. Ammann. Using Model Checking to
Analyze Network Vulnerabilities. In Proceedings, 2000 IEEE
Symposium on Security and Privacy, pages 156 — 165,
Oakland, CA, May 2000.

[8] O. Sheyner. Scenario Graphs and Attack Graphs. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, April 2004.

[9] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing.
Automated Generation and Analysis of Attack Graphs. In
Proceedings IEEE Symposium on Security and Privacy,
pages 254 — 265, May 2002.

[10] L. Swiler, C. Phillips, D. Ellis, and S. Chakerian.
Computer-Attack Graph Generation Tool. In Proceedings of
DARPA Information Survivability Conference and
Ezposition II, June 2001.

5

6

