Developing Conversational Interfaces with XCS

Dave Toney
School of Informatics
Edinburgh University

2 Buccleuch Place
Edinburgh EH8 9LW, UK

dave@cstr.ed.ac.uk

ABSTRACT

Conversational interfaces allow human users to interact with
computer systems using spoken language in order to retrieve
information and perform problem-solving tasks. A crucial
part of developing such a system is devising a conversational
strategy. This strategy is effectively a mapping between an-
ticipated user inputs and appropriate system outputs. In
this paper we present some preliminary experiments that
show how XCS can generate optimal conversational strate-
gies. We also explore the effect of the magnitude and struc-
ture of reward functions on the strategies learned by XCS.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning—Concept learning;

1.2.7 [Artificial Intelligence]: Natural Language Processing—

Discourse.

General Terms

Algorithms, Design, Experimentation, Performance.

Keywords

Learning Classifier Systems, XCS, Conversational Interfaces,
Spoken Dialogue Systems, Conversational Strategies.

1. INTRODUCTION

Since the early 1990s, speech- and language-processing
technologies have been combined to create conversational
interfaces (CIs). These interfaces allow human users to
converse with a computer to retrieve information and per-
form problem-solving tasks. However, developing a conver-
sational interface can be a difficult and time-consuming pro-
cess. Although each CI is normally developed for a specific
purpose (e.g. to provide a weather report) the number of
unique conversations that can occur between a user and the
system is almost unlimited. Consequently, a system devel-
oper may spend a lot of time anticipating how potential users

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

GECCO'06, July 8-12, 2006, Seattle, Washington, USA.

Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

Johanna Moore
School of Informatics
Edinburgh University

2 Buccleuch Place

Edinburgh EH8 9LW, UK

jmoore@inf.ed.ac.uk

Oliver Lemon
School of Informatics
Edinburgh University

2 Buccleuch Place
Edinburgh EH8 9LW, UK

olemon@inf.ed.ac.uk

might interact with the system before deciding on the most
appropriate system responses. These decisions are encoded
in a conversational strategy, effectively a mapping between
anticipated user inputs and appropriate system outputs.

To reduce the time and effort associated with developing
a conversational strategy, recent work has concentrated on
modelling dialogue as a sequential decision problem. Using
this model, reinforcement learning algorithms have been em-
ployed to generate conversational strategies automatically.
Some progress has been made with this approach. However,
a number of important challenges remain.

In this paper we describe how we have begun to use XCS
[14] to generate conversational strategies. We outline some
of the challenges associated with learning strategies for Cls.
We believe that XCS might allow us to overcome many of
these issues. We present some preliminary experiments that
show how XCS can generate strategies that are optimal with
respect to pre-defined evaluation criteria. We also present
results that illustrate the problem of defining appropriate
reward functions for conversational systems.

2. CONVERSATIONAL INTERFACES

Conversational interfaces (also known as spoken dialogue
systems) are based on the idea that spoken language can
serve as a flexible and efficient form of communication be-
tween humans and computers. Information retrieval and
transactional systems are arguably the most prevalent forms
of CI in commercial use today. Interaction is almost exclu-
sively telephony-based. Existing applications allow users to
retrieve tourist, weather and telephone directory informa-
tion, make travel reservations and conduct financial transac-
tions [9]. A simple example of a typical interaction between
a user and a train information system is shown in Figure 1.

System: Welcome to National Rail Enquiries.
How can I help you?

User: I’d like to travel to Baltimore tomorrow.

System: Baltimore, leaving from which station?

User: Washington, around seven am.

System: There is a train from Washington Union
Station to Baltimore Penn Station at 7:00 am.
It arrives at 7:35. Is this ok?

User: Yes, thank you. Goodbye.

System: Goodbye.

Figure 1: A simple train information dialogue.

SPEECH
RECOGNISER

SPEECH
SYNTHESIZER

N———

—_—
LANGUAGE V
DIALOGUE
PARSER MANAGER [®—®| DATA
GENERATOR BASE
-

——

Figure 2: Core technologies in a conversational interface.

The example in Figure 1 is basically a database query:
the user provides the values for some database fields (slots)
and the system returns the query results. Consequently,
this type of system is often referred to as a slot-filling sys-
tem. From the user’s perspective the interaction is con-
ducted with a single computer system. In reality, a CI is
comprised of a number of core technologies. Typically, a CI
will include a speech recogniser, a speech synthesizer, a lan-
guage parser/generator and a dialogue manager (see Figure
2).

A single exchange between user and system normally in-
volves the following stages: (i) the user’s utterance is sam-
pled and processed by the speech recogniser; the recogniser
generates a list of potential sentences and associated confi-
dence scores; (ii) this list is processed by the language parser
and encoded into a semantic form that can be interpreted by
the dialogue manager (DM); (iii) the DM selects the most
likely interpretation of the user’s utterance within the con-
text of the dialogue as a whole and then generates its own
response; (iv) the DM’s response is translated by the lan-
guage generator into text which in turn is converted to a
speech waveform by the speech synthesizer. The DM may
occasionally consult with a backend database when forming
its response.

How does the DM interpret the user’s utterances and se-
lect appropriate responses? These decisions are encoded in
the DM’s conversational strategy. This strategy is devised
by the system developer and represents a policy for respond-
ing to expected user input. In other words, the DM executes
the developer’s conversational strategy. Many of the CI’s
subsystems require little change when moving from one ap-
plication to another. However, the conversational strategy
is primarily what differentiates one system from another.
Consequently, a large proportion of a system’s development
is taken up with strategy design.

3. CONVERSATIONAL STRATEGIES

The traditional approach to CI development is to evaluate
successive versions of the conversational strategy with test
users until a required level of performance is achieved. For
a particular system, this test-and-refine process may be re-
peated many times. Furthermore, the number of strategies
that has been explored may be considerably less than the
total number of possible strategies. To overcome these two
issues, recent research has focused on generating dialogue
strategies automatically. This work is based on modelling

dialogue as a finite Markov Decision Process, formalized by a
state set S, an action set A, a set of transition probabilities T
and a reward function R . Using this model, conversational
strategies have been developed using reinforcement learning
(RL) algorithms [7, 12].

In the context of Cls, the dialogue state represents the
progress of the dialogue, for example, how many slot values
have been supplied by the user, boolean variables indicating
whether the user has been greeted by the system etc. There-
fore, the state set simply enumerates all possible dialogue
states. The action set is the list of possible system actions
(utterances), such as asking the user for information (“What
is your destination?”). Transition probabilities, which de-
scribe the effect of user actions on the dialogue state, are
often modelled by a simulated user. A very large number
of test dialogues are usually required by learning algorithms
to generate conversational strategies; simulated users are a
practical alternative to employing human test users [8, 10].
Finally, the reward function allows the system developer to
define what characterizes a successful dialogue.

Some progress has been made with the use of RL tech-
niques to generate conversational strategies. However, a
number of important challenges remain. For instance, very
little success has been achieved with the large state sets that
are typical of real-life systems (but see [4]). Similarly, work
on summarizing learned strategies for interpretation by hu-
man developers has so far only been applied to tasks where
each state-action pair is explicitly represented [6]. This tab-
ular representation severely limits the size of the state space.
In addition, misrecognition on the part of the speech recog-
niser can create situations where the DM makes decisions
based on an inaccurate assessment of the dialogue state. In
other words, the true state of the dialogue is only partially
observable by the DM. Attempts to incorporate a model
of this partial observability into the conversational strategy
have so far succeeded with only very small state representa-
tions [13]. We believe that XCS and its variants (e.g.[5, 15])
may provide solutions to many of these challenges.

4. EXPERIMENTAL METHODOLOGY

In this section we present a simple slot-filling system based
on train information enquiries. The goal of the system is to
acquire the values for four slots: the departure city, the des-
tination city, the date of departure and the preferred time
of departure. In slot-filling dialogues, an optimal strategy is
one that interacts with the user in a sensible way while try-

ing to minimise the length of the dialogue. A common exam-
ple of sensible system behaviour is the practice of confirming
slot values when speech recognition confidence is generally
low, for example, when the level of ambient noise is high. In
our train information system we have assumed that such a
situation exists. Therefore, the optimal strategy consists of
asking the user for values for each of the four slots, confirm-
ing each slot value, presenting the query results and then
closing the dialogue.

We devised an experimental framework for mod-
elling the train information system as a Markov Deci-
sion Process and used XCS to generate conversational
strategies. Our state representation consisted of eight
boolean flags indicating whether each of the slots have
been filled and confirmed: Departure_Filled, Destina-
tion_Filled, Date_Filled, Time_Filled, Departure_Confirmed,
Destination_-Confirmed, Date_Confirmed, Time_Confirmed.
The available system actions were: Ask(Departure_City),
Ask(Destination_City), Ask(Date), Ask(Preferred-Time),
Confirm(Departure_City), Confirm(Destination-City), Con-
firm(Date), Confirm(Preferred-Time) and Query+Goodbye.
The transitions probabilities were implemented using a
handcoded simulated user.

In this work we were particularly interested in the effect of
the reward function on the policy generated by XCS. In con-
versational systems, reward functions are normally designed
to balance the need for sensible system behaviour and the
desire for short dialogues. With respect to this goal, pre-
vious work has investigated the relative size in magnitude
between interim and final rewards using Q-learning [2]. We
investigated two further aspects of the reward function. In
the first set of experiments, we examined the effect of varying
the absolute magnitude of the rewards. We created six ver-
sions of the reward function. Each function maintained the
same ratio between interim and final rewards but differed
in absolute terms. At the end of each dialogue a penalty
was assigned to each action performed and a larger reward
was given if the goal of filling and confirming the four slots
was achieved (Table 1). For example, the total possible pay-
off associated with the optimal policy in Experiment la was:
—1x9+100 = 91, i.e. -1 for each of the nine actions required
to complete the dialogue and 100 for filling and confirming
the four slots.

| Exp. | Per Action | Goal Completion | Max Payoff |

la -1 100 91
1b -10 1,000 910
1lc -100 10,000 9,100
1d -1000 100,000 91,000
le -10,000 1,000,000 910,000
1f -100,000 10,000,000 9,100,000

Table 1: Reward functions for Experiment Set 1.

In the second set of experiments, we examined the effect of
partial rewards. We wanted to know if dividing the reward
into sub-rewards affected the rate of convergence towards
the optimal policy. Previous work has shown that apply-
ing partial rewards to tabular Q-learning can produce sub-
optimal conversational strategies [3]. Experiment 2a had
the same reward structure as Experiment lc, with a total
possible payoff of: —100 x 9 4+ 10,000 = 9,100. In Exper-
iments 2b and 2c, the total possible payoff was also 9,100

(Table 2). However, the reward functions were structured
differently. In Experiment 2b a reward of 5,000 was given
if all four slots were filled; a further 5,000 was awarded if
all four slots values were confirmed. In Experiment 2c, a
reward of 2,500 was awarded for filling and confirming each
slot. Therefore, the total payoff for filling and confirming all
four slots in Experiments 2b and 2c was identical to 2a.

|Exp. | Per Action | Goal Completion | Max Payoff |

fill and confirm
2a 10001 o1l Slots:10,000 9,100

fill all slots:5,000
confirm all slots:5,000
fill and confirm

2e -100 one slot:2,500 9,100

2b -100 9,100

Table 2: Reward functions for Experiment Set 2.

In each experiment, dialogues were limited to a maximum
of 30 system actions. Each experiment was terminated af-
ter 25,000 training dialogues and repeated ten times. The
XCS parameter settings (described in [1]) in all experiments
were: N = 1000, 8 =0.2, a =0.1, ¢ =10, v =5, v =
0.95, 0ga = 25, x = 0.8, u = 0.04, O4es = 20, § =
0.1, Osub = 20, P# = 0.33, pr = 12, €] = 0, F[=
0.01, pexpir = 0.5, Omna = 9.

5. EXPERIMENTAL RESULTS

Figure 3 shows the average payoff over 25,000 (exploit)
training dialogues for Experiments 1la—1f. Note that an opti-
mal policy was not achieved in 1a and 1b. In fact, both these
experiments were allowed to run for 107 dialogues without
improvement. The average payoff of 100 in 1b only occurs
because of the explore mechanism within XCS and is well
short of the optimal payoff of 910. However, in Experiments
1lc—1f, the optimal policy was reached fairly rapidly, after
approximately 2,000-9,000 dialogues. Increasing the magni-
tude of the rewards beyond -100/10,000 (used in 1lc) seems
to have little effect on the rate of convergence.

Average Payoff
-
[=]

107 3

‘ la b —6—1c —»—1d —»—1e———1f‘
10" E
10“ L L L L
0 5,000 10,000 15,000 20,000 25,000
Dialogues

Figure 3: Policy convergence: Experiments 1a—1f.

Figure 4 shows the average payoff over 25,000 (exploit)
training dialogues for Experiments 2a—2c. Recall that the

full reward of 10,000 was given in Experiment 2a only when
all slots have been filled and confirmed. The optimal policy
was reached after approximately 9,000 dialogues. However,
in Experiment 2b, the average payoff converged to just over
6,000. This reflects the fact that the algorithm was oscillat-
ing between a payoff of 4,500 (indicating that all slots have
been filled) and 9,100 (indicating that all slots have also been
confirmed). Therefore, the algorithm has not settled on the
optimal policy. In Experiment 2c, where a partial reward of
2,500 was awarded to each slot that is filled and confirmed,
the optimal policy was reached. In fact, the policy con-
verged to optimality more quickly than in Experiment 2a,
after approximately 2,000 dialogues.

10000

9000

8000

7000

6000

5000

4000

Average Payoff

3000
f

2000

1000

o L L L L
0 5,000 10,000 15,000 20,000 25,000

Dialogues

Figure 4: Policy convergence: Experiments 2a—2c.

6. CONCLUSIONSAND FUTURE WORK

We have shown that XCS can be used to generate optimal
strategies for conversational interfaces. However, for this ap-
proach to be useful, the ability to generate optimal strategies
must be predictable and consistent. Our preliminary results
show that a policy generated by XCS can be affected by
both the magnitude and structure of the reward function.
It may be that small rewards take too long to increase the
fitness of useful macroclassifiers. In terms of subdividing
the reward function, our initial results have not shown a
clear pattern. One tentative suggestion is that these effects
may be caused by the relationship between the positional
semantics of the state representation and the partial reward
structure (cf.[11]). We plan to investigate this idea further.
Notwithstanding this, similar problems do occur when using
other algorithms, such as Q-learning, to learn conversational
strategies [3]. Designing reliable reward functions for gener-
ating conversational strategies is not easy.

For the future, a great deal of work remains to be done. A
robust model of reward is crucial if a software tool is to be
developed for reliably generating conversational strategies.
We also need to develop strategies that require much larger
state and action sets. We plan to investigate the efficacy of
XCS variants (e.g. XCSp [5]) that tackle the issue of partial
observability. Finally, it would be very useful to be able
to summarise optimal strategies for inspection by human
developers. We may be able to adapt a variety of approaches
(e.g. [6, 15]) for this purpose.

7. REFERENCES

[1] M. Butz and S. Wilson. An algorithmic description of
XCS. Soft Computing, 6:144-153, 2002.

[2] M. English and P. Heeman. Learning mixed initiative
dialog strategies by using reinforcement learning on
both conversants. In Conference on Empirical Methods
in Natural Language Processing, Vancouver, Canada,
October 2005.

[3] M. Frampton and O. Lemon. Reinforcement learning
of dialogue strategies using the user’s last dialogue
act. In IJCAI Workshop on Knowledge and Reasoning
in Practical Dialogue Systems, Edinburgh, UK, July
2005.

[4] J. Henderson, O. Lemon, and K. Georgila. Hybrid
reinforcement /supervised learning for dialogue policies
from COMMUNICATOR data. In IJCAI Workshop
on Knowledge and Reasoning in Practical Dialogue
Systems, Edinburgh, UK, July 2005.

[5] P. L. Lanzi. An extension to the XCS classifier system
for stochastic environments. In Genetic and
Evolutionary Computation Conference (GECCO-99),
pages 353-360, Orlando, FL, USA, July 1999.

[6] R. Lecceuche. Learning optimal dialogue management
rules by using reinforcement learning and inductive
logic programming. In 2nd Meeting of the North
American Chapter of the Association of
Computational Linguistics, Pittsburgh, USA, June
2001.

[7] E. Levin, R. Pieraccini, and W. Eckert. A stochastic
model of human-machine interaction for learning
dialogue strategies. IEEE Transactions on Speech and
Audio Processing, 8(1):11-23, 2000.

[8] R. Lépez-Cézar, A. De la Torre, J. Segura, A. Rubio,
and V. Sanchez. Testing dialogue systems by means of
automatic generation of conversations. Interacting
with Computers, 14(5):521-546, 2002.

[9] Nuance. http://www.nuance.com.

[10] K. Scheffler and S. Young. Probabilistic simulation of
human-machine dialogues. In International Conference
on Acoustics, Speech and Signal Processing, pages
1217-1220, Istanbul, Turkey, June 2000.

[11] D. Schuurmans and J. Schaeffer. Representational
difficulties with classifier systems. In 3rd International
Conference on Genetic Algorithms, pages 328-333,
Fairfax, VA, USA, June 1989.

[12] S. Singh, D. Litman, M. Kearns, and M. Walker.
Optimizing dialogue management with reinforcement
learning: Experiments with the NJFun system.
Journal of Artificial Intelligence Research, 16:105-133,
2002.

[13] J. Williams, P. Poupart, and S. Young. Partially
obervable markov decision processes with continuous
observations for dialogue management. In 6th SigDial
Workshop on Discourse and Dialogue, Lisbon,
Portugal, September 2005.

[14] S. Wilson. Classifier fitness based on accuracy.
Evolutionary Computation, 3(2):149-175, 1995.

[15] S. Wilson. Compact rulesets from XCSI. In 4th
International Workshop on Advances in Learning
Classifier Systems, pages 197-210, San Francisco, CA,
USA, July 2001.

