
The χ-ary Extended Compact Classifier System:
Linkage Learning in Pittsburgh LCS

Xavier Llorà†, Kumara Sastry‡, David E. Goldberg‡, Luis delaOssa§

†National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign,
1205 W. Clark Street, Urbana, IL 61801, USA

xllora@illigal.ge.uiuc.edu

‡Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign,
104 S. Mathews Avenue, Urbana, IL 61801, USA

{kumara,deg}@illigal.ge.uiuc.edu
§Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha,

Campus Universitario s/n, 02071 Albacete, Spain
ldelaossa@dsi.uclm.es

ABSTRACT
This paper proposes a competent Pittsburgh LCS that au-
tomatically mines important substructures of the underly-
ing problems and takes problems that were intractable with
first-generation Pittsburgh LCS and renders them tractable.
Specifically, we propose a χ-ary extended compact classifier
system (χeCCS) which uses (1) a competent genetic algo-
rithm (GA) in the form of χ-ary extended compact genetic
algorithm, and (2) a niching method in the form restricted
tournament replacement, to evolve a set of maximally accu-
rate and maximally general rules. The results clearly show
that linkage exists in the multiplexer problem which needs
to be accurately discovered and efficiently processed in order
to solve the problem in tractable time. The results also show
that in accordance with the facetwise models from GA the-
ory, the number of function evaluations required by χeCCs
to successfully evolve an optimal rule set scales exponen-
tially with the number of address bits (building block size)
and quadratically with the problem size.

Categories & Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning–Concept Learning.

General Terms
Algorithms, Design, Theory.

Keywords
Learning Classifier Systems, Competent Genetic Algo-
rithms, Extended Compact Classifier System

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

1. INTRODUCTION
One of the daunting challenges in genetics based machine

learning (GBML) is the principled integration of competent
genetic algorithms (GAs) [6]—GAs that solve boundedly dif-
ficult problems quickly, reliably, and accurately—for evolv-
ing maximally general, maximally accurate rules. Despite
their demonstrated scalability—on both problems that are
difficult on a single as well as hierarchical level—limited
studies have used competent GAs in GBML [3, 4]. Butz
et al [3] studied techniques to identify problem structures
in XCS. In a subsequent study, Butz et al [4] investigated
methods to identify and effectively process building blocks in
XCS. Specifically, they used a two-level composed problem
(n-parity m-multiplexer), and used competent GAs to iden-
tify global and local structure. Due to the binary encoding
used, the low-level structure (parity) was successfully iden-
tified and processed, but left the high-level structure (mul-
tiplexer) unidentified.

Modeling on the evolution of estimation of distribution
algorithms (EDAs) [15], we approached the integration of
competent GAs into the Pittsburgh LCS in a principled
manner by first considering a simplest EDA—compact ge-
netic algorithm [9]—and developed the compact classifier
system (CCS) [13]. Our initial analysis with CCS showed
that it is able to evolve maximally general and maximally
accurate rule sets while guaranteeing a compact representa-
tion of the rule set space. However, the scalability analy-
sis of CCS revealed that it requires exponential number of
function evaluations to fully solve the multiplexer problem.
The exponential scalability is due two factors: (1) Attribute
independence assumption that leads CCS to require an ex-
ponentially large population size to evolve some of the rules
belonging to the optimal rule set, which strongly hints to
the presence of interactions among the decision variables,
and (2) rule set formation by multiple cGA runs, that is,
CCS requires multiple cGA runs to assemble a rule set that
solves the problem. Assuming that the probability of draw-
ing a rule in a given cGA run is 1/ |[O]| (|[O]| the optimal
rule set [12]), the number of runs required to ensemble an

rule set increases exponentially with the number of rules in
the optimal set [O].

In this paper, we remedy both drawbacks of CCS and pro-
pose a method that not only discovers necessary substruc-
tures, but also evolves a set of maximally general and maxi-
mally accurate rules simultaneously within the framework of
Pittsburgh LCS. Specifically, we propose a χ-ary extended
compact classifier system (χeCCS) which uses (1) a linkage-
learning GA in the form of χ-ary extended compact genetic
algorithm (χeCGA) [5, 16], and (2) a niching method in the
form of restricted tournament replacement [10] to evolve a
set of maximally general and maximally accurate rule set.
Confirming CCS results, χeCCS results show that linkage
does exist in the multiplexer problem, which needs to be
discovered in order to evolve a rule set in tractable time.
We show that in accordance with existing population-sizing
models for EDAs, the population size required by χeCCS
scales exponentially with the number of address bits (build-
ing block size) and linearly with the problem size (number
of building blocks). Additionally, the number of function
evaluations required by χeCCs to successfully evolve an op-
timal rule set scales exponentially with the number of ad-
dress bits (building block size) and quadratically with the
problem size, despite the exponential growth in the size of
the optimal rule set.

The rest of the paper is structured as follows. We intro-
duce χeCCS in section 2. In section 3, we summarize the
initial analysis and results obtained using χeCCS. Finally,
we summarize the work done and present key conclusions in
section 4.

2. THE χ-ary EXTENDED COMPACT
CLASSIFIER SYSTEM

The χ-ary extended compact classifier system (χeCCS)
relies on a χ-ary extended compact genetic algorithm
(χeCGA) [5, 16] to identify building blocks among the rules.
As in CCS, χeCCS uses a default rule for close-world as-
sumption, but represents the rules using a ternary encoding
instead of the binary one used in CCS. The use of a χ-ary
approach is to focus the linkage learning between the con-
ditions of the rules. Whereas, a binary version would be
misled and only group bits of a single condition together
(low-level building blocks) [4]. Another key element to the
evolution of a set of rules is the ability to provide proper
niching capabilities—as already pointed out elsewhere by
Bernadó-Mansilla et al. [1, 2].

The χ-ary extended compact genetic algorithm (χeCGA)
[5, 16], is an extension of Harik’s binary eCGA [11]. Unlike
the original eCGA, χeCGA can handle fixed-length chromo-
somes composed of genes with arbitrary cardinalities (de-
noted by χ). As in the original eCGA, χeCGA is based
on a key idea that the choice of a good probability distri-
bution is equivalent to linkage learning. The measure of a
good distribution is quantified based on minimum descrip-
tion length(MDL) models. The key concept behind MDL
models is that given all things are equal, simpler distribu-
tions are better than the complex ones. The MDL restriction
penalizes both inaccurate and complex models, thereby lead-
ing to an optimal probability distribution. The probability
distribution used in eCGA is a class of probability models
known as marginal product models (MPMs). MPMs are
formed as a product of marginal distributions on a partition

of the genes. MPMs also facilitate a direct linkage map with
each partition separating tightly linked genes.

The χeCGA can be algorithmically outlined as follows:

1. Initialize the population with random individuals.

2. Evaluate the fitness value of the individuals

3. Select good solutions by using s-wise tournament se-
lection without replacement [8].

4. Build the probabilistic model: In χeCGA, both the
structure of the model as well as the parameters of
the models are searched. A greedy search is used to
search for the model of the selected individuals in the
population.

5. Create new individuals by sampling the probabilistic
model.

6. Evaluate the fitness value of all offspring

7. Replace the parental population (before selection)
with the offspring population using restricted tourna-
ment replacement (RTR) [10]. We use RTR in order
to maintaining multiple maximally general and maxi-
mally accurate rules as niches in the population.

8. Repeat steps 3–6 until some convergence criteria are
met.

Three things need further explanation: (1) the fitness mea-
sure, (2) the identification of MPM using MDL, and (3) the
creation of a new population based on MPM.

In order to promote maximally general and maximally
accurate rules à la XCS [18], χeCCS compute the accuracy
(α) and the error (ε) of an individual [14]. In a Pittsburgh-
style classifier, the accuracy may be computed as the pro-
portion of overall examples correctly classified, and the error
is the proportion of incorrect classifications issued. Let nt+

be the number of positive examples correctly classified, nt−
the number of negative examples correctly classified, nm the
number of times that a rule has been matched, and nt the
number of examples available. Using these values, the accu-
racy and error of a rule r can be computed as:

α(r) =
nt+(r) + nt−(r)

nt
(1)

ε(r) =
nt+

nm
(2)

We note that the error (equation 2) only takes into account
the number of correct positive examples classified. This is
due to the close-world assumption of the knowledge repre-
sentation which follows from using a default rule. Once the
accuracy and error of a rule are known, the fitness can be
computed as follows.

f(r) = α(r) · ε(r) (3)

The above fitness measure favors rules with a good classifi-
cation accuracy and a low error, or maximally general and
maximally accurate rules.

The identification of MPM in every generation is formu-
lated as a constrained optimization problem,

Minimize Cm + Cp (4)

Subject to

χki ≤ n ∀i ∈ [1, m] (5)

where Cm is the model complexity which represents the cost
of a complex model and is given by

Cm = logχ(n + 1)

mX
i=1

“
χki − 1

”
(6)

and Cp is the compressed population complexity which rep-
resents the cost of using a simple model as against a complex
one and is evaluated as

Cp =

mX
i=1

χkiX
j=1

Nij logχ

„
n

Nij

«
(7)

where χ is the alphabet cardinality, m in the equations rep-
resent the number of BBs, ki is the length of BB i ∈ [1, m],
and Nij is the number of chromosomes in the current pop-
ulation possessing bit-sequence j ∈ [1, χki]1 for BB i. The
constraint (Equation 5) arises due to finite population size.

The greedy search heuristic used in χ-eCGA starts with a
simplest model assuming all the variables to be independent
and sequentially merges subsets until the MDL metric no
longer improves. Once the model is built and the marginal
probabilities are computed, a new population is generated
based on the optimal MPM as follows, population of size
n(1 − pc) where pc is the crossover probability, is filled by
the best individuals in the current population. The rest
n·pc individuals are generated by randomly choosing subsets
from the current individuals according to the probabilities
of the subsets as calculated in the model.

One of the critical parameters that determines the success
of χeCGA is the population size. Analytical models have
been developed for predicting the population-sizing and the
scalability of eCGA [17]. The models predict that the pop-
ulation size required to solve a problem with m building
blocks of size k with a failure rate of α = 1/m is given by

n ∝ χk

„
σ2

BB

d2

«
m log m, (8)

where n is the population size, χ is the alphabet cardinality

(here, χ = 3), k is the building block size,
σ2

BB
d2 is the noise-

to-signal ratio [7], and m is the number of building blocks.
For the experiments presented in this paper we used k =

|a|+1 (where |a| is the number of address inputs),
σ2

BB
d2 =1.5,

and m = `
|I| (where ` is the rule size).

3. RESULTS
We conducted a set of initial tests of the χeCCS to eval-

uated whether it is capable of: (1) identifing and exploit
problem structure, and (2) co-evolving a set of rules in a
single run. Specifically, we used the multiplexer problem
[18] with 3, 6, 11, 20, and 37 inputs.

3.1 Substructure in the multiplexer
We begin by investigating whether χeCCS is able mine the

substructures of the multiplexer problem. The results show
that χeCGA does indeed discover important substructures,
and the models for each of the multiplexer problems are
shown in table 1. From the models shown in table 1, we can
clearly see that the building-block size grows linearly with the

1Note that a BB of length k has χk possible sequences where
the first sequence denotes be 00· · · 0 and the last sequence
(χ− 1)(χ− 1) · · · (χ− 1)

Table 1: Illustrative models evolved by eCCS for dif-
ferent sizes of the multiplexer problem. The number
in parenthesis shows the average number of maxi-
mally accurate and maximally general rules evolved
after 10 independent runs.

3-input multiplexer (3)
[0 2] [1] (3)

6-input multiplexer (7)
[0 3][1 4][2 5]

11-input multiplexer (14)
[0 4 5][1 6 10][2 7 8][3 9]

20-input multiplexer (31)
[0 1 3 4][2 10 11 15][5 13][6][7][8]

[9 17][12 18][14][16][19]

37-input multiplexer (38)
[0 1 3 9 15][2 7 11 29 33][4 16 34]

[5 20 21][6 8 12 14][10 25 26]

[13 18 23 30][17 19 24 31][22 32]

[27 35][28][36]

number of address bits (|a|). Since the maximally accurate
and maximally general rules specify |a|+1 positions in the
rule, we can intuitively expect the building block size to
grow with the problem size.

3.2 Getting a set of rules
We now investigate the niching capability of RTR that

permits the evolution of an optimal rule set. Before we
present the number of rules evolved in χeCCS, we first cal-
culate the total number of maximally accurate and maxi-
mally general rules that exist for a given multiplexer, given
a default rule. That is, we can compute the number of rules
in [O] [12] and the number of overlapping rules given the
number of address inputs |a| as follows:

size(|a|) = |[O]|+ |[OV]| = 2|a| + |a| 2|a|−1 = (2 + |a|)2|a|−1

(9)
For the the 3-input, 6-input, 11-input, 20-input, and 37-
input multiplexer, the total number of maximally accurate
and maximally general rules is 3, 8, 20 ,48, and 118 respec-
tively.

However, not all these rules are needed to assemble a rule-
set that describes the target concept. For instance, a min-
imal ensemble is the one provided by [O]. The number of
maximally accurate and maximally general rules evolved on
an average in the ten independent are shown in table 1.
The results clearly show that RTR does indeed facilitate
the simultaenous evolution of the optimal rule set. We also
investigated the scalability of the number of function evalu-
tions required by χeCCS to evolve at least |[O]| rules during
a single run. We note that the size of [O] grows exponen-
tially with respect of the number of address inputs. The
population size used was the one introduced in the previous
section. Figure 1 shows the number of iterations required
by χeCCS only grows linearly. Therefore, the number of
function evaluations scale exponentially with the number of
address bits (building-block size) and quadratically with the
problem size (number of building blocks). This is despite the
exponential growth in the size of the optimal rule set. More-
over, the scalability results are as predicted by the facetwise
models developed for competent GAs.

●

●

●

●

5 10 15 20 25 30 35

5
10

15
20

Problem Size

N
um

be
r

of
 it

er
at

io
ns

Figure 1: Number of iterations required to obtain
at least |[O]| = 2|a| maximally accurate and maxi-
mally general rules. Results are the average of ten
independent runs.

4. CONCLUSIONS
We have presented how linkage can be successfully iden-

tified and exploited to evolve a set of maximally general
and maximally accurate rules using Pittsburgh-style learn-
ing classifier systems. We introduced the χ-ary extended
compact classifier system (χeCCS) which uses (1) a χ-ary
extended compact genetic algorithm (χeCGA), and (2) re-
stricted tournament replacement to evolve a set of maxi-
mally accurate and maximally general rule set. The re-
sults show that linkage exists in the multiplexer problem—
confirming CCS results—and also show that in accordance
with the facetwise models from GA theory, the number
of function evaluations required by χeCCs to successfully
evolve an optimal rule set scales exponentially with the num-
ber of address bits (building block size) and quadratically
with the problem size.

5. ACKNOWLEDGMENTS
This work was sponsored by the Air Force Office of Scien-

tific Research, Air Force Materiel Command, USAF, under
grant FA9550-06-1-0096, and the National Science Founda-
tion under grant IIS-02-09199. Any opinions, findings, and
conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views
of the funding agencies.

6. REFERENCES
[1] E. Bernadó-Mansilla and J. M. Garrell-Guiu.

MOLeCS: A MultiObjective Learning Classifier
System. Proceedings of the 2000 Conference on
Genetic and Evolutionary Computation, 1:390, 2000.

[2] E. Bernadó-Mansilla, X. Llorà, and I. Traus.
MultiObjective Machine Learning, chapter

MultiObjective Learning Classifier System, pages
261–288. Springer, 2005.

[3] M. V. Butz, P. L. Lanzi, X. Llorà, and D. E. Goldberg.
Knowledge extraction and problem structure
identification in XCS. Parallel Problem Solving from
Nature - PPSN VIII, 3242:1051–1060, 2004.

[4] M. V. Butz, M. Pelikan, X. Llorà, and D. E.
Goldberg. Extracted global structure makes local
building block processing effective in XCS. Proceedings
of the 2005 Conference on Genetic and Evolutionary
Computation, 1:655–662, 2005.

[5] L. de la Ossa, K. Sastry, and F. G. Lobo. Extended
compact genetic algorithm in C++: Version 1.1.
IlliGAL Report No. 2006013, University of Illinois at
Urbana-Champaign, Urbana, IL, March 2006.

[6] D. E. Goldberg. The Design of Innovation: Lessons
from and for Competent Genetic Algorithms. Kluwer
Academic Publishers, Norwell, MA, 2002.

[7] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic
algorithms, noise, and the sizing of populations.
Complex Systems, 6:333–362, 1992. (Also IlliGAL
Report No. 91010).

[8] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic
algorithms: Motivation, analysis, and first results.
Complex Systems, 3(5):493–530, 1989.

[9] G. Harik, F. Lobo, and D. E. Goldberg. The compact
genetic algorithm. Proceedings of the IEEE
International Conference on Evolutionary
Computation, pages 523–528, 1998. (Also IlliGAL
Report No. 97006).

[10] G. R. Harik. Finding multimodal solutions using
restricted tournament selection. Proceedings of the
Sixth International Conference on Genetic Algorithms,
pages 24–31, 1995. (Also IlliGAL Report No. 94002).

[11] G. R. Harik, F. G. Lobo, and K. Sastry. Linkage
learning via probabilistic modeling in the ECGA. In
M. Pelikan, K. Sastry, and E. Cantú-Paz, editors,
Scalable Optimization via Probabilistic Modeling:
From Algorithms to Applications, chapter 3. Springer,
Berlin, in press. (Also IlliGAL Report No. 99010).

[12] T. Kovacs. Strength or Accuracy: Credit Assignment
in Learning Classifier Systems. Springer, 2003.

[13] X. Llorà, K. Sastry, and D. E. Goldberg. The
Compact Classifier System: Motivation, analysis, and
first results. Proceedings of the Congress on
Evolutionary Computation, 1:596–603, 2005.

[14] X. Llorà, K. Sastry, D. E. Goldberg, A. Gupta, and
L. Lakshmi. Combating user fatigue in iGAs: Partial
ordering, support vector machines, and synthetic
fitness. In GECCO 2005: Proceedings of the 2005
conference on Genetic and evolutionary computation,
volume 2, pages 1363–1370, Washington DC, USA,
25-29 June 2005. ACM Press.

[15] M. Pelikan, F. Lobo, and D. E. Goldberg. A survey of
optimization by building and using probabilistic
models. Computational Optimization and Applications,
21:5–20, 2002. (Also IlliGAL Report No. 99018).

[16] K. Sastry and D. E. Goldberg. Probabilistic model
building and competent genetic programming. In
R. L. Riolo and B. Worzel, editors, Genetic
Programming Theory and Practise, chapter 13, pages
205–220. Kluwer, 2003.

[17] K. Sastry and D. E. Goldberg. Designing competent
mutation operators via probabilistic model building of
neighborhoods. Proceedings of the Genetic and
Evolutionary Computation Conference, 2:114–125,
2004. Also IlliGAL Report No. 2004006.

[18] S. Wilson. Classifier fitness based on accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

