Abstract:
|
Multiple, often conflicting objectives arise naturally in most real-world optimization scenarios. As evolutionary algorithms possess several characteristics that are desirable for this type of problem, this class of search strategies has been used for multiobjective optimization for more than a decade. Meanwhile evolutionary multiobjective optimization has become established as a separate subdiscipline combining the fields of evolutionary computation and classical multiple criteria decision making. This tutorial gives an overview of evolutionary multiobjective optimization with the focus on methods and theory. On the one hand, basic principles of multiobjective optimization are presented, and various algorithmic aspects such as fitness assignment and environmental selection are discussed in the light of state-of-the-art techniques. On the other hand, the tutorial covers several theoretical issues such as performance assessment and running-time analysis.
|