
Vulnerability Analysis and Security Framework (BeeSec)
for Nature Inspired MANET Routing Protocols

Nauman Mazhar, Muddassar Farooq
Center for Advanced Studies in Engineering (CASE)

19 Ataturk Avenue, G-5/1 Islamabad
Pakistan

ABSTRACT
Design, development and evaluation of adaptive, scalable,
and power aware Bio/Nature inspired routing protocols has
received a significant amount of attention in the recent past.
However, to the best of our knowledge no attempts have
been made to systematically analyze their security vulnera-
bilities. In this paper, we investigate the security vulnera-
bilities of BeeAdHoc, a well known power aware, Bio/Nature
inspired routing protocol. Our analysis clearly demonstrates
that the malicious nodes in an untrusted MANET, where
BeeAdHoc is used for routing, can significantly disrupt the
normal routing behavior. We then propose a security frame-
work, BeeSec, for BeeAdHoc that enables it to counter the
different types of threats. We also designed an empirical
framework, embedded into a well known simulator, ns-2, to
systematically validate the operational security of BeeSec.
An interesting outcome of the research is that BeeSec, even
with significant overhead of the security framework, achieves
better performance as compared to state-of-the-art, non-
secure, classical routing protocols AODV and DSR.

Categories and Subject Descriptors
C.2.0 [General]: [Security and protection]; C.2.1 [Network
Architecture and Design]: [Distributed networks, Wire-
less communication]; C.2.2 [Network Protocols]: [Proto-
col architecture, Routing protocols]

General Terms
Algorithms, Design, Security

Keywords
Swarm Intelligence, Mobile Ad Hoc Networks, Self-Organization,
Cryptographic Security, Misbehavior Detection

1. INTRODUCTION
Mobile Ad Hoc Networks (MANETs) is becoming an ac-

tive area of research [10]. All nodes in the transmission range

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

of one another communicate directly using their radios and
relay messages to their neighbors for further transmission to-
wards the destination if it is not in their transmission range.
Nodes are mobile, which results in a continuously changing
topology. Moreover, route discovery and data forwarding
phases must efficiently consume the limited battery capacity
of the nodes. DSR (Dynamic Source Routing) [5] and AODV
(Ad-Hoc On-demand Distance Vector Routing) [8] are well
known classical reactive routing protocols in MANETs.
Biological systems show a number of properties, such as self-
organization, adaptivity, scalability, robustness, autonomy,
locality of interactions and distribution. These are highly
desirable in dealing with the complex issues in MANETs.
AntHocNet [3], BeeAdHoc [14] and Termite [7] are consid-
ered to be state-of-the-art Bio/Nature inspired routing pro-
tocols. Their common features are: multipath discovery and
probabilistic distribution of data traffic on these multi paths
to achieve better performance. This feature also results in
depletion of the batteries of nodes at the same rate.
MANETs provide an ideal environment to a malicious node
to fabricate and launch attacks. It can either disrupt the
normal routing behavior or significantly degrade the perfor-
mance of a network [6]. A malicious node can join a MANET
and easily launch different types of attacks:

• Fabrication attacks are launched by a malicious node
by installing fake routes instead of valid ones. This
is made possible by creating and launching forged or
bogus agents in the networks.

• In Tampering attacks a malicious node illegally mod-
ifies different information fields of an agent, i.e. its
source address, id, delay, remaining battery capacity,
etc. The malicious node can also relay old agents.

• In Dropping attacks a malicious node drops route dis-
covery packets to either divide the network into several
partitions or launch a Denial of Service (DoS) attack.

To the best of our knowledge no serious and in depth re-
search has been undertaken in the Bio/Nature inspired com-
munity to analyze the security risks of the above-mentioned
Bio/Nature inspired MANET routing protocols on similar
lines as the researchers in classical network community have
done for DSR [4] and AODV [17]. However, some valuable
attempts have been made by the authors of [16] [15] to study
the vulnerabilities of BeeHive, a Bio/Nature inspired rout-
ing protocol for fixed networks, and they have proposed two
security frameworks for BeeHive to counter the attacks.
The stochastic routing in Bio/Nature inspired routing pro-
tocols makes it difficult to identify that the goodness of a

102

certain path is degraded because of an attack or its quality
has degraded due to real network conditions. The major
contributions of the work proposed in this paper are:

1. Design, development and implementation of a security
framework, BeeSec, for BeeAdHoc protocol.

2. Realization of a comprehensive performance evalua-
tion framework, in ns-2, to systematically analyze the
impact of different types of attacks on a routing pro-
tocol. The framework is also used as a validation tool
for BeeSec to demonstrate that it has successfully en-
countered most types of attacks.

3. The results obtained through extensive experiments
clearly demonstrate that BeeSec, despite its higher
processing overhead and large size of agents, achieves
better performance as compared to even the non-secure
MANET protocols, AODV and DSR. We believe that
the most important reason for the superior results is
that BeeAdHoc, the base protocol of BeeSec, was de-
signed from scratch to achieve a higher performance
but at low energy consumption [14].

The rest of the paper is organized as follows. In Section 2 we
provide a brief introduction to the BeeAdHoc protocol and
in Section 3 we carry out a systematic analysis of its security
vulnerabilities. Then we introduce relevant features of our
BeeSec security framework in Section 4. Section 5 describes
our validation and evaluation framework, now embedded in
ns-2, and we demonstrate the significant impact that a ma-
licious node can have on the routing behavior of BeeAdHoc.
However, BeeSec is shown to successfully counter these at-
tacks. In order to verify that our security enhancements did
not degrade the performance of the original BeeAdHoc al-
gorithm, we extensively compared BeeSec with BeeAdHoc,
AODV and DSR, in Section 6. The results clearly demon-
strate that BeeSec achieves better performance as compared
to AODV and DSR. Finally, we conclude the paper with an
outlook to our future research.

2. BEEADHOC PROTOCOL
BeeAdHoc is a nature inspired, source routing protocol

for MANETs, with design based on the foraging principles
of honey bees [14]. It mainly utilizes two types of agents;
scouts to discover routes and foragers to transport data.
Each node maintains a hive with an Entrance, Packing Floor
and a Dance Floor. Entrance provides an interface to the
Media Access Control (MAC) layer of the network stack.
Packing floor is an interface to the transport layer and re-
ceives data from it. Data packets are stored at the packing
floor, if route discovery to their destination is in progress.
Routes are stored at the dance floor.
When route to a destination is needed, forward scout is
broadcast in the network, in an expanding ring search. Re-
ceiving nodes append their addresses to the source route of
the scout till it arrives at the destination node. The desti-
nation node reverses the route and unicasts the scout back
to the source node. Once the scout returns to the hive of
the source node, it advertises the route to foragers. Foragers
are recruited for this path if its quality is above a thresh-
old. Consequently, recruited foragers transport data to the
destination node. On their journey, they also collect rele-
vant routing information that is used to evaluate the dance

number, which represents the quality of the path traversed.
We provide only that much description of the BeeAdHoc
protocol as is necessary to make this paper self-contained.
Interested readers can find its complete description in [14].

3. BEEADHOC VULNERABILITIES
The purpose of Byzantine [9] attacks is to disrupt the

normal routing behavior of a protocol. In these attacks, an
attack is considered successful if a malicious node achieves
its objectives; divert traffic towards itself when it does not
lie on a path towards destination or remove itself from a
valid path. In both cases, the performance of a network is
severely degraded even if the malicious node does not drop
the data packets.

3.1 Security Threat Analysis of BeeAdHoc
We systematically analyzed different shortcomings in BeeAd-

Hoc that could enable a malicious node to launch a number
of attacks. We outline a few of them here.

• Scout Related Attacks. When a scout is on its for-
ward journey trying to find a route to the destination,
it is propagated using the broadcast technique. As a
consequence, a large number of nodes receive its repli-
cas even if they do not lie on a direct path leading to-
wards the destination. A malicious node can partially
modify the source route in a scout and retransmit it.
Otherwise, it can insert a completely new source route
and send the scout back as a unicast packet towards
the source. Similarly, a malicious node can also alter
the source header of a unicast backward scout. Al-
ternatively, it can forge a scout by spoofing the source
address or inserting fake scout ID, or both. Once these
scouts return to the source node, the forged route is
established between the source and destination nodes.

• Forager Related Attacks. Foragers carry data pack-
ets in their payload and are transmitted as unicast
packets. A malicious node can, again, modify the for-
ager’s source route during its journey from source to
destination. Similarly a malicious node can launch a
forged forager with spoofed source address and fake
source route towards destination. Once this forager
returns to the source node, a fake route is established.
Alternatively, a malicious node can launch a fake for-
ager towards the source node with a forged route. In
this scenario the forged route will be installed more
quickly as compared to the previous case.

One fundamental assumption, in order to launch the above-
mentioned attacks successfully, is for the malicious node to
ensure that the route from source to destination is complete.
If hop-by-hop connectivity does not exist, the forged scout
or forager will be dropped during its forward or backward
journey. This, instead, in a worst case scenario could degen-
erate into a DoS attack if no foragers or scouts ever return
at the source node. A malicious node can launch a relatively
softer attack by modifying the different routing parameters
in order to artificially enhance the quality of a path. This
will increase the dance number value and as a consequence,
more replicas of this route will be stored. Therefore, the
probability to forward a higher number of data packets on
this low quality route increases that results in wasting pre-
cious network resources.

103

4. BEESEC: SECURITY FRAMEWORK FOR
BEEADHOC

We can easily conclude from Section 3 that BeeAdHoc can
be secured against Byzantine attacks if we secure the header
fields of scouts and foragers against unauthorized modifica-
tion. In networks, secure systems research employs either
public key encryption (Digital Signatures) or symmetric key
systems (Message Authentication Codes) for authentication.

Symmetric key systems have less processing overhead [12]
but the communicating parties need to know and store a
large number of keys. Moreover, the keys have to be reg-
ularly changed and distributed securely, making key man-
agement a serious challenge. This shortcoming is even more
serious in an untrusted MANET environment where nodes
frequently enter and leave the network. This calls for an
on-line, real time, secure key distribution system which is
scalable to large networks. In contrast, a node in public key
cryptography requires just one pair of public/private keys
for itself and one public key for each node with which it
wants to communicate, making key distribution relatively
simple. Therefore, we find it more appropriate to use public
key cryptography in a MANET environment.

BeeSec, a secure version of BeeAdHoc utilizes digital signa-
tures. The scouts and foragers are modified to carry digital
signatures that are computed on source address, packet ID,
routing information and source route, etc. In addition, the
integrity of the source route is maintained to ensure that no
node on the route can be removed.

Symbol Description
s, d, i source, destination & the ith node
IPs, IPd, R, Ri source Internet Protocol (IP) address,

destination IP address, complete source
route & source route upto nodei

FSsd, BSsd, Fsd forward scout, backward scout and
forager going from nodes to noded

HdrBeeSec header of BeeSec protocol
Ssct, IDsct, Dsct source, ID and destination of a scout
AuthFS digital signature of scout header

fields IPs, IDsct, Dsct

ChkRtInteg digital signature of current source
route of a scout including all hops

AuthBS digital signature of backward scout
header fields IPs, IDsct, Dsct and Ri

AuthF digital signature of forager header
fields IPs, IPd, Ri

AuthRtInfo digital signature of route info field
in the header of a forager

H(M) hash of message M
KUs, KRs public & private keys of nodes

Sign(.), V erify(.) functions to create & verify digital
signatures; detailed description in [12]

Table 1: List of symbols used in the paper

4.1 Scout Authentication
Authentication of a scout is done by computing digital

signature (authenticator) and inserting into the header of a
scout. A receiving node can, with the help of the authen-
ticator, verify that the scout was not tampered by a mali-
cious node. Certain fields in the header of a scout remain
unchanged (fixed) during its forward or backward propaga-
tion i.e IPs, IDsct, Dsct. In comparison, the source route is
changed by each node as it inserts its address into it.

Algorithm-1: Security Extensions for Forward Scouts

for all (FSsd launched from Ssct to Dsct) do
if (FSsd broadcast from nodei) then

compute AuthF S for nodei

store AuthF S for nodei in HdrBeeSec

compute ChkRtInteg for nodei

store ChkRtInteg for nodei in HdrBeeSec

if (nodei �= Ssct for FSsd) then
store list of previous AuthF S in HdrBeeSec

store ChkRtInteg for nodei−1 in HdrBeeSec

end if
broadcast FSsd

else if (FSsd received at nodei) then
if (FSsd revisiting a node in source route) then

drop FSsd and exit
end if
for all (AuthF S values in HdrBeeSec) do

verify AuthF S value
if (AuthF S fails) then drop FSsd and exit
end if

end for
verify ChkRtInteg value for nodei−1
if (ChkRtInteg for nodei−1 fails) then

drop FSsd and exit
else

store ChkRtInteg for nodei−1 in HdrBeeSec

end if
if (nodei �= 1st hop after launch of SSsd) then

verify ChkRtInteg value for nodei−2
if (ChkRtInteg for nodei−2 fails) then

drop FSsd and exit
end if

end if
if (nodei �= Dsct for FSsd) then

store AuthF S values in HdrBeeSec

pass FSsd to entrance for re-broadcasting
else

pass FSsd to entrance to convert to BSds

end if
end if

end for

Algorithm-2: Security Extensions for Backward Scouts

for all (BSds returning from Dsct to Ssct) do
if (BSds unicast from nodei to nodei+1) then

if (nodei == Dsct for BSds) then
compute AuthBS

store AuthBS in HdrBeeSec

end if
else if (BSds received at nodei) then

if (nodei == Ssct for BSds) then
verify AuthBS for Dsct

if (AuthBS for Dsct fails) then
drop BSds and exit

else
pass BSds to entrance for inclusion in dancefloor

end if
end if

end if
end for

Each nodei broadcasting a scout computes the digital signa-
ture, AuthFS , on fixed scout header fields using the digital
signature function and its private key, as:

AuthFSi = Sign(H(IPs, IDsct, Dsct), KRi) (1)

It then inserts it into the header and broadcasts the scout.
An intermediate node can authenticate the AuthFS values
stored in the scout header for each node in the source route
using the digital signature verification function, as:

V erify(AuthFSi , H(IPs, IDsct, Dsct), KUi) (2)

104

A broadcasting nodei also computes another authenticator,
ChkRtInteg, on the modifiable source route field, as:

ChkRtInteg = Sign(H(Ri), KRi) (3)

An intermediate nodei uses the verification function to en-
sure that the source route was indeed sent by nodei−1, as:

V erify(ChkRtIntegi−1 , H(Ri−1), KUi−1) (4)

However, if the previous node illegally modified the source
route, the above process cannot provide protection against
it. Therefore, two authenticators are stored in the scout
header after the first hop. In this way, nodei can use ChkRtInteg

of nodei−1 and ChkRtInteg of nodei−2 to detect any illegal
modification of the source route by nodei−1.

V erify(ChkRtIntegi−2 , H(Ri−2), KUi−2) (5)

Finally, nodei appends its IP address and computes a new
ChkRtInteg value on the new source route and inserts it into
the header of the scout. In this way, the predecessor of
predecessor node acts as a protector against illegal source
modification by the previous node. However, this approach
makes a reasonable assumption; no two immediate successor
nodes on a path are malicious nodes.
When the scout reaches the destination, Dsct, it is unicast
back towards the source of the scout, Ssct. But before trans-
mitting, Dsct computes the AuthBS , as:

AuthBS = Sign(H(IPs, IDsct, Dsct, R), KRs) (6)

Once the scout is received by Ssct, it can verify the integrity
of scout header fields by using the signature verification
function. A scout is dropped if the verification fails.

4.2 Forager Authentication
A forager has fixed (non-modifiable) fields like IPs, IPd

and R. To protect these fixed fields, once a forager is launched
by nodes, it computes an authenticator, AuthF , and places
it in the forager header.

AuthF = Sign(H(IPs, IPd, R), KRs) (7)

At each hop from source to destination, a forager collects
different parameters to model the quality of a route, i.e, de-
lay and remaining battery capacity. To protect this routing
information, a sending nodei computes an authenticator and
stores it in the header of the forager.

AuthRtInfoi = Sign(H(RouteInformationi), KRi) (8)

In addition, the authenticator for the previous nodei−1 is
also placed in the forager header. This authenticator allows
the next hop nodei+1 to verify that the routing informa-
tion of nodei−1 was not tampered by nodei. AuthRtInfo

of nodei−1 is more relevant for those performance metrics
whose value accumulates at each hop. In this way, a node
can only falsify its own value and not the accumulated value
of the complete path. Based on the results of authenticator
verifications (Algorithm-4), the destination node uses the
routing information from nodei−1 or nodei−2 to compute
the dance number for the route. When the route’s infor-
mation field is found tampered by nodei−1, it is restored
to the actual value of nodei−2. In the case of accumulated
route information, the restored value is quite close to the ac-
tual. Again the assumption must hold that two immediate
successor nodes on a path are not malicious nodes.

Algorithm-3: Security Extensions for Sending Foragers

for all (Fsd going from nodes to noded) do
if (Fsd unicast from nodei to nodei+1) then

if (nodei == nodes for Fsd) then
compute AuthF for nodes

store AuthF for nodes in HdrBeeSec

end if
compute AuthRtInfo for nodei

store AuthRtInfo for nodei in HdrBeeSec

if (nodei �= nodes for Fsd) then
store route information for nodei−1 in HdrBeeSec

store AuthRtInfo for nodei−1 in HdrBeeSec

end if
send Fsd to next hop nodei+1

end if
end for

Algorithm-4: Security Extensions for Receiving Foragers

for all (Fsd going from nodes to noded) do
if (Fsd received at nodei) then

if (nodei == 1st hop after launch of Fsd) then
verify AuthRtInfo for nodei−1
if (AuthRtInfo fails) then drop Fsd and exit
end if
pass Fsd to entrance and send to next hop nodei+1

else
if (nodei �= noded for Fsd) then

verify AuthRtInfo for nodei−1
if (AuthRtInfo fails) then drop Fsd and exit
end if
verify AuthRtInfo for nodei−2
if (AuthRtInfo fails) then drop Fsd and exit
end if
compare route info values for nodei−1 & nodei−2
if (values not valid) then drop Fsd and exit
end if
pass Fsd to entrance and send to next hop nodei+1

end if

if (nodei == noded for Fsd) then
verify AuthF

if (AuthF fails) then drop Fsd and exit
end if
verify AuthRtInfo for nodei−1 & nodei−2
if (both AuthRtInfo values verified)

compare route info values for nodei−1 & nodei−2
if (route info values valid) then

use route info for nodei−1 for dance number
else

use route info for nodei−2 for dance number
end if

else if (only AuthRtInfo for nodei−2 verified)
use route info for nodei−2 for dance number

else drop Fsd and exit
end if
send Fsd to entrance for inclusion in dancefloor

end if
end if

end if
end for

5. SIMULATIONS FOR ATTACKS
We designed a test scenario in ns-2 to systematically eval-

uate the impact of attacks launched by malicious nodes in a
MANET running BeeAdHoc and BeeSec protocols. We re-
alized BeeSec in ns-2 while the authors of [14] provided the
source code for BeeAdHoc.
The security framework of BeeSec used Secure Hash Algo-
rithm (SHA1) for hashing and Digital Signature Algorithm
(DSA) for digital signatures. To implement these security
algorithms, we integrated a crypto library, OpenSSl [13] into

105

ns-2. We selected the recommended key length of 1024 bits.
In comparison, the hash function produced a 20 byte value
while the size of digital signature varied between 45 to 49
bytes. A packet can be authenticated with the keys of a node
using digital signatures stored in the header of a packet. We
assume all keys to be pre-distributed for the purpose of our
simulations.

1

0

6

5

3

2

4

8

7

Monitored

Node

Monitored

Node

Monitored

Node

Destination

Data Source

Figure 1: Node topology selected for attacks

5.1 Network Topology
We selected a rectangular area of operation (1000×500m2)

in which nine nodes were placed. A constant bit rate (CBR)
source was started at Node 0 and all data packets were des-
tined for Node 8. We decided to have immobile nodes as it
makes it easier to analyze the impact of an attack. However,
the analysis can easily be applied, without loss of generality,
to a scenario of mobile nodes.
It is evident from Figure 1 that three distinct paths exist be-
tween Node 0 and Node 8; 0-7-8, 0-5-6-8, 0-1-2-3-4-8. We
observed that the path 0-7-8 was discovered earlier in most
of the simulations. We equipped each node with a traffic
scope to monitor the traffic patterns. Figure 2(a) and 2(d)
show for BeeAdHoc and BeeSec respectively, the distribution
of packets on different paths under normal network state. As
expected, the number of packets following 0-7-8 path is sig-
nificantly higher than 0-5-6-8 path. It is interesting to note
that virtually no packets take 0-1-2-3-4-8 path.

5.2 Attacks on BeeAdHoc and BeeSec
We designed and implemented an attacker framework in

ns-2 that has the ability to launch different types of attacks.
The framework was instrumental in verifying the robustness
of BeeSec to a number of attacks, mentioned in Section 3.

Attk-1: Forging Forward Scout. We gave 100 seconds
initialization time with the objective that routes are initially
discovered. Node 4 launched forged forward scouts after 100
seconds of injection of data into the network. These forward
scouts specified Node 0 as the source and Node 8 as the des-
tination. In BeeAdHoc, the scouts were returned and as a re-
sult, path 0-1-2-3-4-8 got established. One can see in Figure
2(b) that malicious Node 4 was successfully able to divert
the subsequent data packets towards itself on the longest
path 0-1-2-3-4-8. In contrast, forged scouts in BeeSec could
not be authenticated because AuthFS for Nodes 0,1,2,3 were
not available for verification (Algorithm 1). Consequently,
the forged scouts were dropped (Figure 2(e)) that could dis-
rupt the normal routing behavior.

Attk-2: Forging Backward Scout. In this attack, Node
2 launched forged backward scouts at time t=100 seconds

with Dsct as Node 8. As a result, the forged backward scouts
also established the path 0-1-2-3-4-8. Figure 2(c) demon-
strates the success of the attack where Node 2 was able to
divert subsequent data packets towards itself. The rising
point of the curve for the higher packet rate was much closer
to the start time of the attack as compared to the 10 pack-
ets/sec attack packet rate shown in the figure. Again, the
forged backward scouts were dropped in BeeSec due to fail-
ure to verify AuthBS (Algorithm 2). Consequently, as seen
in Figure 2(f), the path 0-1-2-3-4-8 was not established.

Attk-3: Returning Scouts with Modified Route. For
each received scout, malicious Node 5 changed the source
route to 8-4-3-2-1-0 and instead of broadcasting it further,
sent it back as a unicast message. As a result the longer
path 0-1-2-3-4-8 got established instead of the desired path
0-5-6-8. This path was set earlier, as a result, more foragers
were returned for this path. Figure 3(a) shows the impact
of the attack on BeeAdHoc, but in BeeSec all such backward
scouts were dropped. One can see in Figure 3(d) that the
distribution of packets was limited to just two paths (0-7-8,
0-5-6-8) and no packet followed 0-1-2-3-4-8.

Attk-4: Forging Spoofed Forager. In this attack, at
time t=150 seconds, malicious Node 1 started sending forged
foragers to Node 0 and artificially reduced the delay value
of route 0-1-2-3-4-8 to minimum. Once these forged for-
agers, carrying manipulated quality values, arrived at Node
0, due to a better quality metric more replicas of them were
created. Figure 3(b) for BeeAdHoc shows that Node 1 was
able to divert significant number of packets towards itself.
Since the forged foragers were launched at regular intervals,
gradually the already established routes were abandoned in
favour of this non-optimal route. But in BeeSec, the forged
foragers were dropped because AuthF and AuthRtInfo could
not be verified (Algorithm 4). Figure 3(e) demonstrates that
the attack was successfully countered in BeeSec.

Attk-5: Modifying Forager Route Information. In
this attack, Node 7 artificially increased the delay value in a
forager returning from Node 8, to make the path 0-7-8 unde-
sirable. Figure 3(c) shows that the attack was successful on
BeeAdHoc because the high delay value caused a significant
reduction in the number of replicas for foragers of path 0-7-
8. But in BeeSec, Node 0 discarded these foragers because
AuthRtInfo for Node 7 was not verified. In this case, the
actual value of delay was restored from the delay value of
Node 8. It can be seen in Figure 3(f) that BeeSec was able
to counter the attack.

We recorded the average delay values during the experi-

Attack BeeAdHoc BeeSec
Normal Attack Increase Normal Attack

Attk-1 63.78 178.48 179.9% 78.91 78.91
Attk-2 14.74 143.65 874.6% 21.07 21.07
Attk-3 14.74 25.30 71.6% 21.07 21.07
Attk-4 14.89 29.13 95.6% 16.51 16.51
Attk-5 14.89 18.32 23% 16.51 16.51

Table 2: Packet delays (ms) under attack

ments to see the impact of attacks on the performance of
the network. We have tabulated these values in Table 2 for
normal and attack scenarios. One can see that the values of
delay in BeeAdHoc significantly increased under attacks (in

106

time (sec)

0 100 200 300 400 500

da
ta

 p
kt

s
se

nt
/r

ec
vd

0

5000

10000

15000

20000

25000

30000

35000

40000
pkts from source Node−0
pkts on path 0−1−2−3−4−8
pkts on path 0−7−8
pkts on path 0−5−6−8

(a) BeeAdHoc: normal behavior

time (sec)

0 100 200 300 400 500

da
ta

 p
kt

s
se

nt
/r

ec
vd

0

5000

10000

15000

20000
pkts from source Node−0
pkts on path 0−1−2−3−4−8
pkts on path 0−7−8
pkts on path 0−5−6−8

(b) BeeAdHoc: forging forward scout

time (sec)

0 100 200 300 400 500

da
ta

 p
kt

s
se

nt
/r

ec
vd

0

2000

4000

6000

8000

10000

12000

14000

16000
pkts from source Node−0
pkts on path 0−1−2−3−4−8
pkts on path 0−7−8
pkts on path 0−5−6−8

(c) BeeAdHoc: forging backward scout

time (sec)

0 100 200 300 400 500

da
ta

 p
kt

s
se

nt
/r

ec
vd

0

5000

10000

15000

20000

25000

30000

35000
pkts from source Node−0
pkts on path 0−1−2−3−4−8
pkts on path 0−7−8
pkts on path 0−5−6−8

(d) BeeSec: normal behavior

time (sec)

0 100 200 300 400 500

da
ta

 p
kt

s
se

nt
/r

ec
vd

0

5000

10000

15000

20000

25000

30000

35000
pkts from source Node−0
pkts on path 0−1−2−3−4−8
pkts on path 0−7−8
pkts on path 0−5−6−8

(e) BeeSec: forging forward scout

time (sec)

0 100 200 300 400 500

da
ta

 p
kt

s
se

nt
/r

ec
vd

0

2000

4000

6000

8000

10000

12000

14000

16000
pkts from source Node−0
pkts on path 0−1−2−3−4−8
pkts on path 0−7−8
pkts on path 0−5−6−8

(f) BeeSec: forging backward scout

Figure 2: Attacks on BeeAdHoc and BeeSec (Attk-1, Attk-2), showing packet (pkt) route diversions

the range from 23% to 874%) because the packets started
following the longer paths. But BeeSec did not suffer from
this problem because it successfully countered these attacks.
Note that the delay values in BeeSec remained unchanged.

6. SIMULATIONS FOR PERFORMANCE
The purpose of the experiments listed in current section

is to empirically validate that the security framework em-
ployed in BeeSec did not result in significant degradation of
its performance as compared to existing state-of-the-art al-
gorithms: BeeAdHoc, DSR and AODV. We used the BeeAd-
Hoc implementation by the authors of [14] and DSR/AODV
implementations distributed with ns-2. Our tests are based
on the scenario in [1]. We studied the performance of algo-
rithms in a rectangular area of operation 2400 × 480m2 by
increasing the number of nodes from 10 to 60. The nodes
move according to the ”random waypoint” model [5]; each
node selects the destination and speed randomly, and stops
for a certain pause time. Speed is selected from a uniform
distribution, between 1 m/s (walking speed) and 20 m/s
(car speed within cities). All nodes generate constant bit
rate (CBR) peer-to-peer data traffic, at a rate of 30 pack-
ets/second. Reported results are average values over five
independent runs, to factor out any stochastic elements in
the environment or the algorithms. Simulation time for the
algorithms is set to 1000 seconds.

6.1 Metrics
We used the following metrics for a comprehensive perfor-

mance evaluation of the algorithms. Here, we just provide
brief definitions for a basic understanding. An interested
reader should consult [14] for better insight and motivation
for these parameters.

Throughput. The number of data bits delivered to the ap-

plication layer at destination in a unit interval of time. If y
bits are delivered within t time, the throughput is y

t
.

Packet Delivery Ratio. The ratio of data packets suc-
cessfully delivered to the destination nodes and total number
of packets generated for those destinations.

End-to-End Delay. Time interval once a data packet is
generated by the application of a node and when it got de-
livered to the application layer of a destination node. It in-
cludes the reactive wait time that a data packet has to wait
at the source node because a route to the destination node
needs to be discovered.

Energy per user data. Energy consumed in transporting
one kilobyte of data to its destination. It includes the en-
ergy consumed for both data and control traffic. We used
the model presented in [2] to estimate send/receive energy
for both broadcast and point-to-point mode.

Transmission efficiency. The number of data bytes deliv-
ered to the application at destination nodes, at the cost of a
unit control byte. Control bytes include the bytes of control
packets, and additional bytes of control information in the
header of each data packet for source routing algorithms.

6.2 Simulation Results
One can see in Figure 4(a) that BeeSec, despite complex

processing and large signature carrying packets, is able to
deliver the same number of packets as compared to BeeAd-
Hoc, and DSR. But its packet delivery ratio in large MANETs
is about 3% higher than AODV. Remember that DSR and
AODV protocols are without the overhead of security exten-
sions. Even then the end-to-end delay of BeeSec is signifi-
cantly less than AODV (see Figure 4(b)) and much smaller
as compared to DSR, especially for large MANETs. We be-
lieve that this is due to the multipath discovery and mainte-

107

time (sec)

0 100 200 300 400 500

da
ta

 p
kt

s
se

nt
/r

ec
vd

0

2000

4000

6000

8000

10000

12000

14000

16000
pkts from source Node−0
pkts on path 0−1−2−3−4−8
pkts on path 0−7−8
pkts on path 0−5−6−8

(a) BeeAdHoc: returning scouts with modified

route

time (sec)

0 100 200 300 400 500

da
ta

 p
kt

s
se

nt
/r

ec
vd

0

1000

2000

3000

4000

5000
pkts from source Node−0
pkts on path 0−1−2−3−4−8
pkts on path 0−7−8
pkts on path 0−5−6−8

(b) BeeAdHoc: forging spoofed forager

time (sec)

0 100 200 300 400 500

da
ta

 p
kt

s
se

nt
/r

ec
vd

0

500

1000

1500

2000

2500

3000

3500

4000

4500
pkts from source Node−0
pkts on path 0−1−2−3−4−8
pkts on path 0−7−8
pkts on path 0−5−6−8

(c) BeeAdHoc: modifying route info

time (sec)

0 100 200 300 400 500

da
ta

 p
kt

s
se

nt
/r

ec
vd

0

2000

4000

6000

8000

10000

12000

14000

16000
pkts from source Node−0
pkts on path 0−1−2−3−4−8
pkts on path 0−7−8
pkts on path 0−5−6−8

(d) BeeSec: returning scouts with modified

route

time (sec)

0 100 200 300 400 500

da
ta

 p
kt

s
se

nt
/r

ec
vd

0

500

1000

1500

2000

2500

3000

3500

4000

4500
pkts from source Node−0
pkts on path 0−1−2−3−4−8
pkts on path 0−7−8
pkts on path 0−5−6−8

(e) BeeSec: forging spoofed forager

time (sec)

0 100 200 300 400 500

da
ta

 p
kt

s
se

nt
/r

ec
vd

0

500

1000

1500

2000

2500

3000

3500

4000

4500
pkts from source Node−0
pkts on path 0−1−2−3−4−8
pkts on path 0−7−8
pkts on path 0−5−6−8

(f) BeeSec: modifying route info

Figure 3: Attacks on BeeAdHoc and BeeSec (Attk-3, Attk-4, Attk-5), showing packet (pkt) route diversions

nance feature of the base protocol, BeeAdHoc, which ensures
that the routes to destinations are almost always available.
Consequently the reactive route discovery time is factored
out in the end-to-end delay. As a result, the net throughput
of BeeSec, shown in Figure 4(c), is much higher than AODV
and DSR. A similar trend for energy per user data is also
seen in Figure 4(d): BeeSec has less energy consumption
as compared to AODV and DSR despite its higher commu-
nication cost of sending digital signatures with the agents.
Similarly, transmission efficiency of BeeSec, shown in Figure
4(e), is approximately the same as compared to other algo-
rithms for higher node MANETs. This gives us an insight
that in large MANETs one needs to transmit a large number
of control packets for successful delivery of data packets.

We further investigated the control overhead of the protocols
by analyzing in detail their different components. Table 3
shows the measured control bytes in control packets (CBC),
in data packets (CBD), and the aggregate (CBT). Control
bytes in control packets were further categorised as being
peer-to-peer (p2p) or broadcast (bc). Table 3, along with
Figure 4(f), gives us valuable insight into designing a se-
curity framework for source routing algorithms. In BeeSec,
84.7% of control overhead is attributable to control infor-
mation inside foragers. Each forager carries authentication
data for various fields including the source route. Never-
theless this overhead is still 25.5% smaller compared to a
non-secure version of DSR.

7. CONCLUSION
In this paper we have taken the first cardinal step to-

wards providing a secure routing framework for Bio/Nature
inspired MANET routing protocols. We took a well known
Bio/Nature inspired routing protocol, BeeAdHoc, as a case

Protocol In Control Packets CBD CBT

p2p bc CBC

BeeAdHoc 124 362 486 1376 1862
DSR 19329 3333 22662 1348 24010

AODV 402 3495 3897 0 3897
BeeSec 239 2497 2736 15152 17888

Table 3: Control bytes for protocols (kb)

study. We systematically analyzed the protocol for vulnera-
bilities that could enable a malicious node to launch a num-
ber of byzantine attacks, against BeeAdHoc routing. We
designed and implemented a security framework, in ns-2,
that allowed us to study the impact of these attacks. The
results of our extensive experiments demonstrate that a ma-
licious node can seriously disrupt the routing behavior of a
protocol, which can result in significant degradation of the
network performance.

Finally, we proposed a public key (digital signature) based
security framework, BeeSec, that can counter the attacks
launched by a malicious node against BeeAdHoc. We believe
that the framework can also be adapted easily for AntHocNet
and Termite, to make these protocols secure. The results of
our experiments with BeeSec verify that the framework was
able to successfully counter the attacks launched against the
routing protocol. Moreover, we have also shown that the
performance metrics of BeeSec, including the cryptographic
overhead, are either much better or close to the state-of-the-
art MANET routing protocols: AODV and DSR. This gives
us a good motivation to compare BeeSec with Ariadne [4]
and SAODV [17], which are the secure versions of DSR and
AODV. Concurrently, we are also developing an Artificial
Immune System (AIS) model for securing BeeAdHoc in an

108

number of nodes
10 25 50 60

pa
ck

et
 d

el
iv

er
y

ra
tio

90

92

94

96

98

100
DSR BeeAdHoc BeeSec AODV

(a) Packet delivery ratio

number of nodes

10 25 50 60

en
d−

to
−

en
d

de
la

y
(m

s)

50

100

150
200
250

350
450

650

1050
1450

DSR BeeAdHoc BeeSec AODV

(b) End-to-End delay

number of nodes
10 25 50 60

th
ro

ug
hp

ut
 (

kb
ps

)

0

20

40

60

80

100

120

140

160

DSR BeeAdHoc BeeSec AODV

(c) Throughput

number of nodes
10 25 50 60

en
er

gy
 p

er
 d

at
a

(m
J/

kB
)

0

2

4

6

8

10

12
DSR BeeAdHoc BeeSec AODV

(d) Energy per user data

number of nodes
10 25 50 60

tr
an

sm
is

si
on

 e
ffi

ci
en

cy
10

20

40

80
140
230
390

DSR BeeAdHoc BeeSec AODV

(e) Transmission efficiency

number of nodes
10 25 50 60

co
nt

ro
l b

yt
es

 (
kb

)

50

150

350

750

1450
2550
4350
7350

12350
20750
34750

DSR BeeAdHoc BeeSec AODV

(f) Control byte overhead

Figure 4: Simulation results comparing BeeSec with BeeAdHoc, DSR and AODV

energy efficient manner. The research published in [15] and
[11] is intriguing enough to make this effort. Our experi-
ences and results in these efforts will be the subject of our
forthcoming publications.
Contact information. The email addresses of the authors
are (naumaz, farooq)@case.edu.pk.

8. REFERENCES
[1] Josh Broch, David A. Maltz, David B. Johnson,

Yih-Chun Hu, and Jorjeta Jetcheva. A performance
comparison of multi-hop wireless ad hoc network
routing protocols. In Proceedings of Fourth
ACM/IEEE Conference on Mobile Computing and
Networking (MobiCom), pages 85–97, 1998.

[2] Laura M. Feeney and Martin Nilsson. Investigating
the energy consumption of a wireless network interface
in an ad hoc networking environment. In Proceedings
of IEEE INFOCOM, 2001.

[3] L.M. Gambardella G. Di Caro, F. Ducatelle.
Anthocnet: An adaptive natureinspired algorithm for
routing in mobile ad hoc networks. European
Transactions on Telecommunications, 16(2):443–455,
2005.

[4] Yih-Chun Hu, Adrian Perrig, and David B. Johnson.
Ariadne: A secure on-demand routing protocol for ad
hoc networks. Wireless Networks, 11(1-2):21–38, 2005.

[5] David B Johnson and David A Maltz. Dynamic source
routing in ad hoc wireless networks. In Imielinski and
Korth, editors, Mobile Computing, pages 153–181.
Kluwer Academic Publishers, 1996.

[6] Z.J. Haas L. Zhou. Securing ad hoc networks. IEEE
Network Magazine, 13(6), Dec 1999.

[7] S.Wicker M. Roth. Termite: Ad-hoc networking with
stigmergy. In Proceedings of IEEE GLOBE-COM, Dec
2003.

[8] C. Perkins and E. Royer. Ad-hoc on-demand distance
vector routing. In Proceedings of Second IEEE
Workshop on Mobile Computing Systems and
Applications, pages 90–100, February 1999.

[9] R. Perlman. Network layer protocols with byzantine
robustness. PhD Thesis, Deptt of Elec. Engg. and
Computer Science, MIT, 1998.

[10] E. Royer and C. Toh. A review of current routing
protocols for ad-hoc mobile wireless networks. IEEE
Personal Communications, 1999.

[11] S. Sarafijanovic and J.Y. Le Boudec. An artificial
immune system approach with secondary response for
misbehavior detection in mobile ad-hoc networks.
IEEE Transactions on Neural Networks, 16(5), Sep
2005.

[12] W. Stallings. Cryptography and Network Security -
Principles and Practices. Pearson Educ., Inc., 2003.

[13] J. Viega, Matt Massier, and Pravir Chandra. Network
Security with OpenSSL. O’Reilly & Assoc., Inc, 2002.

[14] H.F. Wedde, M. Farooq, T. Pannenbaecker, B. Vogel,
C. Mueller, J. Meth, and R. Jeruschkat. Beeadhoc: an
energy efficient routing algorithm for mobile ad hoc
networks inspired by bee behavior. In GECCO, pages
153–160, 2005.

[15] H.F. Wedde, C. Timm, and M. Farooq. Beehiveais: A
simple, efficient, scalable and secure routing
framework inspired by artificial immune systems. In
PPSN, pages 623–632, 2006.

[16] H.F. Wedde, C. Timm, and M. Farooq. Beehiveguard:
A step towards secure nature inspired routing
algorithms. In EvoWorkshops, pages 243–254, 2006.

[17] Manel Guerrero Zapata. Secure ad hoc on-demand
distance vector (saodv) routing. Internet-Draft,
draft-guerrero-manet-saodv-05.txt, February, 2005.

109

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

