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ABSTRACT
We explore the use of the developmental environment as
a spatial constraint on a model of Artificial Embryogeny,
applied to the growth of structural forms. A Deva model
is used to translate genotype to phenotype, allowing a Ge-
netic Algorithm to evolve Plane Trusses. Genomes are ex-
pressed in one of several developmental environments, and
selected using a fitness function favouring stability, height,
and distribution of pressure. Positive results are found in
nearly all cases, demonstrating that environment can be
used as an effective spatial constraint on development. Fur-
ther experiments take genomes evolved in some environment
and transplant them into different environments, or re-grow
them at different phenotypic sizes; It is shown that while
some genomes are highly specialized for the particular envi-
ronment in which they evolved, others may be re-used in a
different context without significant re-design, retaining the
majority of their original utility. This strengthens the no-
tion that growth via Artificial Embryogeny can be resistant
to perturbations in environment, and that good designs may
be re-used in a variety of contexts.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search ; F.1.1 [Theory
of Computation]: Computation by Abstract Devices—
Models of Computation

General Terms
Algorithms, Design, Experimentation

Keywords
Artificial Embryogeny, Developmental Algorithms, Evolu-
tionary Computation, Structure, Environment, Computa-
tional Development, Truss, Topological Optimization
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1. INTRODUCTION
In this paper, we explore the use of environment as a

means of providing additional control to the process of Ar-
tificial Embryogeny (AE), and the efficacy of those agents
re-developed in foreign environments.

We introduce the Deva 1.N model, a slight modification of
our earlier Deva 1 model. Deva 1.N is a Cellular Automaton-
like model where cells develop in a discrete space and under
a discrete time. Deva 1.N is a general means of mapping be-
tween genotype and phenotype, where phenotype is realized
in a dynamical system guided by the genome. In order to
differentiate between the relative merits of our techniques,
we use an independent and external means of evaluation;
We interpret our organisms as Plane Trusses, evaluated on
their ability to form a stable structure and support external
forces. Plane Trusses are common models in structural de-
sign — successful truss design is a challenging task, relevant
to engineering today.

The novel portion of our current research concerns the
addition of spatial constraints to the growth process, this
through the use of a developmental space. Our phenotypes
are expressed in a variety of developmental spaces, control-
ling their growth through their geometric shape. The evolu-
tion of structural form under spatial constraint is desireable
for two reasons: Firstly, it is probably much easier to specify
spatial constraints on a lattice than it is through the usual
means of controlling evolution, a fitness function; Secondly,
the imposition of spatial constraints may help to reduce the
necessary search space, as extraneous growth in undesirable
directions is limited.

Our initial experiments with the various environments
were successful, as evolution was able to find stable, load-
bearing trusses in nearly all environments specified.

Following this is a set of experiments devoted to study-
ing the re-growth of genomes evolved in some environment,
transplanted into another. As a metaphor for re-growth,
imagine the following situation: A scientist finds a recently
impregnated Bonobo monkey, whose womb contains a sin-
gle fertilized cell, ready to begin growing into a new Bonobo
child. The scientist removes this zygote from the Bonobo
monkey, and transplants it into the womb of, say, a Chim-
panzee. The scientist then studies the development of this
child in the Chimp womb. Similarly, we select genomes of
trusses evolved in some environment, then allow them to re-
develop in a different environment, and observe the results
in terms of maximization of a fitness function.
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The re-growth experiments take two forms: Firstly, we
consider the re-growth of genomes under different pheno-
typic sizes. That is, we take a genome evolved under the
assumption that growth would continue until a height of 30
m, and re-grow the truss to a height of 40 m; Secondly, we
re-grow genomes in different environments altogether.

The purpose of the re-growth experiments is to measure
the utility of genomes when translated into phenotypes un-
der perturbed environments; This is done for two reasons:
Firstly, to explore the possibility that good developmental
patterns exist in several contexts, somewhat like the genetic
toolkit currently being explored in real-world Embryology;
Secondly, to reinforce the claim that Artificial Embryogeny
is a robust and perturbation-resistant technique for auto-
mated design, and that good genomes may be re-used in
new environments without repeating the evolutionary opti-
mization.

The final experiments were relatively successful; Re-growth
using new phenotypic sizes showed great utility, as re-grown
trusses far outperformed random genomes, and approached
the utility of the trusses grown from genomes evolved at
the phenotypic size natively. Re-growth using new envi-
ronments showed some of the same trends as the preceding
experiments, but not nearly so universally. However, in the
course of the re-growth experiments, several agents capable
of growing high-fitness trusses in nearly all explored environ-
ments were found. This suggests the existence of a “genetic
toolkit” for the Deva 1.N model.

2. REVIEW
We review three relevant fields: Artificial Embryogeny

(AE); a simple model of structural form, the Plane Truss;
and the evolution of structural form through Evolutionary
Computation (EC).

2.1 Artificial Embryogeny
There is much interest at present in the use of develop-

ment in Evolutionary Computation. Artificial Embryogeny
(sometimes also “Computational Development” and “Arti-
ficial Ontogeny”) is a term used to describe a developmental
phase in artificial evolution, that is, an indirect mapping be-
tween the genotype (representation) and phenotype (evalu-
ated organism). It is common, although not necessary, that
this mapping be inspired by biological embryogenesis.

The first computational models of embryogenesis include
chemical diffusion work by Turing [19] and work with simple
automata by Lindenmayer [10]. Much current research re-
volves around the attempt to reverse-engineer Evo Devo, or
to create “plausible” models of embryogeny. These include
attempts to model plant growth by Prusinkiewicz et al, [13],
[14]; to model the expression of genes with cis-regulatory re-
gions, as in Kumar and Bentley’s Evolutionary Development
System [9]; or to model the environment in which cells grow,
as in Eggenberger Hotz’ three-dimensional structures [4].

Most relevant to our current interest are cases where AE
has been applied to the design of solutions to problems from
engineering and related fields. AE possess several attrac-
tive properties which imply its potential use in situations
where direct encoding might be impossible or intractable.
AE techniques are believed to be capable of exploiting a
canalization of development, allowing for the design of or-
ganisms too large for evolution via bijective encodings [7],
[3]. AE is believed to be a mechanism by which large com-

Figure 1: Two plane trusses, the left is stable, the
right unstable. Labelled on the left: external force
P applied to the top joint, reactive force R from a
base joint, member force Fi of the ith member.

plex systems may maintain themselves, executing self-repair
following damage [12]. AE allows for significant environmen-
tal influence on the development of organisms, allowing for
the same representations to be used in the development of
several different organisms [7]. Finally, it has been suggested
that AE might be used to generate not only the final organ-
ism, but also a constructive map, detailing a plan for the
assembly of the final design [16]. There are many examples
of fields where AE has been applied to practical engineering
problems: Eggenberger Hotz et al have used development
to grow neural network architectures of impressive size and
complexity [5]; Sekanina and Bidlo used evolution and a de-
velopmental algorithm to evolve sorting networks [17]; Stoy
and Nagpal use a Cellular-Automata-like technique to allow
an undifferentiated mass of components to self-organize into
a pre-determined shape [18]; Kowaliw et al designed a CA-
like system capable of evolving agents capable of surviving
in a virtual world [7].

2.2 Trusses
Trusses are well studied examples of structural design,

being used by architects and engineers in nearly all con-
struction; Often, they are cited as the simplest such model.
Still, as an approximation of real-world structures, trusses
are close enough to be suitable models for most small con-
struction projects, and are typically used at least in the
initial design phase of nearly all large construction. Truss-
based structures invisibly form the basis of nearly every large
building or tower, but are most obviously visible in bridges,
hydro towers, house roofing. Although a simple model, truss
design can be exceedingly complex; As such, trusses are an
appropriate choice for evaluating a model’s ability to per-
form structural design, allowing for an evaluation of those
designs from a completely independent context.

2.2.1 Plane Trusses
Plane trusses are two dimensional constructs consisting of

(for our purposes) joints, beams and grounds; An example
may be seen in Figure 1. A truss is any connected collec-
tion of these three components, regardless of usefulness or
triviality. All beams are connected via joints, which may be
connected to grounds. The typical purpose of a truss is to
support other structures, and to re-distribute any external
forces so as to retain its original form.

Given some truss, our natural first questions is whether
or not it is stable — i.e., will it (approximately) retain its
shape. The second question involves the stress placed on
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the members under some external force — if the maximum
stress exceeds the yield strength of any particular beam, the
truss may quickly become unstable. Another important is-
sue involves the deformation of the truss members under
strain; Given some beam and an external force, a beam will
either compress or stretch, which in turn will cause the truss’
joints to dislocate. Figure 1 shows two trusses; The first is
stable, but the second is not — any external force would
cause the second to deform drastically. We will assume, for
all future discussions, that our trusses are topologically con-
nected, pin-connected, friction-free, and that force is applied
only at joints.

2.2.2 Truss Stress Analysis
We now examine the computation of member-forces in an

arbitrary plane truss1. There exist some simple counting
tests that may determine if a given truss is unstable. Fail-
ing that, we must attempt to compute the equilibrium state
given some external forces — in the process, we obtain val-
ues for all member forces. In our example, all truss members
are identical in terms of material and area, grown in a de-
velopmental space where units are measured in meters; We
specify material and area by setting EA = 1.57 × 104 N,
corresponding to a modulus of elasticity E for steel [11] and
a cylindrical member of diameter 1 cm.

Consider a general truss with n joints and m beams; We
are provided with external forces to be applied at joints,
and wish to determine the member forces. Let our struc-
ture forces be {P} = {P 1, ..., P n}T , structure displacements
be {∆} = {∆1, ..., ∆n}T and member forces be {F} =
{F 1, ..., F m}T . We may relate the individual member forces
to displacement and structure forces as follows:

{F}i = [k]ia[β]i{∆} (1)

where [β]i is the connectivity matrix for the ith member
beam, and [k]ia is its stiffness matrix, relating the deforma-
tion of the beam under a given force to the displacement at
the joint. Hence, to solve for forces, it suffices to compute
the displacements. The displacements may be computed
through a truss stiffness matrix, a combination of the indi-
vidual member stiffness matrices:

{∆} = [K]−1{P} (2)

Hence, given a plane truss, we may first compute the stiff-
ness matrix, then compute the displacements, then the in-
dividual member forces. The entire process is bounded by
the calculation of a matrix inversion (or LU-Decomposition),
and hence has running time O(m3).

2.3 Evolution of Structures
There has been significant interest in the evolution of

structural designs. This has included several frameworks for
their analysis, including plane and space trusses, simplified
models of Lego, and others. The Lego and related simple
models have led to some interesting research in design, in-
cluding the early development of buildable structures [2],
or, more recently, the use of AE for the design of a simple
arch, including scaffolding [16]. However, since we desire a
notion of structural design which may be evaluated through
means external to the A-Life community, we will instead
concentrate on models taken directly from Engineering. An

1This analysis is taken largely from West’s treatment [20].

extensive recent review was conducted by Kicinger et al [6].
Typically, use of EC in structural design concentrates on
optimizing the sizing or shape of existing frameworks — our
work, however, involves topological design. Use of a GA
to optimize a topological design through a relatively bijec-
tive relation between genotype and phenotype has been con-
ducted by Rajan [15] (who also optimized sizing and shape).
A more complex approach was undertaken by Yang and Soh,
who used a GP approach to optimize topology in the context
of tall buildings [21].

3. THE MODEL
In this section we describe the Deva 1.N model, then an

interpretation of developed organisms as Plane Trusses. Fi-
nally, we detail the evolutionary engine.

3.1 The Deva 1.N Model
Let us consider a model2 which consists of a developmental

space, D, a collection of cell types (or colours), C, a set of
actions, A, and a transition function, φ. The developmental
space, here a subset of Z2, is a space in which we may grow
an organism, endowed with a discrete time. Each point in
the lattice is a cell, possibly the empty cell — each non-
empty cell may be viewed as an independent agent. Cells
change in time by executing one of several actions; Which
action is executed is determined by the cell’s genome, the
transition function.

We now describe the process of growth: developmental
space is initialized empty everywhere, save at a central point,
which is initialized with a cell of type “1”. At every time
step, any non-empty cell examines its neighbourhood, and
selects an action through the consultation of the transition
function. If the cell has sufficient resources (measured via
an internal counter, rc), and has sufficient age, that action
is executed. Through this process, the developmental space
changes in time — termination occurs when the space is
identical to the space that preceded it (guaranteed to occur
due to a finite maximum value of rc). This process may be
written more explicitly as:

Time t← 0
Initialize developmental space Dt

while Dt 6= Dt−1 do
t← t + 1
Dt ← Dt−1

for all Cell c ∈ Dt−1 do
if c has sufficient age and crc then

Action a← φ(µc)
Decrement crc appropriately for a
Execute a in Dt

end if
end for

end while

A Deva 1.N transition function is a listing of descriptions
of possible neighbourhoods of a specified length, |φ|. These
rules are tuples of the form (c, h1, ..., hnc , a), where c is a
colour, nc = |C| is the number of cell types, a is an action,
and hi is a count of the number of neighbours of cell type i,
or a hormone-level. Hence, the size of the representation of
such a transition function is O(|φ| · nc), and the number of

2The Deva 1.N model is very similar to the Deva 1 model de-
scribed earlier [8] — technical details are omitted, the interested
reader is urged to consult that source.
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Figure 2: Environments (left to right): thin, thick,
swerve-l, swerve-r, bulb, bulbs, zigzag-s, zigzag-l.

possible transition functions is nc · |µ|nc · |A|, where A is the
set of all actions and |µ| = 12, the size of a neighbourhood.

Given a current description of a cell and its neighbour-
hood, the transition function may be queried for an action.
Each rule in the transition function is compared to the de-
scription of the current neighbourhood, the closest matching
rule defined via Euclidean distance. The action associated
with the closest rule is returned, or, if there is no matching
rule, the “nothing” action. The running time of a transition
function lookup is hence O(|φ|).

Cell actions are the sole means through which the devel-
opmental space changes in time. The possible actions are
“divide”, “die”, “elongate”, “specialize(x)” and “nothing”,
where x is a cell colour, and the direction is always in the
best free location. The best free location is defined to be the
empty adjacent location which lies opposite to the greatest
mass of non-empty cells (In the case of a tie, we select the
left-most location, then clockwise). Most cell actions come
with a cost, decrementing a cell’s rc — this is meant to in-
corporate the notion of finite resources. If a cell cannot exe-
cute an action (no best free location, insufficient resources),
it does nothing.

A Deva 1.N growth is controlled then through a genome
(transition function), several system parameters (number of
cell types, nc, initial setting of resource counter, rc), and
choice of environment.

3.2 Developmental Environments
Each environment is a connected subset of Z2, where the

initial cell is placed in the lowest central location of the
space. We use several environments for growth:

• thin and thick, environments of width 10 m and 16 m,
respectively, each pointing straight up.

• swerve-l and swerve-r, environments of width 10 m
which, at height 10 m, swerve left or right, continuing
straight up indefinitely.

• zigzag-l and zigzag-s, a zig-zagging line of width 10 m
and 8 m, with corners at heights of multiples of 5 m
and 4 m, respectively (“l” and “s” for large and small).

• bulb and bulbs, environments composed of one or two
bulbs, respectively, followed by a shaft of width 10 and
unlimited height.

• normal, an environment large enough to contain growth.

An illustration of the environments may be seen in Figure
2.

3.3 Interpretation as Plane Trusses
Here, we define a means of interpretting a lattice of cells

as a Plane Truss.

Firstly, we define a set of cell types — each non-empty cell
will contain a joint, and between zero and five beams. The
beams will extend in directions π, 3π/4, π/2, π/4 and 0, la-
belled g0 through g4 respectively. Conversion from boolean
gene values to an integer is accomplished through the fol-
lowing equation:

colour = 24g4 + 23g3 + 22g2 + 21g1 + 20g0 + 1

The zero cell type is reserved for the empty cell, the one
value is for a joint with no beams, and all other combinations
exist in the set {2, ..., 32}.

We may also allow cells to be elongated in one direction,
by an arbitrary number of cell lengths. For example, a cell
of type 9 has an angle of 3π/4 with the x-axis, and a length
of
√

2; A single elongation in the y-direction would lead to
a length of

√
5, and an angle of 7π/8 with the x-axis.

Hence, given a lattice of grown cell types and elongations,
we may map to a (possibly trivial or useless) truss. Any
joints located at the bottom of the space are attached to
grounds.

Finally, trusses are trimmed. The trimming process serves
to: (a) remove obviously unstable sections, such as beams
which do not connect to joints at both ends; (b) to remove
sections which are not connected to the base of the structure;
and (c) to remove redundant joints, replacing them with
longer beams. All three of these can be accomplished in a
single pass of the un-trimmed truss structure, allowing for
processing in O(n) time, where n is the number of beams.

3.4 Initialization and Genetic Operators
As previously mentioned, an organism may be represented

by its transition function. The transition function, in turn,
may be represented as a series of rules — that is, |φ| rules,
each represented by 2 + nc integers. Hence, a genome is
simply a list of integers.

Here we describe the initialization of a transition function
rule. The hormones may be initialized through a power-law
distribution which favours 0:

Pr[X = i | 0 ≤ i ≤ 12] =
1P12

j=0 βj
β12−i

where β = 3.6 — this guarantees that most rules describe a
possible neighbourhood. Actions are chosen with each of the
possibilities equally likely, with each colour of specialization
also equally likely. Hence, we may generate a random rule
by (uniformly) randomly generating an initial rule colour,
then generating nc hormones and one action according to
the above distributions. The initial rule in any transition
function in the initial population is set to be a “divide”
command.

We define genetic operators as follows: In the case of
crossover, we use a simple single-point crossover, with the
tail ends of two parents’ genomes swapped. We use two
kinds of point mutation: power-mutation, which replaces
an integer with another selected from the same distribution
used for initialization; and copy-mutation, which replaces
the current integer with another selected randomly from the
current genome.

3.5 Evolution
The use of Deva 1.N for the generation of designs is con-

trolled overall via Evolutionary Computation (EC). That is,
genomes are mapped to organisms via the Deva 1.N algo-
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rithm, and the organisms are assigned fitness through the
truss interpretation. The fitness serves to select a set of
genomes for the next generation, and the actual selection
and recombination is controlled through a Genetic Algo-
rithm (GA). We use a typical GA, as described by Eiben
and Smith [1]. The GA uses elitism, as well as crossover
and mutation as defined above. Selection is accomplished
through a tournament of five population members, using a
tournament probability of p = 0.7.

The fitness function used in our trials is very similar to
that used in the original Deva 1 experiments — the primary
difference being that the external load applied to the trusses
has been reduced. The evolution of Plane Trusses may be
viewed as a multi-objective evaluation; The factors involved,
defined for a general truss T , include:

• Selection for height, h(T ) = h/(rc + 1), where h is the
raw height of T .

• Selection for minimal material use, where m ∈ [0, 1]
varies linearly between 0 for maximal use of materials
and 1 for none.

• Selection for stability, where T is considered stable if
the inverse stiffness matrix is non-singular, and if there
are no absurd deformations3. The stability criterion is
then defined as s(T ) = 1 if T is stable, s(T ) = 1/4
otherwise.

• Selection for distribution of pressure, p ∈ [1/2, 1]. Hav-
ing applied some external force, we measure the maxi-
mum absolute beam pressure in the truss, M . If pres-
sure has exceeded our yield limit of 165 MPa (approx-
imately 80% the limit of steel), we return p = 1/2;
Otherwise,

p =
1

2
+

1

2

„
165 MPa− |M |

165 MPa

«

At every joint, we apply 10 N down and 10 N left, sim-
ulating gravity and a mild horizontal force. Additionally,
we apply 2500 N down (approximately 2.5 kg) and 500 N
right at the highest joint; In the case of several joints, the
force is divided evenly between them. Hence, we seek a tall,
minimal structure, capable of supporting a large mass at the
top, much like a tower supporting some additional structure
at the peak. The fitness of a truss T is thus defined as

f(T ) = h(T ) ·m(T ) · s(T ) · p(T ) (3)

4. EXPERIMENTS AND ANALYSIS

4.1 Environment-based Evolution
80 runs of 100 GA generations were undertaken, grouped

together by environment. These runs will be referred to
as r.env.x, where env is the name of the environment, and
x ∈ {0, .., 9} is an index. Parameter settings for the trials
are:

population size 100 init. pop. size 1000
prob. crossover 0.8 rate. elitism 0.01

prob. copy-mut. 0.05 prob. power-mut. 0.05
rc 40 |φ| 200

3Where absurdity kicks in at ten meters or more; This is neces-
sary as the equilibrium process may sometimes find stable points
through profoundly unrealistic stretching of materials.

Figure 3: Plot of the mean of maximum fitness for
the sets of runs in each environment: fitness (y-axis)
versus generation (x-axis).

Figure 4: Examples of trusses evolved in the envi-
ronments: (left to right) thin, bulbs, swerve-r, and
bulb.

Unless otherwise noted, these parameters are used for all
experiments, including re-growth.

In all environments, stable agents capable of supporting
the external load were found in nearly all trials, save the
zigzag-s environment, where only one trial yielded a non-
trivial truss capable of supporting the external load. The
failure of evolution of a tall, load-bearing truss in the zigzag-
s environment is a mild disappointment, since it is possible
(for a human engineer) to design a truss capable of reach-
ing non-trivial height for this environment. The relative
success of the GA, as measured by maximum fitness, var-
ied substantially between runs; A plot of the mean of the
maximum fitness for each set of runs may be seen in Figure
3. Some examples of trusses from these runs are shown in
Figure 4.

Speaking informally, there seems to exist an inverse re-
lation between the maximum fitness achieved and both of:
(a) the complexity of the environment (as measured by, say,
number of corners), and (b) the amount of space in the
path for growth. For instance, both thick and thin do well
due to both a wide path and low complexity — the fail-
ure of zigzag-s is likely due to both high complexity, and a
too-narrow path vertically (only three meters of space for
vertical connections).

4.2 Re-growth at Different Sizes
An additional set of runs of the zigzag-l environment were

undertaken, ten with rc = 40, and an additional ten with
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Figure 5: Re-growth of the maximum fit genome
from generation 100 of the run run.zigzag-l-30.3
with (left to right) rc = 30 (original), rc = 40 and
rc = 60.

Figure 6: Selected statistics from random genomes
and the r.zigzag-l-30 and r.zigzag-l-40 runs, both
originals and re-growth at rc = 30, 40.

rc = 30; We shall refer to these sets as r.zigzag-l-30 and
r.zigzag-s-40. These sets afford us opportunity to view the
re-growth of populations of agents at a different size of en-
vironment that the one in which they were evolved. Each
of the populations from the above runs were re-grown using
the alternate value of rc; By re-grown, we mean that the
population at GA generation 100 was re-developed and re-
evaluated using the new value of rc. The results are summa-
rized in Figure 6; Additionally, data for the expected perfor-
mance of randomly generated genomes (over 2000 genomes)
are also plotted. An example of the re-growth of the max-
imum fit genome from generation 100 of run r.zigzag-l-30.3
is shown in Figure 5.

Is it evident from Figure 6 that genomes evolved in a
different size perform better, in terms of fitness and propor-
tion of stable agents, than random genomes — the compar-
ison for the rc = 30 zigzag-l trials was an expected max-
imum fitness of 0.225 versus 0.303, or 135% performance
for the latter (these values encompassing the difference be-
tween finding a load-bearing truss and not); Similar results
are true for mean and proportion in both the rc = 30 and
rc = 40 experiments. A more meaningful comparison is be-

Figure 7: Re-growth of the maximum fit genome
from generation 100 of the run run.bulb.3 in environ-
ments (left to right) bulb (original), thick, swerve-r,
nothing.

Figure 8: Growth of the maximum fit genome from
generation 100 of the run run.bulb.1 in (left) its orig-
inal environment and (right) re-grown in the swerve-
l environment.

tween the evaluation of genomes evolved at the present size,
and those transplanted from a different size. In the rc = 30
trials, the original agents have an expected maximum fit-
ness of approximately 0.341 versus 0.303 for the transplanted
agents, meaning 113% the performance for the original. In
the rc = 40 trials, results are much closer: an expected
maximum fitness of 0.293 for the original, versus 0.277 for
the transplanted genomes, or 105% the performance for the
original. Indeed, in the rc = 40 case, the mean fitness of
proportion of stable agents was higher for the transplanted
genomes than the originals.

4.3 Re-growth in Different Environments
For the r.thick and r.bulb runs from Section 4.1, the max-

imum fitness population (at GA generation 100) was chosen
for further experimentation in different environments; These
two particular environments were chosen as examples of a
simple and a complex environment, by the informal stan-
dard of number of corners. The re-growth experiments were
accomplished by re-developing the population members us-
ing the same parameters, but a different environment. Mean
data from these runs is summarized in Figure 9, compared to
both the maximum fitness of a set of 2000 random genomes,
and against the mean maximum fitness obtained from the
initial runs in Section 4.1. A more detailed view of the data
may be seen in Tables 1 and 2.

Performance of the first set, the r.thick trials, showed
some improvement over the maximum fitness of the ran-
dom set of agents in most environments. In five out of eight
environments, the fitness of re-grown genomes exceeded that
of the best of the set of 2000 random genomes. Performance
of the second set, the r.bulb trials, was more disappointing
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Figure 9: Selected statistics from random genomes and the r.thick and r.bulb runs, both originals and re-
growth in a variety of environments

Table 1: Maximum fitness from the re-growth of the run.thick trials (maximum fit agent at generation 100)
in different environments.

orig. pop. thin thick swerve-l swerve-r bulb bulbs zigzag-s zigzag-l nothing

r.thick.0 0.463 0.545 0.358 0.279 0.344 0.327 0.176 0.255 0.073
r.thick.1 0.399 0.557 0.311 0.281 0.281 0.323 0.224 0.136 0.509
r.thick.2 0.460 0.522 0.232 0.279 0.345 0.342 0.240 0.206 0.525
r.thick.3 0.524 0.536 0.234 0.234 0.290 0.251 0.263 0.196 0.073
r.thick.4 0.468 0.567 0.231 0.231 0.341 0.303 0.241 0.114 0.073
r.thick.5 0.300 0.507 0.273 0.241 0.335 0.313 0.248 0.195 0.514
r.thick.6 0.510 0.548 0.235 0.319 0.292 0.179 0.263 0.115 0.544
r.thick.7 0.495 0.567 0.238 0.239 0.297 0.302 0.193 0.123 0.073
r.thick.8 0.384 0.520 0.313 0.074 0.338 0.275 0.282 0.189 0.502
r.thick.9 0.299 0.507 0.256 0.240 0.335 0.178 0.235 0.208 0.528

Table 2: Maximum fitness from the re-growth of the run.bulb trials (maximum fit agent at generation 100)
in different environments.

orig. pop. thin thick swerve-l swerve-r bulb bulbs zigzag-s zigzag-l nothing

r.bulb.0 0.345 0.489 0.049 0.072 0.403 0.052 0.134 0.052 0.544
r.bulb.1 0.090 0.076 0.053 0.072 0.404 0.043 0.061 0.052 0.073
r.bulb.2 0.442 0.493 0.324 0.293 0.424 0.342 0.048 0.253 0.552
r.bulb.3 0.350 0.457 0.055 0.293 0.412 0.049 0.064 0.055 0.555
r.bulb.4 0.349 0.071 0.049 0.072 0.395 0.199 0.249 0.053 0.545
r.bulb.5 0.357 0.470 0.226 0.074 0.422 0.051 0.255 0.048 0.562
r.bulb.6 0.083 0.074 0.057 0.297 0.395 0.297 0.060 0.187 0.071
r.bulb.7 0.086 0.485 0.225 0.283 0.408 0.044 0.245 0.218 0.544
r.bulb.8 0.347 0.071 0.336 0.072 0.389 0.259 0.248 0.214 0.545
r.bulb.9 0.433 0.420 0.326 0.290 0.424 0.225 0.134 0.227 0.559
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overall, with most mean values falling below the maximum
fitness found during the search of random genomes. This is
due largely to several genomes, particularly those from runs
with indices 1, 2 and 4, who performed very poorly in any
foreign environment — likely, the relative complexity of the
bulb environment invites over-specialization during evolu-
tion. One such unsuccessful re-growth is shown in Figure 8.
However, there exist several genomes which have performed
admirably in all environments, in some cases exceeding the
mean maximum fitness of the original sets; One such exam-
ple is illustrated in Figure 7.

5. CONCLUSIONS
The primary purpose of these experiments has been to

show that environment may be used as a spatial constraint
in the design of structural form, using Artificial Embryogeny.
Indeed, for several diverse and non-trivial environments, this
has been shown to be the case.

Further, we explored, through additional experiments, the
possibility of re-use of genomes from a particular environ-
ment in different settings. This is both a means of evalu-
ating the general claim that AE growth is robust and re-
sistant to environmental perturbations, and also a means of
demonstrating that AE genomes may be re-used in different
contexts without re-running the evolutionary process.

The experiments involving re-growth at different values of
rc showed that, in the zigzag-l environment, the fitness of
re-grown agents far exceeds that of random genomes, and
approaches the fitness of genomes evolved at the new size in
question. Although we must hesitate before extending these
results to all sizes and environments, it seems likely that
genomes evolved at some particular size have utility when
re-grown at different sizes.

The re-growth experiments involving different environ-
ments were less successful as those involving phenotypic size;
This was largely due to several genomes which failed to per-
form well in any environment other than the one in which
they evolved, suggesting a measure of over-specialization. In
these final experiments, however, a set of genomes capable
of developing into high fitness trusses in nearly any environ-
ment were found; These latter agents suggest the existence
of a general toolkit which might be useful for a wide class
of AE design problems. Analysis of these genomes may, in
the future, help to design better algorithms for AE.

The experiments in re-growth generally raise the possi-
bility that genomes evolved via Artificial Embryogeny may
be re-used in slightly different contexts, notably contexts
of different phenotypic size or different environment, with-
out significant re-design; This strengthens the claim that
growth through Artificial Embryogeny in general is a robust
and perturbation-resistant means of automated design.
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