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ABSTRACT
Adaptive representations allow evolution to explore the space
of phenotypes by choosing the most suitable set of genotypic
parameters. Although such an approach is believed to be
efficient on complex problems, few empirical studies have
been conducted in such domains. In this paper, three neu-
ral network representations, a direct encoding, a complexify-
ing encoding, and an implicit encoding capable of adapting
the genotype-phenotype mapping are compared on Nothello,
a complex game playing domain from the AAAI General
Game Playing Competition. Implicit encoding makes the
search more efficient and uses several times fewer parame-
ters. Random mutation leads to highly structured pheno-
typic variation that is acquired during the course of evolu-
tion rather than built into the representation itself. Thus,
adaptive representations learn to become evolvable, and fur-
thermore do so in a way that makes search efficient on dif-
ficult coevolutionary problems.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global Optimization; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search

General Terms
experimentation, design, performance

Keywords
genetic algorithms, evolvability, modularity, adaptive repre-
sentations, indirect encodings, coevolution, neural networks

1. INTRODUCTION
Given a fixed set of variation operators (e.g. mutation and

crossover), the genotypic representation determines what
kinds of phenotypic variation can occur, and thereby struc-
tures the search. In general it is desirable to include as much
domain knowledge as possible into the design of the repre-
sentation. However, in many cases such domain knowledge
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is unavailable or difficult to encode meaningfully. In such
cases it would be desirable to learn the optimal representa-
tion. Such adaptive representations can structure the effects
of mutations and therefore result in more efficient search [2,
10, 22].

In this paper, an implicit encoding approach for evolving
neural networks is developed based on representational prin-
ciples inherent to genetic regulatory networks. The proposed
representation is generative, encoding complex phenotypes
with compact genotypes, many-to-one, allowing many dif-
ferent genotypic representations of the same phenotype, and
based on weak-linkage between genes, allowing the represen-
tation to structure how mutations affect the phenotype.

The implicit encoding approach is evaluated in Nothello,
a complex game-playing domain that is part of the AAAI
General Game Playing Competition [9]. It is compared to
two other neural network representations in this domain: A
direct encoding and a complexifying encoding that gener-
ates arbitrarily complex network topologies. The implicit
representation outperforms both encodings, evolving better
solutions in fewer generations. Furthermore, as evolution
progresses, the implicit encoding adapts variation signifi-
cantly, making the representation more evolvable and the
mutation effects more canalized (i.e. regular and consistent)
in the phenotypes. By focusing on how implicit definition
results in such canalization and evolvability, this work takes
the first step towards determining what aspects of adaptive
representations are necessary for creating powerful indirect
encodings.

The paper is divided into five main sections: Section 2 de-
scribes the Nothello domain and the coevolutionary experi-
mental setup, section 3 describes the three representations,
section 4 presents the results and analyzes the genotypic and
phenotypic structures learned, and section 5 draws conclu-
sions on evolvability and points out areas for future work.

2. EXPERIMENTAL SETUP
The domain used to test the representations compared

in this paper is Nothello, an Othello variant drawn from
the AAAI General Game Playing Competition corpus [9].
Since Nothello is a two-player game, player strategies must
be co-evolved in order to provide robust opponents for each
population. This section describes the Nothello domain, the
coevolutionary process employed for all experiments, and
the mechanism for evolving heuristic evaluators.

2.1 Nothello
As in Othello, game play in Nothello proceeds in turns
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Figure 1: Starting con-

figuration in Nothello.

Game play proceeds

identically to Othello

except the player with

the fewest pieces wins.

Nothello is well suited

for empirical study us-

ing coevolution because

it is simpler than Oth-

ello yet still challenging.

where each player places a piece on the board, flipping one
or more of the opponents pieces that are sandwiched be-
tween the player’s pieces Nothello introduces two major dif-
ferences: First, the game is played on a diamond shaped
board (the original Othello board without the corners; fig-
ure 1) and second, the winner is the player with the fewest
pieces on the board in the end. These modifications make
the game play shorter, but maintain much of the complex-
ity of Othello. The Nothello domain was chosen primarily
because it is a difficult learning problem; although simpler
than Othello, Nothello has many of the same features and
presents a challenge for learning methods, particularly be-
cause no standard benchmark opponents exist.

2.2 Coevolution Process
To ensure that the evolved heuristics work well against a

range of opponents, the opponent strategies themselves are
evolved. In coevolution, an individual is evaluated against
some combination of opponents drawn from the evolving
populations, rather than against a fixed fitness metric. This
approach has several advantages over traditional evolution:
(1) Opponent strategies are learned by the algorithm, re-
ducing the amount of information the algorithm designer
must provide a priori; (2) coevolution may reduce the total
number of evaluations necessary to learn successful behav-
ior, leading to more efficient search [6]; and (3) under certain
conditions, coevolution results in an arms race, where indi-
viduals in both populations try to outdo each other, and end
up learning more innovative behaviors [23].

In order to facilitate arms races and make coevolution effi-
cient, the algorithm needs to ensure that monotonic progress
is made. Without such a guarantee populations can “forget”
past strategies, resulting in cycling behavior [6, 8]. To en-
sure monotonic progress in Nothello, a simplified variant of
MaxSolve [6], a coevolutionary solution concept for maxi-
mizing the expected utility of each individual, is used. Such
a concept is useful in situations where the performance of a
strategy must be measured based on a limited set of experi-
ences. Formally, for a set of candidate solution strategies C,
a set of test strategies T and a game with payoffs ui∈{C,T},
the MaxSolve solution concept is a set of strategies S that
maximize the expected utility with respect to a test T ∈ T
is defined as

ST = {C ∈ C|∀C′∈C : E(uC(C, T )) ≥ E(uC′(C′, T ))}. (1)

A candidate C is added to the T when C ∈
T

T∈T ST . This
solution concept can then be implemented algorithmically
by maximizing the sum of an individual’s utilities across
all tests. Although this formulation assumes that all tests
are weighted equally, it has been shown to perform well in
practice [6].

2.3 Evolving Heuristic Evaluators
The coevolutionary process described above is used to

evolve neural networks to estimate the heuristic score for
each game state in Nothello. The board state is mapped
onto a 64 input units. Each square on the board corresponds
to a single input, with its value given as 1 if a white piece
occupies the square, -1 if a black piece occupies it, or 0 if
the square is empty or forbidden (e.g. at the board corners).

The neural networks serve as heuristic board evaluators
that estimate the value of game states when explicit goal
information is not available. These heuristic evaluators are
combined with standard lookahead search using α-β-pruned
minimax [12]. In all experiments presented in this paper,
lookahead search is restricted to a single ply in order to
reduce evaluation time, allowing longer evolutionary runs.

3. COMPARING REPRESENTATIONS
Three different neural network representations are com-

pared using the coevolutionary setup described above: A
direct weighted mapping of input features to a heuristic
value, a complexifying neural network using NeuroEvolu-
tion of Augmenting Topologies (NEAT), and an implicit
representation based on properties of genetic regulatory net-
works. Each representation biases search in a different man-
ner, leading to different performance. This section discusses
each separate encoding and details how each of them affects
the structure of search.

3.1 Direct Mapping
The first representation maps the 64 state features through

weighted connections directly to the heuristic value of the
state. Every possible state feature s is assigned a real-valued
parameter [−1, 1] in the genome. This parameter determines
the weight that the feature adds to the state valuation vS

for state S, i.e.
vS =

X
s∈S

ws. (2)

Although such direct encodings are conceptually simple,
they often outperform more complex encodings. However,
they cannot learn more efficient mutation parameterizations
over time. For example, in the encoding specified above,
mutations cannot exploit symmetries inherent in the fitness
function. That is, if several weights were discovered to be
highly correlated, it would make sense to employ mutations
that were correlated in the same way. It is not possible to
learn such a structure with a direct mapping, which may
lead to poor performance in more complex domains.

3.2 Complexifying Neural Network
The second representation uses a topologically complex

neural network as the heuristic evaluation function. Inputs
are provided in the same manner as with the direct mapping,
but instead of a fixed weighting, a multi-layer neural network
is employed to map them to the heuristic score. The appro-
priate network structure is found using NeuroEvolution of
Augmenting Topologies (NEAT) [21]. NEAT evolves net-
work topologies automatically to fit the complexity of the
problem while simultaneously optimizing network weights.

Each genome in NEAT includes a list of connection genes,
each of which refers to two node genes being connected.
Each connection gene specifies the in-node, the out-node,
the weight of the connection, whether or not the connec-
tion gene is expressed (an enable bit), and an innovation
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Figure 3: The two types of structural mutation in NEAT. Both types, adding a connection
and adding a node, are illustrated with the genes above their phenotypes. The top number
in each genome is the innovation number of that gene. The bottom two numbers denote
the two nodes connected by that gene. The weight of the connection, also encoded in the
gene, is not shown. The symbol DIS means that the gene is disabled, and therefore not
expressed in the network. The figure shows how connection genes are appended to the
genome when a new connection and a new node is added to the network. Assuming the
depicted mutations occurred one after the other, the genes would be assigned increasing
innovation numbers as the figure illustrates, thereby allowing NEAT to keep an implicit
history of the origin of every gene in the population.

another in the system. The new connection gene created in the first mutation is assigned
the number 7, and the two new connection genes added during the new node mutation
are assigned the numbers 8 and 9. In the future, whenever these genomes crossover, the
offspring will inherit the same innovation numbers on each gene. Thus, the historical origin
of every gene in the system is known throughout evolution.

A possible problem is that the same structural innovation will receive different innovation
numbers in the same generation if it occurs by chance more than once. However, by keeping
a list of the innovations that occurred in the current generation, it is possible to ensure that
when the same structure arises more than once through independent mutations in the
same generation, each identical mutation is assigned the same innovation number. Through
extensive experimentation, we established that resetting the list every generation as opposed
to keeping a growing list of mutations throughout evolution is sufficient to prevent an
explosion of innovation numbers.

Through innovation numbers, the system now knows exactly which genes match up
with which (Figure 4). Genes that do not match are either disjoint or excess, depending on
whether they occur within or outside the range of the other parent’s innovation numbers.
When crossing over, the genes with the same innovation numbers are lined up and are

71

Figure 2: Structural mutation in NEAT. Genetic repre-

sentations are shown above their corresponding pheno-

types. Each gene contains an innovation number (top),

input and output node specifications (middle), a possi-

ble “disabled” symbol, and a weight (not shown). New

connections and nodes are added to the network by

adding new connection genes to the genome. In this

manner, topological structure is added incrementally to

the genome.

number, which allows finding corresponding genes during
crossover (figure 2). Innovation numbers are inherited and
allow NEAT to perform crossover without the need for ex-
pensive topological analysis. Genomes of different organiza-
tions and sizes stay compatible throughout evolution, and
the problem of matching different topologies [15] is essen-
tially avoided. NEAT populations are seeded with fully-
connected networks with no hidden nodes. During evo-
lution, networks with increasingly complex topologies are
generated through “add node” and “add link” mutations
(figure 2). This approach is highly effective: NEAT out-
performs other Reinforcement Learning methods on con-
trol tasks like double pole balancing and robotic strategy-
learning [21]. These properties make NEAT an attractive
method for evolving neural networks in complex tasks.

The NEAT neural network representation was chosen for
two reasons. First, its principled complexification works
well in competitive coevolution: As the antagonistic popula-
tions refine their strategy, complexification allows evolution
to generate novel strategies in response, without forgetting
past strategies [21]. Second, as networks become more com-
plex their genetic representations becomes more canalized
and modular. Canalization emerges as redundant nodes are
added into the genome (figure 3a). Such nodes increase the
number of mutations required to make a significant change
to the heuristic function. Modularity emerges as hidden
nodes are added; they aggregate the activation from several
network subcomponents, organizing them into modules (fig-
ure 3b). However, as the network becomes more complex,
it becomes harder to form such modules because every sub-
component needs to be connected to the hidden nodes. It
is unlikely that such mutations can be realized in concert
even with high mutation rates. In other words, modularity
develops uninclusively in NEAT: Each low-level component
must be added explicitly because there are no mutations
that would affect larger structures.

Therefore, as networks become more complex in NEAT,
it becomes increasingly difficult to restructure fundamental

modularization (b)canalization (a)

Figure 3: Canalization and modularization in NEAT.

Canalization can arise in NEAT through the addition of

redundant hidden nodes. Modularization arises through

the addition of hidden nodes connected to one or more

sub-networks, however the number of mutations re-

quired to create new modules increases as the network

complexity increases.

design choices, even if those choices turn out to be unsustain-
able. Furthermore, no simple methods exist that correlate
the phenotypic effects of mutations, even at the most basic
level of weights. Thus, it may take many hundreds of mu-
tations to realize such restructuring through mutation. A
powerful extension to this approach, discussed in the next
section, is to represent connections implicitly, making it pos-
sible to learn and represent correlations not only between
individual weights, but between entire subnetworks as well.

3.3 Implicit Encoding
The third representation is inspired by the implicit regula-

tion of protein transcription in genetic regulatory networks
(GRNs) and is derived from that in [2]. The implicit encod-
ing represents a neural network based on if-then production
rules. In prior work, several variants of GRN encodings have
been proposed [2, 4, 7]. These models are all multicellular,
where the GRN evolution over time describes cell division
and differentiation. In contrast, the implicit encoding eval-
uated in this paper utilizes only the representational aspect
of GRNs, without temporal or spatial development. An im-
portant goal is to test whether such encodings are evolvable,
even without adding more complex features.

3.3.1 GRN-Motivated Representation
In the implicit encoding approach, an arbitrarily complex

neural network is represented using a sequence of if-then
production rules. Each rule contains an antecedent (regula-
tory) region and a product (transcription) region. Both the
antecedent and product regions are composed of one or more
real-valued regulatory factors (figure 4). The regulatory fac-
tors in the antecedent are paired with tolerance values, and
the regulatory factors (products) in the product regions rep-
resent either hidden or output nodes in a neural network.
When the values of products match the values specified in
an antecedent region within the given tolerance, connections
between nodes are generated. The incoming connections to
a given node are determined implicitly by its antecedents.
If the matched antecedent is has a negative, then the result-
ing connection is inhibitory, otherwise it is excitatory. The
connection weight is given by

wij =
X

g∈G|j

X
(a,τ)∈g.a

1

1 + exp(−τ(|i| − |a|)2) , (3)

where i, j ∈ <+ are unique regulatory factors, G|j denotes
all genes in genome G that contain j as a product, g.a ∈
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Figure 4: Implicit encoding of a neural network. Reg-
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are created between nodes based on the similarity of the

product (node) regulatory factor to regulatory factors in

another product’s (node’s) antecedent region; e.g. hid-

den node B connects to D via similarity to C). Connec-

tions are either excitatory (solid line) or inhibitory (dot-

ted line) depending on the sign of the antecedent. The

weight is determined by the similarity according to equa-

tion 3 (e.g. the connection between D and K (through

D) is stronger than between B and H (through C); toler-

ance values are not shown). In this manner, the implicit

encoding does not require explicit representation of ev-

ery neural network weight, biasing search in an efficient

and evolvable way. For a more detailed example, see

http://www.cs.utexas.edu/users/joeraii/adaptive.

(<+ ×<+)n is the set of antecedents in gene g, and τ spec-
ifies the tolerance range of the antecedent a. Tolerance de-
termines how similar two regulatory factors must be in order
for a connection to form. A simple example of this process
is shown in figure 4.

The neural network inputs are connected to the resulting
structure using the same implicit tolerance mechanism as
for the other nodes. Each unique input is assigned a fixed
regulatory factor, and connections to the hidden and output
nodes are assigned weights using equation 3.

Initially each genome contains five genes with two an-
tecedents and two products each. Additional regulatory
structure is added through three types of mutations: Du-
plicate gene, add regulatory factor (either to the antecedent
or product region) and change a weight. Innovation num-
bers similar to those in NEAT are used to perform crossover,
since the genomes have variable length [21]. Innovation
numbers record when new regulatory factors or new genes
are introduced to a genome. During crossover, the innova-
tion numbers are lined up so that similar coding regions can
be crossed over correctly.

3.3.2 Evolvability and Canalization Properties
Implicit encoding has several advantages over direct map-

ping and NEAT encoding. First, in both the direct encoding
and NEAT, mutations can only affect individual weights.
In contrast, in the implicit encoding, mutations can have
not only small precise effects on individual weights, but also
large, even global effects on nodes and groups of nodes, de-
pending on the connectivity structure (i.e. the encoding uti-
lizes weak-linkage between genes [17]). Because the network
structure is described implicitly, complex networks can be
represented more compactly than with traditional explicit
encodings (i.e. the encoding is generative and many-to-one).

Second, GRNs inherently support the “duplication and

divergence” process whereby a gene is first duplicated, the
copy then begins to develop some new function, and slowly
diverges from the original [16]. This phenomenon allows
new function to develop while the old regulatory structures
are preserved. Duplication and divergence may be one of
the sources of modularity in biology, and in turn modu-
larity is important for evolvability [17]. Implicit encoding
supports duplication and divergence genetically through the
duplicate-gene mutation, and phenotypically through the
add-product mutation, which duplicates an entire hidden
node in the network.

Third, complex GRN network models are often canalized,
i.e. correspond to highly constrained phenotypes [3], which
is considered to be one necessary component for adaptive
complexity [20]. An implicit encoding can become canalized
if many genes control a given connection (thus reducing the
effects of a single mutation) but also through the tolerance
values, which can lower the number of interactions in which
a regulatory factor participates. Thus the implicit encod-
ing exhibits many of the representational features associated
with evolvability, unlike the direct or NEAT encodings.

4. RESULTS
This section details the experimental results comparing

the three representations on the coevolutionary Nothello do-
main. It is divided into three parts: Section 4.1 compares
the learning curves for the three representations against a
1-ply lookahead opponent with a random heuristic, 4.2 ana-
lyzes differences in the genotypes of NEAT and the implicit
encoding, and 4.3 analyzes differences in their phenotypes.

4.1 Learning Curves
Each representation was evolved on the coevolutionary

Nothello domain for 200 generations in 10 independent runs.
Since fitness is a function of both evolving populations, it
cannot be used directly to compare the different representa-
tions. Instead, separate tests against a 1-ply opponent using
a random heuristic evaluator were conducted. Each evolved
network played 200 games against this opponent and the
winning percentage of the current population champion at
each generation was averaged over the 10 runs.

Playing as white, the implicit encoding significantly out-
performs the NEAT encoding in all generations, winning
99.1% of matches on average in generation 200, while NEAT
wins only 97% (p < 10−4, measured using Student’s t-test;
figure 5a). The implicit encoding also outperforms the di-
rect encoding in all generations, however the difference is
only significant in the first 40 generations. In generation
200, the direct encoding wins 98.6% of matches (p = 0.11).
Furthermore, the implicit encoding reaches the 95% accu-
racy level on average more than 20 generations faster than
the direct encoding, and 50 generations faster than NEAT.

Playing as black, the implicit encoding outperforms both
the NEAT encoding and the direct encoding in all gener-
ations, however for NEAT the difference is significant only
until generation 30. In generation 200, the implicit encoding
wins 93.1% of games, NEAT wins 91.6% (p = 0.06), and the
direct encoding wins 91.5% (p = 0.01). During early evo-
lution, the implicit encoding reaches the 90% performance
level 36 generations earlier than NEAT and 88 generations
earlier than the direct encoding. Thus, the implicit encod-
ing outperforms both encodings and is able to find better
solutions in significantly fewer generations.
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Figure 5: Fitness of evolved heuristic evaluators. Generation champions are compared using 200 trials against a 1-ply

lookahead opponent with a random heuristic. The results are averaged over 10 runs and 95% confidence intervals are

shown every 10 generations. The implicit encoding significantly outperforms both the direct and NEAT encodings.

4.2 Genotypic Analysis
In order to understand the performance differences be-

tween the direct encoding, implicit neural network encoding
and the standard NEAT encoding, their genotypes are ana-
lyzed in this section, investigating how they differ in terms
of genome size, evolvability and canalization.

4.2.1 Genome Size
The number of parameters in each genome determines how

many mutations are required to make significant changes.
In the direct encoding, the number of parameters is fixed
at 64, one for each input feature. Final champions using
the NEAT representation have 240.7 weights on average. In
contrast, final champions using the implicit encoding aver-
age 458.25 connections on average, but use only 34.12 pa-
rameters. The implicit encoding is therefore significantly
more compact than either the direct encoding or the NEAT
encoding (p < 10−21). Thus the implicit encoding not only
generates more efficient neural networks that are twice as
complex as NEAT, but does so with an order of magnitude
fewer parameters. Reducing the size of the parameter space
alone may not necessarily simplify problem. However, the
next section provides empirical evidence that the implicit
encoding reduces the number of parameters while maintain-
ing high evolvability, indicating that the implicit encoding
is indeed able to reduce the problem complexity.

4.2.2 Acquired Evolvability
The evolvability of a genome can be approximated with

the fitness of the local mutation landscape around that genome
[19]. Run champion genomes using the implicit encoding are
more robust against mutation than those using either the di-
rect or NEAT encoding (figures 6, top two rows; since no sig-
nificant differences were found between the direct and NEAT
encoding, the direct encoding is omitted from this section for
clarity). For the white role, the implicit encoding beats the
random heuristic in approximately 96.1% of matches, while
NEAT wins approximately 93.4% of matches. After a single
point mutation, the performance of implicit encoding drops
to 91.0% while that of NEAT drops to 81.3%. After two
mutations the performances decrease to 87.0% and 71.1%,
respectively. A similar trend is seen for the black role: Ini-
tially both the implicit encoding and NEAT win 86.0% of
matches. However, after a single mutation, the implicit en-

coding only drops to 81.7%, while NEAT drops to 69.4%. As
more mutations are made, the differences in the two means
continue to increase, indicating that for both roles, genomes
using the implicit representation are more robust against
mutation than those using the NEAT encoding.

One explanation could be that the implicit encoding makes
smaller mutations on average than NEAT. However, this is
not the case: Using the network compatibility measure [21]

δ(i, k) =
E(i, k) + D(i, k)

max(||i||, ||k||) + 3.0 · W̄ (i, k), (4)

where i, k are the networks being compared, ||i|| is the num-
ber of weights in network i, E is the number of excess weights
between network i and k, D is the number of disjoint weights
and W̄ is the average difference in weights, the implicit en-
coding on average makes weight and topology mutations
two to five times as strong as the NEAT encoding (figure
6, bottom two rows). Taken together, these results indicate
that the implicit encoding is indeed more evolvable than
the standard NEAT encoding; that is, the implicit encoding
generates more adaptive variation than NEAT.

Much of the robustness achieved by the final champions
is acquired during the course of evolution (figure 6a vs. 6b).
For the white role, as mutations are made to the first gen-
eration champions, there is no significant difference in per-
formance between the implicit and NEAT encoding at any
mutation level tested. For the black role, the implicit en-
coding significantly outperforms the standard encoding af-
ter any number of mutations greater than one. However, the
difference between the two means does not increase as fast
as it does for the final champions: After one mutation, the
first generation champions differ by 7.8 on average, while
the final champions differ by 12.3; after two generations the
differences increase to 13.7 and 18.4, after 5 generations to
17.1 and 24.25 and after 10 generations to 13.1 and 27.8.
Thus, the implicit encoding has acquired evolvability with
respect to the Nothello domain during evolution.

4.2.3 Canalization
Representational canalization, i.e. the degree to which

genotypic changes affect the phenotype, can be measured
by averaging phenotypic differences after a fixed number of
mutations. Phenotypic distance is calculated using the com-
patibility measure described in the previous section. For
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Figure 6: Mutation landscapes around the first generation (a) and run final champions (b). The top two graphs

in both (a) and (b) show how the performance decreases with the number of mutations and the bottom two graphs

show how it decreases with phenotypic distance, using the compatibility measure from NEAT. The implicit encoding’s

performance degrades significantly slower than NEAT and exhibits significantly higher phenotypic variation.

the NEAT encoding, making 10 mutations to a champion
genome in the first generation results in networks with com-
patibility distance 5.41. Final champions, in contrast, have
a distance of 6.3 on average (p < 10−17), indicating that
NEAT networks become biased towards larger mutations
as evolution progresses. Using the implicit encoding, the
first generation champions have compatibility distance 59.1
on average after 10 mutations, while final champions have
compatibility only 43.6 (p < 10−6). Since genotypic muta-
tion rates remain constant throughout evolution, this trend
indicates that effects of such mutations canalize over time.

Another indicator of a representation’s canalization is how

much fitness changes in response to mutation. Comparing
figures 6a and 6b, it is clear that final fitnesses are less af-
fected by mutation. For the white role, the standard error of
the fitness mean after a single mutation in the first genera-
tion is 12.4, while the final champions’ standard error is only
1.4. Similarly for the black role, the error decreases from 6.2
to 4.5. On the other hand, the standard error for the NEAT
encoding increases with evolution from 1.2 to 2.0 as white
and from 0.6 to 6.1 as black, indicating that genomes with
less canalization are being selected. Thus, there is strong
evidence that the properties of the implicit encoding not
present in NEAT are responsible for canalization.
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Figure 7: Neural Network Connectivity Analysis. With

NEAT, the number of connections per node is dis-

tributed according to a power law, while networks

evolved using the implicit encoding are more tightly con-

nected. This result indicates that power law connectivity

alone is not sufficient for evolvability.

4.3 Phenotypic Analysis
To understand the effects of representation on the evolved

phenotypes, two methods are employed: comparing the de-
gree distribution of nodes and analyzing the network motifs.

4.3.1 Degree Distribution
Figure 7 depicts the degree distribution, i.e. average num-

ber of connections per node for the final champion neural
networks evolved with NEAT and with the implicit encod-
ing. With NEAT, node degree is distributed roughly accord-
ing to a power-law (P (k) ∼ k−γ), with exponentially more
nodes of lower degree than of higher degree. Node degree
ranges from one to 22, with an average of 4.0 nodes of degree
one, 2.3 nodes of degree two, 1.9 nodes of degree three and
1.2 nodes of degree four. All other node degrees occur with
frequency less than 1.0.

In contrast, implicit encoding results in more dense con-
nection patterns. Number of connections ranges from one
to 25, but few nodes are sparsely connected and most have
ten or more connections. Overall, node frequency increases
linearly with the number of connections (the data for nodes
of degree 20 and higher is highly variable and is bucketed
into 20). This result is counter-intuitive: In NEAT, learning
such a complex, interconnected structure is not evolvable as
each weight must be mutated in isolation.

4.3.2 Network Motifs
In order to characterize specific structural differences in

evolved network structures, network motifs need to be ana-
lyzed. In motif analysis [14], the frequencies of small three-
node subnetworks (triad motifs) are compared relative to
random networks with the same number of nodes and con-
nections. A significance score for each motif is calculated as
its z-score:

Zi = (Nei − N̄ri)/std(Nri), (5)

where Nei is the frequency of motif i in the evolved net-
work, N̄ri is the average frequency of motif i in random
networks and std is the standard deviation in the random
networks. The z-score profiles are normalized and reported
as significance profiles

SPi = Zi/(
X

k

Z2
k)1/2. (6)
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Figure 8: Network motifs in NEAT and in implicit

encoding. For each motif (shown along the horizontal

axis), the significance profiles are shown relative to those

in randomly connected networks with the same num-

ber of nodes and connections. NEAT exhibits a strictly

feed-forward profile, while the implicit encoding demon-

strates a high degree of recurrent connectivity.

Figure 8 shows the significance profiles for the NEAT net-
works compared to the implicitly encoded networks. NEAT
networks have a profile similar to that of feed-forward net-
works [13]: Only a single triad motif called the feed-forward
loop occurs significantly more often in NEAT than in the
random networks, and motifs with low connectivity (1-3)
occur less often.

In contrast, the implicitly encoded networks have sev-
eral more significant motifs of higher order (7-10, 12,13).
These motifs are common in highly connected networks and
minimize the number of edges connecting any two nodes.
Such motif significance profiles are typical of neural net-
works found in nature [13]. Such highly recurrent network
structures may be used to increase the detectability of mu-
tations affecting evolvability [18].

5. DISCUSSION AND FUTURE WORK
Several observations suggest that the implicit encoding is

highly evolvable: The networks in the local mutation space
around the champion genomes are highly varied, but per-
form significantly better than mutated genomes from NEAT.
Furthermore, such evolvability is acquired during evolution:
The champions’ fitness varies more in the beginning and
much less in the end while the evolved network structures
maintain high variance. One possible reason is that with the
implicit encoding, evolution controls how the phenotypes are
distributed, thereby transforming random mutations into
structured phenotypic variation. Furthermore, since such
mutations have an immediate and detectable impact on fit-
ness, fewer mutations are required on average to create a
gradient for selection [18].

This result suggests that in order to maximize evolvability,
representations should be constructed in such a way that
phenotypic variation can be adapted to match the structure
of the fitness function in as few mutations as possible (i.e.
mutations affecting phenotypic variation must be as easy to
detect as possible [18]). Furthermore, representations must
be able to adapt the genotype-phenotype mapping at all
levels, ranging from fundamental design changes to small
phenotypic tweaks, using as few mutations as possible.

Encodings based on GRNs and developmental systems al-
low for this kind of adaptation implicitly through overlap-
ping gene expression domains [5, 11, 16]: (1) Weak linkages
allow mutations to affect both fundamental and fine-tuned
structure, (2) Expression domains can be easily copied be-
tween genes, and (3) Upstream mutations can shift expres-
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sion domains. These mechanisms are powerful precisely be-
cause search becomes constrained, generating only highly
adaptive phenotypes. In evolutionary computation, acquir-
ing such constraints is akin to learning the underlying struc-
ture of a particular fitness function: such structure can then
be exploited to make the search more efficient.

Scale-free organizations may be highly evolvable, as has
been suggested in theoretical biology literature [1]. However,
the phenotypic analysis in this paper shows that implicit
encoding is more evolvable than NEAT. This result suggests
that scale-free organization alone is not sufficient, and it
may actually be more important to control the genotype-
phenotype mapping.

There are two main areas of future work. First, the im-
plicit encoding should be tested on a variety of domains to
determine how general its performance benefits are. Second,
the implicit encoding can serve as a basis upon which other
aspects of developmental encodings can be built. The next
logical step is to add entirely regulatory gene products, i.e.
products that do not correspond directly to hidden neurons.
Such functionality would allow for upstream mutations that
can have complex phenotypic expression resulting in hierar-
chical modularity [17]. Encodings making use of such fea-
tures may prove to be more efficient and evolvable, allowing
more complex problems to be solved.

6. CONCLUSION
An implicit encoding of neural network weights and topolo-

gies was shown to outperform a direct encoding and the
NEAT topology-and-weight evolving method on a complex
board-game task. The implicit encoding represents complex
networks with an order of magnitude fewer parameters than
NEAT. Furthermore, the implicit encoding results in more
adaptive variation in response to mutation as well as more
phenotypic variability. Thus, the results indicate that adap-
tive representations are more evolvable than direct encod-
ings, and that such encodings can acquire additional evolv-
ability with respect to specific fitness functions as evolution
progresses. Ultimately, such encodings will yield more effi-
cient search in complex domains.
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