
Learning Recursive Programs with Cooperative
Coevolution of Genetic Code Mapping and Genotype

Garnett Wilson and Malcolm Heywood
Faculty of Computer Science
Dalhousie University, Halifax

NS, Canada B3H 1W5

gwilson@cs.dal.ca, mheywood@cs.dal.ca

ABSTRACT
The Probabilistic Adaptive Mapping Developmental Genetic
Programming (PAM DGP) algorithm that cooperatively
coevolves a population of adaptive mappings and associated
genotypes is used to learn recursive solutions given a function set
consisting of general (not implicitly recursive) machine-language
instructions. PAM DGP using redundant encodings to model the
evolution of the biological genetic code is found to more
efficiently learn 2nd and 3rd order recursive Fibonacci functions
than related developmental systems and traditional linear GP.
PAM DGP using redundant encoding is also demonstrated to
produce the semantically highest quality solutions for all three
recursive functions considered (Factorial, 2nd and 3rd order
Fibonacci). PAM DGP is then shown to have produced such
solutions by evolving redundant mappings to select and
emphasize appropriate subsets of the function set useful for
producing the naturally recursive solutions.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – Heuristic methods.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Recursion, developmental genetic programming, genetic code,
genotype-phenotype mapping, redundant representation,
cooperative coevolution.

1. INTRODUCTION
In this work, we address the problem of automatically evolving
recursive solutions given a generic (machine language) function
set that contains no operators designed to enable recursion or
functions that explicitly accept other functions as arguments so as
to enable recursion. The work of Huelsbergen appears to be the
first to have evolved machine language-based recursion [4] using
such a function set. No evolutionary algorithm approaches

known to Huelsbergen [4] in 1997 involved the generation of
recursive solutions without recursion-enabling operators in the
function set. The early works of Koza [8] and Handley [3] relied
on introducing specialized recursive operators into their function
sets and thus avoided automatically synthesizing recursion. Since
that time, researchers have continued to work on evolving
recursive solutions. Koza has recently implemented more
specialized functions (automatically defined functions, or ADFs)
to perform recursion in [9]. Other authors such as Brave [2] and
Yu [18] have opted to evolve recursive programs by including the
name of the function on which they want to perform recursion in
the function set. Similarly, Wong and colleagues [15, 16] have
implemented GP systems using logic grammars that include a
grammar rule capable of recursion. Whigham [12] has used
directed mutation operators to evolve a recursive function, but
operators are both problem specific and incorporate knowledge of
the solution. Yu and Clack have also presented an interesting
technique that uses implicit recursion via higher order functions to
avoid explicit recursive calls [17]. In their work, the code content
of a recursive loop is passed as an argument to the higher-order
function that iteratively applies the code. While avoiding explicit
recursion calls, the recursive mechanism is built into the higher
order function and is thus not automatically generated. (The use
of higher order functions does have the benefit that it implicitly
provides a termination mechanism.)
It thus seems that Huelsbergen has been the only researcher
focusing on automatic generation of recursion using a generic
function set. In contrast, the focus of other researchers has been
the issues of measuring good “semantics” in recursive solution
program structures and handling non-terminating recursive cases.
Huelsbergen’s concern (and that of this paper) is to actually
discover recursive solutions using a function set that does not
directly imply recursion in any way. This paper does address the
issue of semantics through a simple metric (correct sequence
output length prior to program termination) to indicate semantic
“goodness” of solutions. The termination issue of recursive
solutions is handled in the usual way—by reaching a maximum
number of program steps executed (this method is used in most of
the literature on recursion, with the notable exception of [17]).
Central to the approach adopted in this work is the utility of a
developmental model of evolution in which function set and
genotype are cooperatively evolved under a symbiotic model,
Section 2. Section 3 defines the Factorial and Fibonacci (2nd and
3rd order) problems used to benchmark the paradigm. Section 4
provides results, with Section 5 demonstrating explicit
contributions made by the coevolutionary model of development.
Conclusions and Future Work follow in Section 6.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007…$5.00.

1053

2. EVOLVING GENETIC CODE
MAPPINGS WITH GENOTYPES
A number of researchers have advocated the benefits of
developmental systems that evolve both a mapping that models
the biological genetic code and an associated genotype [1, 5-7,
10, 11, 13, 14]. In particular, evolution of a genetic code can
adaptively bias search toward function set symbols useful for the
solution, reducing search space and biasing search toward
appropriate regions of the space. Banzhaf and Keller initially
demonstrated the benefits of separating the genotype and
phenotype spaces in an implementation where genotypes were
mapped onto phenotypes using redundant encodings for
emphasizing certain members of the function and terminal sets
over others. The mapping was coupled with a single genotype
individual during the entire tournament, and it was mutated,
reproduced, or selected along with the genotype that carried it [6,
7]. Their work was followed by an implementation (here called
the Standard Adaptive Mapping GP) of Margetts and Jones [10],
where separate populations of mappings and genotypes co-
evolved in a search for a genotype-mapping pairing that produced
an appropriate phenotype. The individuals in the mapping
population corresponded to one-to-one (non-redundant) mappings
that used the Huffman compression algorithm. O’Neill and Ryan
[11] have also introduced an interesting new developmental
system that evolves a genetic code along with genotypes,
although their mapping models the genetic code using a grammar
rather than a codon (genotype subsequence) to symbol mapping.
Wilson and Heywood recently introduced a new developmental
system – Probabilistic Adaptive Mapping Developmental Genetic
Programming (PAM DGP) – that corrected coevolutionary
pathologies and search issues of the Standard Adaptive Mapping
and demonstrated efficient search of the mapping and genotype
spaces using separate populations in a coevolutionary framework
[13, 14]. A more developmental redundant (genetic code-based)
adaptive mapping scheme was introduced in [14]. We review the
PAM DGP algorithm in this section, and describe its application
to learning recursive sequences in the remainder of the work.
In the PAM DGP algorithm, there are two separate populations of
genotypes and mappings that symbiotically cooperatively
coevolve. A probability table is maintained with entries for each
combination of genotype and mapping. Entries represent
frequencies corresponding to the probability that roulette selection
in a steady state tournament will select the genotype-phenotype
pairing of individuals dictated by the indices of the table. A small
degree of elitism is used in that genotype and mapping individual
that are members of the current best genotype-mapping pairing
are protected from mutation and crossover. Each tournament
round involves the selection of four unique genotype-mapping
pairings. Table columns associated with the winning
combinations have the winning combination in that column
updated using Equation 1 and the remaining combinations in that
column updated using Equation 2

P(g,m)new=P(g,m)old+α(1−P(g,m)old) (1)
)),((),(),(oldoldnew mgPmgPmgP α−= (2)

where g is the genotype index, m is the mapping index, α is the
learning rate (or how much emphasis is placed on current values
as opposed to previous search), and P(g,m) is the probability in
location [g, m] of the table. To prevent premature convergence,
the algorithm also features a noise threshold. If the threshold is

exceeded by an element in the table following a tournament
round, a standard Gaussian probability adjustment in the interval
[0, 1] is added to that element and all values in its column are re-
normalized so that the column elements sum to unity. An
overview of the PAM DGP algorithm is depicted in Figure 1.

Figure 1. Overview of the PAM DGP algorithm.

Genotypes in PAM DGP are binary strings, with interpretation
being instruction-dependant (see next Section). Two types of
mappings are benchmarked: Huffman and Redundant. In the
Huffman mapping, as advocated by Margetts and Jones [10],
mapping individuals consist of s binary sections of 10 bits for
each of s function set symbols. All the ones in each 10 bit section
are summed and normalized to provide a frequency for each
symbol. The function set, associated frequencies, and genotype
are provided as arguments to the standard Huffman compression
algorithm which returns the symbol-encoding mapping. Given
the Redundant mapping, individuals are composed of b ≥ s 10-bit
binary strings, where b is the minimum number of binary
sequences required to represent a function set of s symbols. Each
10 bit mapping section is interpreted as its decimal equivalent,
normalized to the range [0…1], and mapped to an ordered
function set index by multiplying by s and truncating to an integer
value (allowing redundant encoding of symbols). The Huffman
and Redundant mappings schemes are shown in Figure 2.

Figure 2. Huffman and Redundant mapping schemes.

3. RECURSIVE PROBLEM DEFINITIONS
In [4], Huelsbergen compares the abilities of random search
(Random), genetic programming using solely the crossover
operator (XO), exhaustive iterative hill climbing (EIHC), and a
hybrid system of his own design that uses the two latter
techniques (XO-EIHC) to learn recursive sequences. He found
that the simple genetic search (XO) performed the best out of all
algorithms for the factorial function, but the more sophisticated
EIHC and XO-EIHC algorithms outperformed the other
algorithms definitively when evolving solutions to the more
difficult Fibonacci series. Sample solutions from the XO-EIHC
algorithm were then shown to produce general solutions to the

1054

recursive problems through use of an infinite loop constructed
from the branching functions. Our analysis of the recursive
functions will examine the ability of coevolved mappings and
genotypes to not only more efficiently learn recursive solutions
than other competing algorithms tested, but to generate recursive
solutions of generality and quality.
Huelsbergen’s function set is designed to correspond to a virtual
register machine (VRM), and is generic such that it consists only
of instructions for primitive register manipulation, conditional and
unconditional branching, arithmetic operators, and generation of
an output stream. Each individual consists of a program with a
number of external registers, and internal state trackers including
a program counter (PC) and a flag (Flag). Flag corresponds to
the last execution of a comparison instruction (Cmp(Rsource, Rdest))
that returns one of the values {greater, less, equal}; it serves as
the basis on which to perform conditional branching. The
program counter is an integer that points to the instruction to be
currently executed; branching (jump) instructions cause the PC to
point to their target, while remaining instructions cause PC to
point to their following instruction. The Output function places
an integer from a register on the output stream Stdout; if no output
is generated by an individual the Stdout stream contains no
values. We opt not to use Huelsbergen’s NOP function, which
has no effect. The function set is summarized in Figure 3 below,
where Rs is the source register and Rd is the destination register,
PC is the program counter, and N is the total number of
instructions in the program. In total there are 16 different
instructions, more than typically employed in a GP function set.

Out(Rs) {PC++; Write(Stdout, Rs);}

Neg(Rs) {PC++; Rs = 0 – Rs;}

Mov(Rd, Rs) {PC++; Rd = Rs;}

Set(Rs) {PC++; Rs = 1;}

Clear(Rs) {PC++; Rs = 0;}

Inc(Rs) {PC++; Rs = Rs + 1;}

Dec(Rs) {PC++; Rs = Rs - 1;}

Add(Rd, Rs) {PC++; Rd = Rd + Rs;}

Sub(Rd, Rs) {PC++; Rd = Rd - Rs;}

Mul(Rd, Rs) {PC++; Rd = Rd * Rs;}

Div(Rd, Rs) {PC++; Rd = Rd / Rs;}

Cmp(Rd, Rs) {

 PC++; If (Rd < Rs) Flag = less;
 Else If (Rd > Rs) Flag = greater;
 Else Flag = equal; }

J(offset) {

 PC = min(max(0, PC + offset), N);}

Jl(offset)* {
 If (Flag == less)
 PC = min(max(0, PC + offset), N);
 Else PC++; }
*Jg(offset) and Je(offset) are equivalent to
Jl(offset), only substituting “greater” and
“equal” for “less,” respectively.

Figure 3. Machine language-based function set.

In [4], Huelsbergen investigates four integer sequence problems: a
sequence of squared numbers, cubed numbers, and the factorial
and Fibonacci sequences. We focus on the more difficult and
naturally recursive Factorial (fact) and Fibonacci (fib) sequences,
and add the more difficult third order Fibonacci sequence (fib3).
The function definitions, including base cases, are

 1 if x = 0
()

(1) otherwise
fact x

x fact x
⎧

≡ ⎨ ⋅ −⎩
 (3)

1 if x = 0 or x = 1
()

(2) (1) otherwise
fib x

fib x fib x
⎧

≡ ⎨ − + −⎩
 (4)

1 if x = 0, x = 1, or x = 2
3()

3(3) 3(2) 3(1) otherwise
fib x

fib x fib x fib x
⎧

≡⎨ − + − + −⎩
 (5)

The fitness evaluation scheme is reproduced from [4] in which the
first ten values of the Stdout stream, as generated by individuals
using the OUT instruction, are matched against the ten values of
the test case using the following fitness function:

1

0

() () ()
l

i

i

fitness p s f i scale i
−

−

=

≡ ⋅∑ (6)

where p is the program in the form a binary string, l is the length
of the recursive sequence (10 in these experiments), f(i) is the
value of the recursive function for integer i, and scale(i) is defined

 max

max

if () 0
()

/ () otherwise
S f i

scale i
S f i

=⎧
≡ ⎨
⎩

 (7)

where Smax = max{f(0), …, f(l-1)} for the recursive sequence
defined by f. The sequence {s0, …, sl-1} is the first l values of
Stdout, if the output contains at least l values. If it does not, the j
< l values Stdout contains (that is, {sj, …, sl-1}) are set to Smax.
The fitness function measures summed scaled error (Equation 6),
thus lower fitness is better and the objective is fitness = 0.
Since Huelsbergen’s results indicated that a larger number of
tournament rounds would likely be necessary to generate
recursive solutions compared to non-recursive problems, each of
our 50 trials consisted of a steady state tournament of 500 000
rounds (4 individuals per round) with a population of 25
genotypes and 25 mappings (50 individuals for Traditional GP).
Each genotype consists of 320 bits and 4 subresult registers, and
each mapping consists of 160 bits (10 bits for each of 16 required
encodings for a function set of size 16). Genotypes and mappings
were randomly initialized, with registers initialized to 1. XOR
mutation on a (uniform) randomly chosen instruction was used on
genotypes, with less disruptive point mutation used on mappings
to provide a more stable context against which the genotype could
evolve. Both mutations used a rate of 0.5. Crossover occurred
between equal-sized segments of individuals at a rate of 0.9.
PAM DGP used a conservative learning rate of 0.1 and noise
threshold of 0.8 to prevent premature convergence.
As was the case in [4], the program in each genotype individual
terminates after running all instructions (PC = n-1 for n
instructions with indices 0 to n-1) or after the execution of 100
steps. Instructions are decoded from a genotype binary sequence
under the guidance of the mapping, either Huffman or Redundant.
In each case a number of bits define the instruction type (variable
for Huffman, fixed for Redundant), two bits define register
references, and five bits define the offset in branch instructions.

1055

In the case of the five offset bits, bit one defines the direction of
the jump, and four bits declare the (absolute) offset corresponding
to integers over the interval [0, …,15].

4. RESULTS
In this section we compare the efficiency, solution content, and
solution quality of Traditional (linear) GP (Traditional), the
original adaptive mapping of Margetts and Jones (Standard),
PAM DGP with Huffman encodings (Huffman), and PAM DGP
with redundant encodings (Redundant). Some discussion of the
recursive solutions produced by the algorithms covered in this
work is in order before proceeding with the analysis of the results.
Following Huelsbergen [4], a solution is said to have been located
when the output stream of an individual’s program produces the
first ten digits of the required sequence that serve as the test case.
Given this definition of solution, if the program produces
incorrect digits or no digits after getting the initial ten digits
correct, it is still technically a solution.
A program is considered a general solution if and only if both all
the members of the sequence of length l ≥ 10 generated by the
output are correct and if the program were permitted to run
beyond the maximum number of steps (100 in [4] and these
experiments), then the program would continue to correctly
generate the correct members of the sequence. All solutions
(programs that generated the first ten members of the recursive
sequence correctly) in these experiments were inspected by hand
for generality. In practice, given the function set for these
problems, a solution could only be general if it included an
appropriate instruction sequence using a reverse branch (jump
instruction with negative offset) at the end of the sequence.
Furthermore, the repeated sequence would have to include
appropriate manipulation of register contents and an output to the
Stdout stream in its body such that the correct output was
produced. The results focus on the ability of the algorithms to
produce not just solutions, but general solutions.

4.1 The Factorial Function
The first recursive function we examined was the factorial
sequence (Equation 3), which is a first order recursive function.
That is, each iteration of the recursive function only references
the value produced by the previous recursive step. In this respect,
the Factorial problem is the simplest of the recursive functions
considered. As mentioned earlier, Huelsbergen found that it was
most efficiently solved by simple genetic search using only two-
point crossover rather than his more sophisticated search
techniques [4]. We similarly found that the less complex
algorithms generated more solutions: given 50 independent trials,
all trials for Traditional, Standard, and Huffman PAM DGP solve
the factorial problem, as does 33 trials of Redundant PAM DGP.
In the case of the factorial problem, every solution for all
algorithms was general. The tournament round when a solution
was located for each solution in 50 independent trials is given in
Figure 4. Each box indicates the lower quartile, median, and
upper quartile values. Notches indicate the 0.95 confidence
interval, with points representing outliers to whiskers of 1.5 times
the interquartile range. Given the overlap of the notches for the
boxplots, there is actually no statistical difference at the 0.95
confidence interval in the median round at which a solution is
found for any of the four algorithms. Huelsbergen’s hybrid
algorithm had a mean of 5.55 x 106 evaluations required per

solution (over 9 solutions) for the factorial function, while
Redundant PAM DGP had a mean of only 2.72 x 105 evaluations
(4 evalutions per round) required per solution (over 33 solutions).

Figure 4. Tournament round at which a solution to the

factorial problem was located over 50 independent trials.
While Redundant PAM DGP did not produce as many solutions
as the other GP algorithms for this simple recursive function, it
outperforms the other algorithms on solution quality. The
programs that are of interest are those that have truly discovered
recursive solutions, and are thus general. One way to measure the
quality of general solutions is to examine how many members of
the function’s sequence the solution can produce before it reaches
the program step limit. That is, efficiency of the program at
generating the sequence is measured. The efficiency of sequence
generation is an important measure: If the body of the loop(s)
that produce the sequence contain junk code (introns), program
steps will be (at best) wasted if the junk code is innocuous in so
far as it does not disrupt the production of the sequence. A loop
with innocuous junk code will produce a less lengthy sequence.
In fact, introns must be innocuous in general solutions or the
solutions would not be able to generate the repeated sequence
indefinitely. Efficiency also reflects that the algorithm may be
generating multiple outputs per iteration to avoid wasting steps on
the jump instructions. Thus, the higher the value of the correct
number of sequence members generated, the lower the content of
junk code within the program loop(s) and/or the more efficient the
loop(s) contents. The number of sequence members produced is
thus a simple and informative measure of the quality of general
recursive solutions. The number of sequence members produced
by the general solutions of each algorithm is shown in Figure 5.

Figure 5. Number of sequence members output by the general
solutions to the factorial problem over 50 independent trials.

1056

It is evident that the Redundant PAM DGP algorithm produces
the longest sequences among its general solutions at the 0.95
confidence interval compared to all other algorithms tested.
Given the aim of discovering a program to produce quality
general recursive solutions, rather than sheer quantity of solutions
regardless of quality or even generality, Redundant PAM DGP
clearly provides the best results on the factorial problem. The
best general solution produced the first 32 members of the
factorial sequence, and can be seen as the upper outlier for
Redundant PAM DGP in Figure 5. The program code for the
individual is given in Figure 6. This solution contained no
introns. The loop responsible for the indefinite repeated
production of the series is italicized. Any instructions that are not
reached by the program counter (instructions that are never read
by the hypothetical interpreter) are not displayed. Instruction
addresses are enumerated on the left of each instruction to help
the reader better interpret branching commands.

0 INC Reg2; 1 OUT Reg0; 2 OUT Reg1;
3 OUT Reg2; 4 INC Reg1; 5 INC Reg2;
6 MUL Reg1 Reg2; 7 OUT Reg1; 8 INC Reg2
9 MUL Reg1 Reg2; 10 OUT Reg1; 11 INC Reg2;
12 MUL Reg1 Reg2; 13 OUT Reg 1;
14 INC Reg2; 15 MUL Reg1 Reg2; 16 OUT Reg1;
17 J(to 8) using offset -9

Figure 6. Program code for the individual that produced the
longest factorial sequence. Instructions that constitute the

recursive loop are italicized.
In the solution above, instructions 1 to 7 generate, via sequential
non-looping instructions, the first four values of the factorial
series (1, 1, 2, 6) and thus set up the base case (first value) prior to
entering the loop. Instruction 8 begins the loop body that contains
three consecutive INC, MUL, OUT sequences that maintain the
function’s x and x-1 values in registers 2 and 1, respectively. The
loop efficiently uses all instructions in its body to output three
members of the factorial solution with each iteration. This
solution demonstrates the nature of the efficiency and generality
of the solutions produced by Redundant PAM DGP, as quantified
in Figure 5.

4.2 The Fibonacci Series
We now move to measuring the capability of the algorithms on a
more challenging recursive problem: the Fibonacci series as
defined in Equation 4. The Fibonacci series uses, by definition,
second order recursion. In other words, the current value of the
function (with the exception of the base cases, of course) depends
on the values of the two previous recursive steps. Huelsbergen
found that only his more sophisticated algorithms (EIHC and XO-
EIHC) were able to produce solutions to the Fibonacci series; the
other algorithms (XO and Random) produced no solutions given a
limit of 5 x 107 evaluations.
Redundant PAM DGP produces the largest number of solutions
(46), with Standard and Huffman PAM DGP producing
comparable numbers of solutions (45 and 44, respectively).
Traditional GP produced the least number of solutions (42). The
boxplot for the tournament rounds at which a solution was located
over 50 independent trials appears in Figure 7.

Figure 7. Tournament round at which a solution to the

Fibonacci problem was located over 50 independent trials.
Redundant PAM DGP finds the Fibonacci series within fewer
rounds than the Standard Adaptive Mapping and Huffman PAM
DGP at the 0.95 confidence interval. Redundant PAM DGP also
has a lower median than Traditional GP, but due to the large error
level in the Traditional GP boxplot, the difference is not
statistically significant. The spread of the Redundant PAM DGP
boxplot also indicates that it solves the problem more consistently
than any other algorithm. Huelsbergen’s hybrid algorithm in [4]
had a mean of 1.02 x 106 evaluations required per solution (over
10 solutions), while Redundant PAM DGP had a mean of only
2.12 x 105 evaluations required per solution (over 46 solutions) .
Considering the raw number of general solutions found, all
algorithms actually generated comparable results. Redundant
PAM DGP had 38 general solutions, Huffman PAM DGP had 42,
Standard Adaptive Mapping found 43, and Traditional GP located
41. Despite having the lowest (but competitive) raw number of
general solutions, Redundant PAM DGP definitively generated
the highest quality (most general) solutions. The sequence length
of the solutions generated by each algorithm over 50 independent
trials is shown in Figure 8.

Figure 8. Number of sequence members output by general

solutions to the Fibonacci sequence over 50 independent trials.
Redundant PAM DGP, as was the case for the factorial problem,
outperforms all other algorithms in terms of efficiency of
solutions in generating the series. For the Fibonacci series,
however, the degree to which Redundant PAM DGP outperforms
the other algorithms is more considerable: The lower end of the
interquartile range for Redundant PAM DGP’s output length is
above the top of the interquartile range for all other algorithms. It
was noted that almost all of the solutions found by Traditional GP
were general solutions (41 of 42 solutions); however, we can see

1057

in Figure 8 that Traditional GP achieved a median of only 11
sequence members. This means that Traditional GP was typically
barely able to generate its minimum output length within its
solutions—its solutions are thus not efficient despite their
generality. The median performance of the Standard Adaptive
Mapping and Huffman PAM DGP were also significantly lower
than Redundant PAM DGP, indicating that despite generating
more general solutions, their solutions were also not as efficient.
The longest solution Redundant PAM DGP generated was 42
members of the Fibonacci series, of which there were two distinct
instances. The programs that produced these solutions are given
in Figure 9. As before, any instructions of the individual’s
program that were never reached by the program counter (never
interpreted or executed) are not displayed.

Solution 1: 0 OUT Reg3; 1 ADD Reg0 Reg3;
2 OUT Reg2; 3 ADD Reg2 Reg0; 4 OUT Reg0;
5 OUT Reg2; 6 ADD Reg0 Reg2;
7 J(to 3) using offset -4

Solution 2: 0 ADD Reg2 Reg1; 1 OUT Reg3;
2 OUT Reg0; 3 ADD Reg1 Reg2; 4 OUT Reg2;
5 OUT Reg1; 6 ADD Reg2 Reg1;
7 J(to 3) using offset -4

Figure 9. Program code for the two individuals tied for
producing the longest Fibonacci sequence. Instructions that

constitute the loop are italicized.
In both of these solutions, there is a similar structure and neither
solution includes any intron code in the body of the loop or
otherwise. PAM DGP thus produces intron-free solutions to
factorial and Fibonacci, whereas Huelsbergen’s featured solutions
for both functions in [4] contained introns. Both cases represent
succinct, general recursive programs for generation of the
Fibonacci series. Two of the first three instructions in each of the
solutions establish the two required base case values, and the third
performs a constructive addition instruction. Instructions 3 to 7 in
both solutions comprise the loop that would indefinitely generate
the Fibonacci series (in the absence of an upper limit of execution
steps). Both loops generate two consecutive members of the
series per iteration through a pair of addition and output
instructions. Both of these solutions represent very efficient use
of the available execution steps.

4.3 The Third Order Fibonacci Series
The final function we consider is the third order Fibonacci series
as defined in Equation 5. The equation simply involves summing
the results of the previous three values in the series as opposed to
the classic, second order, Fibonacci series where the previous two
values in the series are summed to determine the current value.
Over 50 trials, neither the Standard Adaptive Mapping nor
Huffman-encoded PAM DGP produced any solutions.
Traditional GP produced only one solution after 460 181 rounds,
and Redundant PAM DGP produced 14 solutions with mean time
of 174 156 rounds (standard deviation of 24 946) and median of
173 320 rounds. The longest tournament for Redundant PAM
DGP even took less time than Traditional GP (325 4440 rounds).
Redundant PAM DGP appears to generate more solutions to a
recursive problem of this order with a higher degree of reliability
than any other algorithm tested. Huelsbergen did not attempt
recursion of this order. Only one general solution was found by

Redundant PAM DGP and generated 25 members of the third
order Fibonacci series within the 100 instruction execution limit.
The program expressing that general solution is given in Figure
10. Only instructions that were executed are displayed, and the
solution contained no introns.

0 OUT Reg0; 1 OUT Reg2; 2 OUT Reg0;
3 ADD Reg3 Reg2; 4 ADD Reg2 Reg0; 5 ADD
Reg0 Reg3; 6 ADD Reg0 Reg3; 7 INC Reg2;
8 OUT Reg2; 9 ADD Reg3 Reg2; 10 OUT Reg3;
11 ADD Reg3 Reg2; 12 J(to 4) using offset-8

Figure 10. Program code for the individual that produced the
longest 3rd order Fibonacci sequence in a general solution.

Instructions that constitute the loop are italicized.
The methodology used by this solution is actually an interesting,
less direct approach than simply adding the previous three values
to generate the value for the current time step. The first four
instructions generate the three required base cases by placing
three 1.0s in the sequence and placing an initial value in Register
3. The loop actually causes repeated pairwise output of the values
in Register 2 and 3 to produce all values following the base cases.
Register 2, in addition to holding values to be output, helps
Register 3 to generate the its next sequence member two values in
advance. That is, if Register 3 has output sequence member nt
(instruction 10), Register 2 adds the last member it output (nt-1) to
Register 3 in instruction 11, and then Register 2 adds the
necessary difference to generate nt+2 (instruction 9) in the
following iteration of the loop just prior to Register 3’s output.
Register 2 generates its next value following output in instruction
8 by having the correct difference to its next value added to it
(instruction 4) from a subresult in Register 0 defined at a previous
iteration of the loop (instructions 5 and 6), along with an
increment in the current iteration (instruction 7). There is an
indirect interwoven relationship among the instructions to create
an innovative solution to the harder regression problem.
Table 1 summarizes results from Sections 4.1 to 4.3. It is evident
that Redundant PAM DGP generates more solutions for the
higher order (2nd and 3rd) recursion problems (total solutions) with
less computation effort than other algorithms (mean evaluations).
Redundant PAM DGP also generates the most efficient general
solutions across all orders of recursion (sequence length).

Table 1. Summary of results over 50 trials for each algorithm.

Algorithm Factorial Fibonacci Fib3

General / Total Solutions, Mean General Sequence Length

Traditional 50/50, 13.1 41/42, 13.2 0/1, N/A

Standard 50/50, 16.0 43/45, 17.8 0/0, N/A

Huffman 50/50, 16.9 42/44, 17.0 0/0, N/A

Redundant 33/33, 19.5 38/46, 27.9 1/14, 25.0

Mean Evaluations to Solution

Traditional 1.67 x 105 4.98 x 105 1.84 x 106

Standard 9.59 x 104 4.89 x 105 N/A

Huffman 8.00 x 104 4.23 x 105 N/A

Redundant 2.72 x 105 2.12 x 105 6.97 x 105

1058

5. FUNCTION SET ANALYSIS
It has been demonstrated empirically in Section 4 that Redundant
PAM DGP produces the most efficient general solutions over the
factorial, Fibonacci, and third order Fibonacci recursive functions
out of the four GP algorithms benchmarked in this work. This
section investigates whether there was an underlying trimming of
the function set to contribute to these quality solutions.
Figure 11 shows the mean distribution of operators within
factorial function solutions for Traditional GP and the two
mapping types in PAM DGP (Standard is dropped for clarity
since it also uses Huffman encoding for function emphasis). It is
statistically significant at the 0.95 confidence interval that
Redundant PAM DGP avoids move, set, negate, subtract, and
divide to a greater degree than all the other algorithms. All of
those operators could be disruptive to the production of the
factorial series which requires repeated multiplication and
addition. Also significant at the 0.95 confidence interval is
Redundant PAM DGP’s emphasis on addition. Moreover, the
five operators most frequently emphasized by Redundant PAM
DGP are all explicitly appropriate for generating the factorial
sequence (multiplication, increment, addition, jump, and output).

1.01E-6

0.00594

0.198

0.376

0.0970

0.0219

0.0489

0.0656

0.635

0.132

0.403

0.599 0.0570

0.3510.0199
0.01362

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ou
t

m
ov se

t

cl
ea

r

in
c

de
c

ne
g

ad
d

su
b

m
ul di
v

cm
p j jl jg je

Operator

Pr
op

or
tio

n
of

 S
ol

ut
io

n

Traditional
Huffman
Redundant

Figure 11. Mean operators as a proportion of total solution
for the factorial sequence over 50 trials. Error bars reflect
two-tailed t-distribution for the 0.95 confidence interval. P-
values correspond to Huffman and Redundant mappings.

The Fibonacci series represented a more difficult (second order)
recursive function, and required only three operators in its natural
recursive form (Equation 4): addition, output, and jump. The
Fibonacci series solutions’ allocation of operators over 50
independent trials is shown below in Figure 12. Redundant PAM
DGP placed a much higher level of emphasis on addition, output,
and increment than the other algorithms (all very useful
instructions for generating the Fibonacci series, and significant at
the 0.95 confidence interval). The fourth most emphasized
operator was the unconditional jump (with other jump variants
close behind), allowing Redundant PAM DGP’s top four operator
choices to include the three required functions for the natural
recursive solution of the Fibonacci series. The other algorithms
failed to create the degree of preferential function emphasis
exhibited by Redundant PAM DGP.

1.43E-05

5.95E-05

0.0245

0.0127

0.326

0.00456

0.017

8.84E-08

0.0935 0.395

0.879

0.00360 0.849

0.0538

0.000165

0.00224

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ou
t

m
ov se

t

cl
ea

r

in
c

de
c

ne
g

ad
d

su
b

m
ul di
v

cm
p j jl jg je

Operator

Pr
op

or
tio

n
of

 S
ol

ut
io

n

Traditional
Huffman
Redundant

Figure 12. Mean operators as a proportion of total solution
for the Fibonacci series over 50 trials. Error bars reflect two-
tailed t-distribution for the 0.95 confidence interval. P-values

correspond to Huffman and Redundant mappings.
The third order Fibonacci series represents the highest order of
recursion investigated in this work. As was the case for the
regular (second order) Fibonacci series, the operators used in the
natural recursive solution are jump, addition, and output. The
allocation of operators over 50 independent trials for the third
order Fibonacci series is shown in Figure 13.

4.04E-15

6.95E-5

0.180

0.0626

0.000496

0.000174

0.00195

2.66E-10

1.21E-5
0.107

0.368
0.000503 0.00364

0.104

0.000333

0.000180

0

0.1

0.2

0.3

0.4

0.5

0.6

ou
t

m
ov se

t

cl
ea

r

in
c

de
c

ne
g

ad
d

su
b

m
ul di
v

cm
p j jl jg je

Operator

Pr
op

or
tio

n
of

 S
ol

ut
io

n

Traditional
Huffman
Redundant

Figure 13. Mean operators as a proportion of total solution
for the 3rd order Fibonacci series over 50 trials. Error bars

reflect two-tailed t-distribution for the 0.95 confidence
interval. P-values correspond to Huffman and Redundant

mappings.

Figure 13 clearly shows that Redundant PAM DGP correctly
emphasizes the addition and output operators in its solutions to a
much greater degree than Traditional GP and Huffman PAM DGP
(significant at the 0.99 confidence interval). It also has a healthy
emphasis of the unconditional jump function (as well as
emphasizing increment, which can also be useful in solution
construction and was actually incorporated in Redundant PAM
DGP’s general solution in the previous section). Traditional GP
and Huffman PAM DGP have a comparatively even distribution
of functions across their solutions. For this problem, where
Redundant PAM DGP produced considerably more solutions than

1059

the other algorithms as shown in the last section, the beneficial
effect of appropriate function emphasis is the most salient.

6. CONCLUSIONS AND FUTURE WORK
We have demonstrated that PAM DGP, through cooperative
coevolution of redundant genetic code mapping and genotype,
produces the most efficient general solutions (longest sequences)
over the factorial, Fibonacci, and third order Fibonacci recursive
functions among all algorithms considered. Furthermore, its best
(most general) solutions for each problem were shown to be
entirely intron-free. Given higher order recursion problems (2nd
and 3rd order Fibonacci), PAM DGP generated the largest
number of solutions and did so more efficiently than any other
algorithm tested. Redundant PAM DGP was also shown to
evolve its genetic code mappings so as to emphasize the operators
useful for general recursive solutions to each function’s sequence.
In future work, potentially more complex recursive problems
from real world domains could be attempted with function sets
consisting of higher level mathematical operators (such as square
root, log, et cetera). Also, these studies relied on a preset limit of
execution steps to terminate recursive loops. In fact, this limit
was indirectly used as a means of roughly measuring semantics:
semantically better solutions generated more correct values prior
to forced termination (and were even found to be intron-free).
Thus, in our search for a semantically good solution from a
generic function set, we turned concern for termination on it head.
Future work could continue to involve measuring semantic
goodness in the same way in a first stage of an algorithm,
followed by providing the semantically best solution’s loop
contents to a higher order function (as described by Yu in [17])
with ensured termination.

7. ACKNOWLEDGEMENTS
We gratefully acknowledge the support of an Izaak Walton
Killam scholarship (G.W.) and CFI New Opportunities and
NSERC research grants (M.H.).

8. REFERENCES
[1] Banzhaf, W. Genotype-Phenotype Mapping and Neutral

Variation. In Parallel Problem Solving from Nature III,
(Jerusalem, Israel, Oct. 9-14, 1994), Springer-Verlag, Berlin,
1994, 322-332.

[2] Brave, S. Evolving recursive programs for tree search. In
Advances in Genetic Programming 2. MIT Press,
Cambridge, MA, 1996, 203-219.

[3] Handley, S. A new class of function sets for solving
sequence problems. In Genetic Programming 1996:
Proceedings of the First Annual Conference, (Stanford,
California, July 18-31, 1996), MIT Press, Cambridge, MA,
1996, 301-308.

[4] Huelsbergen, L. Learning Recursive Sequences via
Evolution of Machine-Language Programs. In Genetic
Programming 1997: Proceedings of the Second International
Conference, (Stanford, California, July 13-16, 1997),
Morgan Kaufman, San Francisco, CA, 1997, 186-194.

[5] Keller, R. and Banzhaf, W. Genetic Programming using
Genotype-Phenotype Mapping from Linear Genomes in
Linear Phenotypes. In Genetic Programming 1996:
Proceedings of the First Annual Conference, (Stanford,

California, July 18-31, 1996), MIT Press, Cambridge, MA,
1996, 116-122.

[6] Keller, R. and Banzhaf, W. The Evolution of Genetic Code
in Genetic Programming. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 1999),
(Orlando, Florida, July 13-17, 1999), Morgan Kaufman, San
Francisco, CA, 1999, 1077-1082.

[7] Keller, R. and Banzhaf, W. Evolution of Genetic Code on a
Hard Problem. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2001), (San
Francisco, California, July 7-11, 2001), Morgan Kaufman,
San Francisco, CA, 2001, 50-56.

[8] Koza, J. Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press, Cambridge, MA, 1994.

[9] Koza, J. Genetic Programming IV: Routine Human-
Competitive Machine Intelligence. Kluwer Academic,
Norwell, MA, 2003.

[10] Margetts, S. and Jones, A. An Adaptive Mapping for
Developmental Genetic Programming. In Proceedings of the
Fourth European Conference on Genetic Programming
(EuroGP 2001) (Lake Como, Italy, April 18-20, 2001),
Springer Verlag, Berlin, 2001, 97-107.

[11] O'Neill, M. and Ryan, C. Grammatical Evolution by
Grammatical Evolution: The Evolution of Grammar and
Genetic Code. In Proceedings of the Seventh European
Conference on Genetic Programming (EuroGP 2004),
(Coimbra, Portugal, April 5-7, 2004), Springer, Berlin, 2004,
138-149.

[12] Whigham, P. Grammatical Bias for Evolutionary Learning.
Ph.D. Thesis, University of New South Wales, Sydney,
Australia, 1996.

[13] Wilson, G. and Heywood, M. Probabilistic Adaptive
Mapping Developmental Genetic Programming (PAM
DGP): A New Developmental Approach. In Proceedings of
the 9th International Conference on Parallel Problem
Solving from Nature (PPSN IX), (Reykjavik, Iceland, Sept.
9-13, 2006), Springer-Verlag, Berlin, 2006, 751-760.

[14] Wilson, G. and Heywood, M. Introducing Probabilistic
Adaptive Mapping Developmental Genetic Programming
with Redundant Mappings. Genetic Programming and
Evolvable Machines (Special Issue on Developmental
Systems), 2007, to appear.

[15] Wong, M. and Leung, K. Evolving recursive functions for
the even-parity problem using genetic programming. In
Advances in Genetic Programming II, MIT Press,
Cambridge, MA, 1996, 222-240.

[16] Wong, M. and Mun, T. Evolving Recursive Programs by
Using Adaptive Grammar Based Genetic Programming.
Genetic Programming and Evolvable Machines, 6, 4 (Dec.
1995) 421-455.

[17] Yu, T. Hierarchical Processing for Evolving Recursive and
Modular Programs Using Higher-Order Functions and
Lamda Abstraction. Genetic Programming and Evolvable
Machines, 2, 4 (Dec. 2001) 345-380.

[18] Yu, T., Polymorphism and Genetic Programming. In
Proceedings of the Fourth European Conference on Genetic
Programming, (Lake Como, Italy, April 18-20, 2001),
Springer-Verlag, Berlin, 2001, 218-231.

1060

