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ABSTRACT
Fault-based testing is often advocated to overcome limitations of
other testing approaches; however it is also recognized as being
expensive. On the other hand, evolutionary algorithms have been
proved suitable for reducing the cost of data generation in the con-
text of coverage based testing. In this paper, we propose a new
evolutionary approach based on ant colony optimization for auto-
matic test input data generation in the context of mutation testing
to reduce the cost of such a test strategy. In our approach the ant
colony optimization algorithm is enhanced by a probability den-
sity estimation technique. We compare our proposal with other
evolutionary algorithms, e.g., Genetic Algorithm. Our preliminary
results on JAVA testbeds show that our approach performed signif-
icantly better than other alternatives.

Categories and Subject Descriptors
D [Software]: Miscellaneous; D.2.5 [Software Engineering]: Test-
ing and Debugging —Testing tools (e.g., data generators, coverage
testing)

General Terms
Algorithms, Experimentation, Languages

Keywords
Test input data generation, Search based testing, Mutation testing,
Ant colony optimization.

1. INTRODUCTION
In many software organizations software testing accounts for

more than 40-50% of the total development costs [23]. Also, test-
ing and test case generation, are among the most manual labor in-
tensive and technically difficult activities in any software project,
so techniques reducing the need for manual intervention will likely
affect project costs.

Indeed, thorough testing is often unfeasible because of the po-
tentially infinite execution space or high cost with respect to tight
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budget limitations. Other techniques such as code inspection are
known to be more effective, but even more costly than testing.
Unfortunately, defects slipped into deployed software may crash
safety or mission critical applications with catastrophic consequences.

Fault-based testing techniques such as mutation analysis and mu-
tation testing are often advocated to overcome limitations of other
testing approaches. Mutation analysis identifies techniques to mu-
tate, i.e., to modify, software artifacts, while mutation testing tests
adequacy criteria based on mutation analysis.

Mutation testing, originally proposed by DeMillo [6] in 1978,
has been studied by numerous researchers. Walsh [30] found em-
pirically that mutation testing is more powerful than statement and
branch coverage. Frankl et al. [7] and Offutt et al. [21] affirm
that mutation testing is more successful in finding faults than data
flow based testing. Andrews et al. show in a recent empirical
study reported in [22] that mutation analysis is potentially useful
to assess and compare test suites and criteria in terms of their cost-
effectiveness. They suggest that mutation analysis can be used to
compare and assess new testing techniques. They also recommend
the adoption of mutation analysis in more practical situations, for
example, when a software development organization needs to em-
pirically determine what levels of coverage are required to attain
acceptable detection rates.

In mutation testing the typical testing situation is somehow re-
versed. It is assumed that a test suite is available together with
mutated copies of the original program. A good test case is one
that kills one or more mutants, for which mutant outputs are dif-
ferent from those of the original program. In this framework, a set
of test cases is considered adequate if it distinguishes the original
program from all its mutants.

In a real world situation, simple faults are injected into the orig-
inal program to obtain faulty versions of the program, the mutants.
Then test input data are produced to attain the highest possible mu-
tation score,i.e., to kill the highest number of mutants. A set of
test cases is more adequate than another if it kills a larger num-
ber of mutants. On the other hand, a test suite is preferred over
others if it contains fewer test cases and is closer to the adequacy
criterion, i.e., has the highest mutation score. Intuitively, mutation
testing promotes high quality test suites and has high potential for
automation.

This paper proposes the use of metaheuristic approaches, more
precisely, ant colonies coupled with mutation analysis to generate
high quality test input data suites. Indeed, mutation testing did not
attain a wide acceptance level mainly due to technical issues of
mutation analysis and test input data generation which has been
considered difficult and resource-intensive.

Several techniques have been developed in the past to try to make
mutation testing and analysis more cost-effective. In general, these
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techniques follow one of three strategies: do fewer, do smarter or
do faster [22]. The “do fewer” strategy looks for ways of generat-
ing and running fewer mutants without losing efficiency; among
them it is worth mentioning selective mutation [17] and mutant
sampling [5, 13]. “do smarter” approaches look for ways to dis-
tribute the expensive computational phases over several machines
or to avoid complete execution. For example, weak mutation [8] is
a strategy belonging to these latter “do smarter” approaches. The
“do faster” based techniques look for ways of generating and run-
ning each mutant as quickly as possible; among them are schema-
based mutation [22] and separate compilation [29]. Automatically
determining which mutants are equivalent [1] is also an important
way to reduce the manual labors and promote the acceptance of
mutation testing.

This paper focuses on automatic test input data generation at-
tempting to alleviate deficiencies of previous approaches. The first
general and implemented attempt to apply mutation analysis to gen-
erate adequate test input data for mutation testing was proposed by
Offutt in his Ph.D. dissertation [18]. The technique is referred to
as Constraint-Based Test data generation technique (CBT) and is
based on the observation that a test case is able to kill a mutant if
it satisfies three conditions. The first condition, called the reacha-
bility condition, states that the mutated statement must be reached.
The second, the necessary condition, requires that the execution
state of the mutant program differs from that of the original pro-
gram after some execution of the mutated statement. The third
condition, called sufficiency condition, requires that the state dif-
ference be propagated to cause incorrect output. The constraint
based satisfaction technique suffers from several drawbacks, partly
due to weakness of the underlying unsophisticated search proce-
dure. To overcome some CBT problems, another technique called
Dynamic Domain Reduction (DDR) was successively developed
by Offutt [19]. The basis is the same as CBT although it uses a
more sophisticated back-tracking search procedure to help bisec-
tion domain-splitting.

While CBT and DDR are based on constraints resolution and in-
put domain splitting, this paper advocates the use of an evolutionary
approach to generate data that kill mutants in the context of muta-
tion testing. In our technique, test input data generation is mapped
into a minimization problem guided by a cost function, a fitness
function inspired by Bottaci [3] proposal. The Bottaci fitness func-
tion is defined in a way that a test case is able to kill a mutant if it
satisfies the same three conditions used by Offutt in CBT, namely,
the reachability, the necessary and the sufficiency conditions.

As stated above, we adopted Ant Colony Optimization (ACO)
as the metaheuristic algorithm to solve the minimization problem.
Two reasons justify our choice. First, evolutionary algorithms have
been proven to be suitable approaches for data generation in the
context of coverage based testing. Second, ACO leads to imple-
ment do smarter approaches in a natural way because ACO intrinsi-
cally allows a parallel search. In our approach ants have the mission
of killing one mutant each time by searching for a test input datum
that satisfies the three Offutt conditions. Furthermore, our ACO
algorithm is enhanced by a probability density estimation process
that automatically guides and refines the search in promising re-
gions.

The main contributions and innovations of this paper are:

• A new evolutionary approach for automatic test input data
generation in the context of mutation testing, which naturally
reduce the computational cost in such a test strategy.

• Exploitation of a new emergent search technique, ACO, to
facilitate input data generation and compare results with Hill

Climbing (HC), Genetic Algorithm (GA) and random search
(RND) on two programs;

• Incorporation of new ideas based on a probability density es-
timation process to automatically refine and guide the search
in promising search regions;

• A customization of ACO to the problem of generating input
test data to kill mutants.

The remainder of this paper is organized as follows: Section 2
will summarize what we consider as related work to our contribu-
tion. Section 3 will introduce notions and concepts used in our ap-
proach. Section 4 will present our customization of the Ant Colony
Optimization to the problem of input data generation in the context
of mutation testing. Section 5 will describe our experiment and re-
sults. In Section 6 we will draw our conclusions and future works.

2. RELATED WORK
In the last two decades due to powerful new computers there has

been a renewed interest in techniques to automatically generate test
data.

Automation of structural coverage criteria and structural testing
have been the most widely investigated subjects. Local search was
first used by Miller and Spooner [16] with the goal of generating
input data to cover particular paths in a program. This work was
later extended by Korel [11]. In brief, to cover a particular path,
the program is initially executed with some arbitrary input. If an
undesired branch is taken, an objective function derived from the
predicate of the desired branch is used to guide the search. The
objective function value, referred to as branch distance, measures
how close the predicate is to being true. The idea of minimizing
such an objective function was refined and extended by several re-
searchers to satisfy coverage criteria of certain given procedural-
program structures like branches, statements, paths, or conditions.

To overcome the limitations associated with local search, Tracey
et al. [26] applied Simulated Annealing (SA) and defined a more
sophisticated objective function for relational predicates. GA, likely
to be the best known evolutionary algorithm that overcomes the
problems of local search, was first used by Xanthakis [33] to gen-
erate input data satisfying the all branch predicate criterion. Evolu-
tionary approaches where search algorithms, and in particular GA,
are tailored to automate and support testing activities i.e., to gen-
erate test input data such as the contributions [31, 9, 27, 32] are
often referred to as evolutionary based software testing or simply
Evolutionary Testing (ET). A survey of ET and related techniques
is beyond the scope of this paper; the interested reader can refer to
the detached survey by Phill Mcminn [14].

Most of the research on ET makes use of some form of Con-
trol Flow Graph (CFG) as the data structure to be manipulated in
order to obtain information guiding test input data generation at
the unit level, typically function or method. A recent contribution
by Tonella [25] has demonstrated ET applicability to the problem
of object-oriented testing, more precisely to unit testing of classes.
The applications of ET to black box testing have been studied by
Tracey et al. [27] and Jones [10]. Tracey et al. used GA and SA
to test the specification conformity of a program written in Pascal.
Jones used search based techniques to generate data from Z speci-
fication.

Generate test data for mutation testing has not attracted a lot
of attention from the ET community. We are aware of only few
works directly pertaining to ET such as Bottaci [3] work. This re-
search defined a fitness function that expresses the cost of satisfying
the three conditions proposed by Offutt in his seminal work [18].
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An other work was achieved by Zhan and Clark [34] in which
they generated test data in the context of mutation testing for Mat-
lab/Simulink models.

As [3] is the first and the sole previous contribution to apply ET
to mutation testing, similarities can be found to the current work.
In particular our objective function was inspired by Bottaci and can
be considered an adaptation of his fitness function.

Since it is a recently proposed search based technique, the first
work dates back to the 90’s, ACO has not been fully investigated
in its application to software testing. The work of McMinn and
Holcombe presented in [15] is a simple initial experiment using
ACO in order to deal with the problem of searching the chaining
tree. More recently Huaizhong et al. [12] used an ACO algorithm
to generate test input sequences in the context of state based testing.

It is the author’s opinion that, there are many new emergent
search based techniques that have not been sufficiently investigated
by the ET community. Our objective here is to demonstrate the fea-
sibility of applying ET to mutation testing by using ACO. It is not
only a new and emergent technique but also intuitively well suited
to the intrinsically parallel nature of the mutants killing problem.

To our knowledge, this is the first work using ACO to generate
test input data for mutation testing.

3. BACKGROUND NOTIONS
In the following subsections we introduce mutation testing and

then summarize key elements such as Bottaci’s fitness function and
algorithms used as “benchmarks” for the evaluation of the proposed
approach.

3.1 Problem Formulation
Let Pg be a program under test and I = (x1, x2, . . . , xk) be the

vector of its input variables. Each input variable xi takes its values
in a domain Di, i = 1, . . . , k, thus, the domain of the program Pg,
without any further knowledge, is the cross product D = D1 ×
D2 . . .×Dk. Further assume that R is a set of mutation operators;
each mutation operator is a representative of a typical programming
error and it produces a single modification in a single program point
giving rise to a mutated version of Pg.

By applying mutation operator r ∈ R to Pg, N mutated copies
M1, M2, . . . , MN of Pg are obtained. In other words, Mi =
ri(Pg) with ri ∈ R, ri the ith, i = 1, . . . , N , a selected mutation
operator that mutates Pg by injecting a simple fault at a statement
sm, called the Pg mutated statement.

The problem of test data generation in the context of mutation
testing consists of finding a set of test input values that maximizes
the number of killed mutants. The essential problem is to find as-
signments of values to input variables (x1, x2, . . . , xk), called test
cases, such that when the test suite is executed over the set of mu-
tants M1, M2, . . . , MN it kills the highest possible number of mu-
tants.

As already mentioned, each mutant Mj , j = 1, . . . , N , is killed
if the three conditions promulgated by Offut [18] are satisfied. The
first condition (the reachability condition) states that mutated state-
ment sm in the mutant Mj must be reached. The second condition
requires the value of the mutated expression, once executed, in the
statement sm to differ from its value before mutation. In other
words, at the mutated statement sm, the state of the mutant is dif-
ferent from the original program’s one. The third condition (the
sufficiency condition) requires the mutated value, i.e., the mutated
state at sm, to propagate to the mutant output. In this paper, we will
collectively refer to these conditions as the killing conditions.

If an input test case t kills a mutant Mj this latter is said to be
killed or killed by t; otherwise Mj is said to be still alive. There-

fore, if T is the set of test cases killing d mutants, the adequacy
of T is assessed by its mutation score MScore(T ) given by the
following formula:

MScore(T ) = 100
d

N − eq

where eq is the number of equivalent mutants i.e., mutants that
cannot be distinguished from Pg. Incidentally, we note that the
equivalent mutants problem is beyond the scope of this paper. In
our study we rely on semi-manual detection of equivalent mutants.

Input variables x1, x2, . . . , xk taking values in D1 × D2 . . . ×
Dk in the present work are assumed to be either integer or real
values. Strings, pointers and more general data structures will be
the subjects of future works.

3.2 Bottaci’s Fitness Function
Bottaci [3] incorporates Offutt’s necessary conditions in a fitness

function to tackle mutation testing from an ET perspective.
In brief, the three conditions are mapped into three cost terms as

follows. The reachability cost for a given test case, computed as
the goal path minus the number of nodes in the longest common
prefix of the test case path and goal path. As explained in [3],
there may be several feasible “goal paths” and it is not important
which one is considered to compute the cost. In the case of identical
costs for two distinct test cases, Bottaci proposes adding to the first
reachability cost component, a second cost component, namely the
cost of satisfying the common failed decision node on the goal path.
The calculation scheme of the second cost is given in [3].

Suppose that mutation changes a condition e into e′ at statement
sm. The necessity cost is quantified as the cost of satisfying the
predicate e 6= e′ by the test case under consideration. This cost is
calculated using the same scheme as the second part of reachability
cost.

3.3 Hill Climbing
Hill Climbing is the simplest and probably best known search

based algorithm. Our goal was to simplify the task of comparison
with ACO. In order to kill a given mutant, HC starts by choosing a
random test case as an initial solution. The quality of the test case is
evaluated by the same fitness function used in ACO and GA; details
of this function are given in Section 4.5. HC attempts to improve
the current test case by moving to better points in a neighborhood
of the current solution. This iterative process continues until a ter-
mination criterion (e.g., mutant is killed or a stagnation criterion)
in not met. The neighborhood of a test case is defined as the set
of test case obtained by modifying the values of one or more input
variables. Such a modification is accomplished by incrementing or
decrementing by a step the value of the input variable.

3.4 Genetic Algorithm
We will compare GA, the most successful metaheuristic search

algorithm used in ET, with our proposed ACO. GA starts by creat-
ing an initial population of n test cases chosen randomly from the
domain D of the program being tested. Each chromosome repre-
sents a test case; genes are values of the input variables. In an iter-
ative process, GA tries to improve the population from one genera-
tion to another. Test cases in a generation are selected according to
their fitness in order to perform reproduction, i.e., crossover and/or
mutation. Then, a new generation is constituted by the l fittest test
cases of the previous generation and the offspring obtained from
crossover and mutation. To keep the population size constant, we
keep only the n best test cases in each new generation. The itera-
tive process continues until a stopping criterion is met(e.g., mutant
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is killed or stagnation criteria). Like the cases of HC and ACO, the
fitness of a test case measures how close it is to killing the mutant
in question (see details in Section 4.5).

In our experiment, crossover was chosen to be the uniform crossover:
in the offspring test case, the value of an input variable xi will be
the value of xi in one of the parent test cases chosen randomly.
Mutation was performed by a random modification of one input
value in the test case. A second alternative of the mutation operator
consists of modifying the test case in a similar way as a in HC; by
moving in the neighborhood of the test case to be mutated.

4. ANT COLONY OPTIMIZATION BASED
APPROACH

4.1 ACO to Generate Test Cases for Mutation
Testing

Similar to other metaheuristic techniques, ACO has to be cus-
tomized to the particular problem under study. We would like to
exploit ants’ foraging behavior to generate test input data, test cases
for short, killing as many mutants as possible. Since each test case
is made up by realizations of input parameters x1, x2, . . . , xk, val-
ues chosen in parameter domains, the ants task is to select good
assignments of parameters values.

Our ACO application can be summarized as follows. Ants start
searching for a test case that kills a given mutant by initially ran-
domly choosing test cases. For each test case chosen by an ant,
the mutant is executed and the quality of the test case is evalu-
ated. Quality is quantified as closeness to satisfy the killing con-
ditions. Then the ant deposits pheromone trail, i.e., marks with
pheromone the values forming the test case. The quantity of de-
posed pheromone is proportional to the test case quality. As in
nature, artificial ants tend to follow pheromone trails. This indirect
communication between ants progressively promotes parameter as-
signments, i.e., test cases, closer to satisfying the killing conditions
and eventually killing the mutant.

The above conceptual description need to be detailed by defining
a representation of the test case generation problem used by ants to
construct test case; a quality measure of the test case, a strategy for
the pheromone update, and finally a moving rule that decides which
direction the ant should deviate, i.e., how the test case parameter
assignment has to be modified.

4.2 Test Input Data Case Construction
Mechanism

The test case generation problem was modeled as a directed graph
Gr(V, E); each vertex in V , the set of vertices, represents an input
parameter xi. Parameter domains are assumed to be finite, numer-
able and quantized with suitable quantization steps a priori known;
thus, domain Di, i = 1, . . . , k is quantized into a set of values
QDi containing |QDi| values.

Nodes are considered ordered and circular. They are ordered by
the relative position in the program parameter list; thus, x2 follows
x1 and precedes x3. They are circular in that the node x1 fol-
lows node xk. For any given vertex xi outgoing edges (incoming
to xi+1) represent all possible assignments to parameter xi from
the quantized domain; thus, there are as many edges between two
consecutive nodes as there are values in the quantized domain Di.

Figure 1 reports an example of such a graph traversed by ants to
construct test cases.

At each iteration, all ants start their trails from the vertex rep-
resenting the parameter x1, complete one tour visiting all vertices,
and then return back to x1. When an ant on vertex xi moves to

…
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21V
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Figure 1: Graph for the solution construction mechanism

the next node xi+1, it chooses an edge (i, j) representing the jth

value, vij ∈ QDi.
At the beginning, an arbitrary order is used by ants to move

from one vertex to the following one. In the following iteration,
the choice of the edge to be traversed depends on the amount of
pheromone accumulated on that edge. The higher the amount, the
higher will be the probability of choosing that edge. When all ants
complete one tour, each one deposits a pheromone amount on the
edges of the traversed path. Each chosen path represents one candi-
date test case generated in the current tour. The process is iterated,
and at each tour more and more adequate test cases are constructed
until a stopping criterion is met.

As described above, the solution construction mechanism as-
sumes that the used graph (see Figure 1) is static, built on quantized
parameter domains QDi; all possible values of the input parame-
ters are pre-determined, listed, and used to build the static graph.
Thus, test cases, the candidate solutions, are derived from simple
combinations of edges. This approach is useful in many real-word
situations where parameters take their values in finite and count-
able sets or in sets that once quantized still represent with sufficient
accuracy the problem domain. Examples can include user interface
testing or sensor data processing with input parameters acquired
from analog-to-digital converters (e.g., audio or video encoding,
industrial process control, etc). Clearly, even if some input fields
are Boolean, as the number of input parameter increases explic-
itly constructing all the possible combination may be unfeasible;
indeed, it may turn out that there are too many combinations to
cover all possible scenarios. In such a situation, the mechanism of
solution construction based on static graph is applied in a straight-
forward manner.

However, other categories of programs require choosing input
values in theoretically continuous or infinite domains. Despite the
fact that the mathematical real number implementation in computer
terms is discrete and finite, it is unfeasible to build a static represen-
tation out of them. Furthermore, it may often be the case that quan-
tization is not acceptable; indeed, it is not very difficult to write
a program where quantization will never produce input test data
killing certain mutants.

Overall, there is the need to derive approaches to deal with con-
tinuous non quantizable parameters. Here it is worth noticing a
major limitation of most techniques for test data generation such
as those using genetic algorithm, with, for example, binary repre-
sentation (as the most flexible representation). Mutation, flipping
bits, or crossover combining chromosomes operate on a quantized
representation with quantized steps.
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Other techniques tackle the problem of exploring continuous ranges
of values by converting them into finite sets. This is achieved, in the
case of the genetic algorithm, by the mutation operator, for which a
kind of static steps are specified to try to better cover ranges of real
parameters [14]. This is not always convenient, especially when the
ranges of possible values are wide. The result is that only a limited
region of the input space is being explored [28].

4.3 Extended Solution Construction
Mechanism

To deal with the problem of better exploring search spaces for
continuous parameters, we need to extend our mechanism of solu-
tion construction, described above, by adding some dynamic com-
ponent. The static model can be thought of as a special ant colony
where ants never deviate from a pre-determined trail, but rather
only choose among a finite set of possible steps. In the real world,
it is true that ants follow a trail but it is also true that each ant fol-
lows its trail which locally may slightly deviate from those of oth-
ers. What is required is a mechanism to make ants slightly deviate
from a given path and thus dynamically build the graph.

An intuitive way to do this is to model the infinite search space
with a dynamic graph, in which edges (i.e., values) appear or dis-
appear according to their probability to produce “good” or “bad”
test cases. Therefore, instead of choosing a value vij (edge on the
graph and value of QDi) based on pheromone information, an ant
generates a new value for each input parameter by sampling a con-
tinuous Probability Density Function (PDF). The details of the PDF
sampling are presented in section 4.4.

In this new approach, the solution construction mechanism builds
an initial test suite by choosing a set of random values from its do-
main Di for each input parameter xi. Then, ants generate a pop-
ulation P of n test cases by randomly exploring this initial search
space.

Here the term “population” is not used in the context of GA but
in the context of statistical learning as a population of individuals,
the most promising test cases, out of which we need to learn the
PDF. Thus, for each input parameter xi, a PDF is “dynamically”
learned from a population P . The size n of the population is a
parameter of our algorithm. Then, if m ants are used in our algo-
rithm, m test cases are generated and added to the population P ,
at each iteration, by sampling PDFs. To keep the population size
constant, we eliminate the m worst test cases from the population.
An iterative process of learning, sampling PDFs, and updating the
population will continue until the subject mutant is killed.

To be consistent with the ACO basic features, during each itera-
tion we could dynamically update a graph by adding and deleting
some edges associated with the newly generated and eliminated
input values. However, since all the pheromone information is sur-
rogated by the PDF that is learned only from the test cases in the
population, we no longer need the graph structure to modify the
pheromone information.

In summary, in this new formulation, the PDF sampling and
the population management will together ensure the transition of
the ants to build test cases and the pheromone update to guide the
search to a promising region in the infinite space.

4.4 Transition Function and Pheromone
Update Strategy

The ant’s task is to assign a value to the input parameter xi by
sampling from a PDF using the population P . Two phases are
needed. First, the PDF of xi is estimated and then a new value is
generated from the estimated distribution. For the first task ants use
a Gaussian kernel PDF which was used by Bosman and Thierens in

their iterative density estimation framework [24] and by Blum and
Socha [2] to train neural network using ant colony. The form of the
PDF G that an ant uses for the input parameter xi is given by the
following equation:

G(x) =

nX
j=1

wjgj(x) =

nX
j=1

wj(
1

σ
√

2π
e
−

(x−µj)2

2σ2
j ), x ∈ <. (1)

where x is a generic input parameter.
The PDF is a weighted sum of n Gaussian functions gj ,j =

1, . . . , n, for which µj and σj are respectively the means and the
standard deviation. The weight wj of gj is calculated as follows:
The test cases are sorted in descending order of quality, i.e., their
closeness to kill the targeted mutant, with the best test case as 1.
Then, the weight wj is evaluated using a Gaussian function given
by the following equation:

wj =
1

qn
√

2π
e
− (j−1)2

2(qn)2 , (2)

The Gaussian has a mean of 1.0 and a standard deviation of qn
where q is a parameter of the algorithm. The reason behind the
choice of a Gaussian form for wj is its ability to flexibly model the
variation of the pheromone intensity over the test cases in the pop-
ulation. In fact, q, a preference parameter, modifies the probability
that top ranked test cases will be selected as a base for the PDF
sampling. Large values of qn make best-ranked test cases strongly
preferred.

Sampling a PDF composed by n distinct Gaussian PDF as de-
fined in equation 1 is not a trivial task. To alleviate computational
costs in [2] the authors propose a two-step process. The first step
consists of choosing one of the Gaussian functions composing the
kernel Gaussian. The probability of choosing the lth component gl

is computed by the following formula:

pl =
wlPn

j=1 wj
.

Then a casino wheel based selection is used. If the ant selects gl, in
its k steps of solution construction, it will use the Gaussian function
associated with the test case of rank l. The second step consists of
sampling the chosen Gaussian gl. This is accomplished by using
a random number generator based on the Box-Muller method [4],
which generates values from a parameterized Gaussian distribution.
For such a sampling, we need to specify the mean µl and the stan-
dard deviation σl. Since the lth test case has been selected, the
mean chosen is value (i.e., vl) of the input parameter being sam-
pled; σl is calculated as the average distance between the chosen
mean and all the values of the input parameter in question:

σl = ρ

nX
j=1

p
(vj − vl)2

n− 1
,

where vj is the value of the input parameter x in the test case of
rank j, and ρ is a parameter of the algorithm that plays the same
role as the pheromone evaporation rate.

4.5 Measure of Test Case Adequacy
Our measure of a test case adequacy is inspired by the fitness

function of Bottaci [3]. However, up to now we only implemented
the reachability component of this adequacy measure. The neces-
sity and sufficiency components will be subjects of a further work.
Given a mutant, the fitness of a test case t is defined as follows:

f(t) =

(
0 if Mutant is killed,

1− 1
2+ReachCost(t)

otherwise.
(3)
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where ReachCost(t) is the cost of reaching the mutated statement,
computed as:

ReachCost(t) = NodDistance(t) + Satis(t, e)

NodDistance(t) is the number of not traversed decision nodes
controlling the mutated statement. Satis(t, e) is the normalized
cost of satisfying the topmost failed decision node (i.e., an expres-
sion e) on which the mutated statement depends.

Depending on the expression of the predicate associated with the
topmost failed decision node, the numerical value of the Satis(t, e)
is determined according to the following schema:

Expression: e Satis(t,e)
a, b are a = b; a ≥ b; abs(a−b)

C
*

a ≤ b

numerical a < b; a > b abs(a−b)+α
C

*
A,B A;¬A;A = B α
are A ∧B Satis(t, A) + Satis(t, B)
boolean A ∨B min(Satis(t, A), Satis(t, B))
* C and α are respectively large and small positive constants.

Table 1: Normalized cost for predicate satisfaction.

5. EXPERIMENTAL RESULTS
In this section, we report results from a preliminary experimental

study carried out to evaluate the performance of our approach for
automatic test input data generation using ACO. The ACO based
approach is compared to three other searching strategies: random
search (RND), HC and GA. In the next subsections, we briefly de-
scribe two Java programs used as a testbed, the fixed hypotheses
and the main experimental steps (see Subsection 5.1). In Subsec-
tion 5.2, we detail the algorithmic settings, and finally, in Subsec-
tion 5.3 we present results and their interpretation.

5.1 Experimental Design
Two programs serve as testbeds in our experiment. The first

one is a triangle classification program (Triangle); triangle clas-
sification is a well-known problem used as a benchmark in many
testing works. This program takes three real inputs representing
the lengths of triangle sides and decides whether the triangle is
irregular, scalene, isosceles or equilateral. The second program,
NextDate, takes a date as three integers, validates it and deter-
mines the date of the next day. The two programs are written
in JAVA. They count respectively 55 and 72 lines of code and
can be downloaded from https://web.soccerlab.polymtl.ca/repos/soccer-
lab/testing-resources/mutation-testing/

Mutants were generated by using the mutation system for Java
developed by Ma, Offutt and Kwon [20] available at
http://ise.gmu.edu/̃ofut/mujava/. Since Triangle and NextDate do not
exhibit object oriented features, mutation was performed via µJava
traditional operators; 94 and 104 mutants were created for Trian-
gle and NextDate program respectively.

To obtain evidence of the superiority of the ACO based approach
we formulated the following hypotheses:

• Null hypothesis H01: There is no significant difference be-
tween the number of killed mutants within ACO approach
and that within each alternative approach, i.e, RND, HC and
GA.

• Alternative hypothesis, H1: Our ACO based approach kills
a number of mutants significantly larger than RND, HC and
GA based algorithms.

• Null hypothesis H02: There is no significant difference be-
tween the cost needed by the ACO approach and that needed
by each alternative approach, i.e, RND, HC and GA.

• Alternative hypothesis, H2: Our ACO based approach is sig-
nificantly more cost-effective than RND, HC and GA based
algorithms.

For H01, the base of comparison is the number of killed mutants
(expressed by the mutation score MScore) and for H02we choose
the numbers of test case evaluation (referred as NbrEvaluation)
needed to achieve the same number of killed mutants.

For each hypothesis, the steps of the experiment consist of run-
ning 10 times RND, HC, GA and ACO in order to kill non-equivalent
mutants derived for each testbed (72 mutants from Triangle and 93
from NextDate). For each algorithm, the mutation score MScore
is recorded as well as the needed number of test case evaluations
NbrEvaluation. In addition, for each mutant killing tentative, the
performances of RND, HC, GA and ACO are recorded in terms of
the number of needed test case evaluations.

Obviously, in order to kill one particular mutant it is not practical
to keep running an algorithm indefinitely. Hence, we fixed a limit
on the maximum number of test case evaluations performed with-
out killing a mutant. This threshold, called MaxNbrEvaluation,
was determined empirically and used by the four algorithms (i.e.,
ACO, RND, HC and GA).

5.2 Algorithmic Settings
The sole common parameter between RND, HC, GA and ACO

is the termination criterion MaxNbrEvaluation. Based on sev-
eral runs, it was observed that if a mutant is not killed with fewer
than 500 test case evaluations, it would not be killable with more
evaluations. Thus MaxNbrEvaluation was set to 500. Other al-
gorithmic settings pertain only to GA and ACO. For GA the elitist
strategy was used; in each iteration, the entire population was re-
placed, except for the 5% fittest individuals (i.e., test cases). The
number of test cases in a generation was 50. The values of pc

(crossover probability) and pm (mutation probability) were set to
0.70 and 0.06 respectively. Our ACO based approach requires four
parameters: the population size was set to 130 to allow for a more
accurate estimation of the PDFs. The number of used ants was
m = 3 as suggested in [2], the pheromone evaporation rate ρ was
set to 85%, and the preference parameter of search regions was set
to 0.028.

5.3 Experimental Results and Interpretation
Equivalent mutants are eliminated semi-manually in two steps:

first we automatically identify the set of non killable mutants by
all the algorithms and then we manually investigate the semantic of
these mutants.

According to the hypotheses being tested, the results of execut-
ing RND, HC, GA and ACO are organized in two groups. The first
one contains for each algorithm the maximum score of mutation
obtained in each run. The second group tracks for each algorithm
the evolution of the score according to the number of performed test
case evaluations. These two groups are recorded for Triangle and
NextDate and summarized in the following figures. As mentioned
above, for each testbed each algorithm was executed over 10 times.
Figure 2 summarizes for each algorithm the first group of results in
the form of box-plots presenting the distributions of the mutation
scores (MScore) obtained for Triangle and NextDate. These box-
plots show that the mutation score attained by ACO is significantly
larger than those obtained by RND, HC and GA. When the perfor-
mance of the algorithms is expressed in term of realized mutation
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Figure 2: Achieved score of mutation by the different compared algorithms: ACO Vs. RND, HC, GA.
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Figure 3: Mutation score evolution according to the number of test case evaluations : ACO Vs. RND, HC, GA.

score, the null hypothesis H01(see Hypothesis H1) is rejected with
a strong evidence (p-value < 0.01 in a pairwise comparison (ACO
vs. GA, HC, RND), for both Triangle and NextDate).

Figure 3 summarizes the second group of results in the form of a
cumulative average plot tracking the evolution of cumulative muta-
tion score (MScore) as a function of the number of test case evalu-
ations. In this plot, the stagnation parameter MaxNbrEvaluation,
i.e, the termination criterion for one mutant killing, was set to 500.
This means that the score does not increase if an algorithm fails
to kill a mutant after 500 test case evaluations. Figure 3 (a) and
(b) show that ACO clearly outperforms all the other algorithms
in terms of attained mutation score as well as in terms of needed
number of test case evaluations. In particular for the Triangle case,
when ACO attained its maximum mutation score 89%, GA, the
best alternative approach, was not able to kill more than, 35%. Ta-
ble 2 shows means and standard deviations of mutation scores by
different algorithms at the ACO maximum score (i.e., after 8248
evaluations in the Triangle case and 11823 evaluations for Next-
Date).

ACO GA HC RND
Triangle 89%(1.5%) 35%(1.5%) 26%(1.4%) 7%(0%)
NextDate 88%(4%) 42%(7.8%) 0%(0%) 0%(0%)

Table 2: Mutation Scores when ACO attains its maximum
score.

Figure 3 shows that with any performed number of test case eval-
uations, the score realized by ACO is clearly better than the scores

attained respectively by GA, HC and RND. To measure the sig-
nificance of the difference between the cost-effectiveness of ACO
and the other algorithms, we assumed that GA, HC and RND could
attain the same score as ACO after a large number of test cases
evaluations (e.g., 50000) and we applied the Kolmogorov-Smirnov
test. This test uses the maximum vertical deviation (the statistic D)
between each two compared curves (ACO-GA, ACO-HC, ACO-
RND). In all the cases the maximum deviation occurred when ACO
attained its maximum score, so the statistic D ranged between 46%
and 80%. Consequently, the p-value is less than 0.01 and the null
hypothesis H02(see alternative Hypothesis H2) is rejected with a
strong evidence.

6. CONCLUSION
We have proposed an evolutionary approach based on ACO to

reduce the cost of test data generation in the context of mutation
testing. Inspired by Bottaci, we defined and implemented a fitness
function that measures how close a test case is to kill a mutant. Our
ACO based approach is enhanced by a probability density estima-
tion technique in order to better guide the search for continuous in-
put parameters. Our preliminary results on two testbeds show that
our enhanced ACO approach performed significantly better than
GA, HC, RND in term of attained mutation score as well as com-
putational cost.

Issues of future research include the extension of our test case
adequacy function to evaluate the costs of the necessary and the
sufficiency conditions to kill a mutant. In order to better evalu-
ate our approach, we will compare it to an enhanced GA that will
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involve the probability density estimation technique. Further im-
provements of our approach will also be achieved by considering
other types of inputs and predicate expressions using strings, arrays
and Booleans.

Finally, further work will focus on applying our approach to pro-
grams developed with other programming languages (e.g., C and
C++), and to other adequacy criteria.
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