One-Test-at-a-Time Heuristic Search for Interaction Test
Suites

Renée C. Bryce
Computer Science
University of Nevada at Las Vegas
Las Vegas, Nevada
reneebryce @cs.unlv.edu

ABSTRACT

Algorithms for the construction of software interaction test
suites have focussed on the special case of pairwise cover-
age; less is known about efficiently constructing test suites
for higher strength coverage. The combinatorial growth of
t-tuples associated with higher strength hinders the efficacy
of interaction testing. Test suites are inherently large, so
testers may not run entire test suites. To address these prob-
lems, we combine a simple greedy algorithm with heuristic
search to construct and dispense one test at a time. Our
algorithm attempts to maximize the number of ¢-tuples cov-
ered by the earliest tests so that if a tester only runs a partial
test suite, they test as many ¢-tuples as possible. Heuristic
search is shown to provide effective methods for achieving
such coverage.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

General Terms

Algorithms, Measurement, Experimentation

Keywords

covering arrays, great flood, heuristic search, hill climbing,
simulated annealing, tabu search, t-way interaction cover-
age, software interaction testing, test suite prioritization

1. INTRODUCTION

Software testing is an expensive but imperfect process.
Software testers often test for defects that they anticipate
while less foreseen defects are overlooked. Systematic ap-
proaches to testing have been suggested to complement cur-
rent testing methods in order to improve rates of fault de-
tection. One such systematic testing technique is software
interaction testing [1, 2, 6, 15, 17, 20, 21, 30].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’07, July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

1082

Charles J. Colbourn
Computer Science
Arizona State University
Tempe, Arizona

colbourn@asu.edu

A software interaction test suite of strength t is an N X k
array with N rows each representing a test, k columns each
representing a factor, and v number of symbols permitted in
each column representing allowed levels of the factor. Each
t-tuple (i.e. selection of ¢ columns, and one of the v levels
for each of the ¢ corresponding factors) occurs at least once.
The size, t, of a tuple is referred to as the strength. Higher
strength is the term when ¢t > 2. Table 1(a) shows four
factors that each have three levels. The factors (fo,f1,f2,
and f3) represent components, or parameters for a system.
The numerical values for levels map to unique options for
the parameters of a system. An exhaustive test suite would
have 81 (= 3*) tests. Pairwise interaction testing tests each
2-way interaction at least once. This requires only 9 tests
as in Table 1(b).

[LAolATrR]/]
110 |3 |6 |9
210 [4 |7 |10
310 5 [8 1
0 [3 |6 |9 411 [3 |8 |10
1 4 |7 |10 511 4 |6 11
2 |5 |8 |11 61 [5 |7 |9
@) 712 [3 |7 |11
812 [4 |8 |9
912 |5 |6 |10
(b)
Table 1: (a) Example system of four components

with three levels each. (b) A
test suite

pairwise interaction

The example provides tests for all pairwise interactions.
Pairwise testing has been useful in several applications (see
[13] and therein). Interaction testing techniques can also
be applied with higher strength interaction coverage. The
most cost-effective value for the strength, ¢, is unknown.
Limited research shows that strength two is often not suf-
ficient and that strengths up to six can be beneficial. For
instance, Kuhn et al. compare reported bugs for the Mozilla
web browser against results of interaction testing [20]. More
than 70% of bugs are identified with 2-way interactions; ap-
proximately 90% of bugs are identified with 3-way interac-
tions; and 95% of errors are detected by 4-way interactions.
This study is one of only a few that evaluates beyond the
special case of pairwise coverage. (Also see [15, 21] for two
other studies on higher strength interaction testing.)

Most studies focus on pairwise coverage. Available tools
work well to construct pairwise test suites, but the results

for higher strength test suites are generally unacceptably
large and take significant time to generate. The problem is
NP-hard (see [4], for example). Pairwise coverage has been
implemented with greedy methods [2, 5, 9, 26, 27|, algebraic
methods [8, 13, 18, 29], constraint programming [19], and
heuristic search [11, 22, 25]. For higher strength, simulated
annealing has reported results for up to 3-way coverage [12];
Combinatorial Test Services (CTS) is implemented for any ¢-
way coverage with results published for up to 4-way coverage
[18]; the Automated Efficient Test Generator (AETG) can
be used for any t-way coverage, but results are reported
for up to 3-way coverage [7]; and mathematical solutions
have been published for any t-way coverage for fixed-level
covering arrays [13]. A genetic algorithm and an ant colony
algorithm are implemented for up to 3-way coverage [24].

1079181 716T5T4T3T211 17313 1170
t=21,320 702 14,520
t=3|18,150 7,722 745,360
t=4|157,773 57,015 |26,646,620
t=5/902,055 312,741 |703,470,768
1=63,416,930 1,250,954(1,301,758,600
i=k| 3,628,800 1,594,323(45,949,729,863,572,200

Table 2: Increase in number of tuples with higher
strength (t) coverage

Generating covering arrays of higher strength consumes
more computational resources and produces inherently larger
solutions than pairwise coverage. Table 2 shows the com-
binatorial growth of tuples for three different combinations
of factors and levels as the strength ¢ increases. The in-
put 3 (read as 13 factors have 3 levels each) includes 702
pairs, 7,722 triples, and reaches over a million 6-tuples. As
the size of the tuples and the numbers of them increase, the
size of test suites grow as well. Coping with this growth
to minimize test suite size within reasonable execution time
has not been well addressed in general. More importantly,
if a test suite is inherently large and a tester can not run the
entire test suite, how should one prioritize tests? This work
proposes a straightforward solution to prioritizing tests. Ar-
guably, the real goal is not to minimize the number of tests
to achieve t-way coverage. Rather it is to generate and dis-
pense one test at a time so that many t-tuples are covered as
early as possible. Then if a tester stops testing at any time,
they nevertheless cover a “large” fraction of the t-tuples.
The trade-off in execution time and test suite size is a se-
rious issue. A tester may prefer quicker turn-around over
a solution that may cover more ¢-tuples, or may be willing
to wait longer for a test while running other tests. There-
fore, we develop a hybrid approach to combine the speed
of a greedy method with the potential improvement in test
suite size from a heuristic search technique. We discuss this
contribution shortly.

In Section 2, we demonstrate that the very natural idea
of first constructing a test suite of small size, and then or-
dering the tests to obtain early coverage of t-tuples, may
not perform as well as the approach that we propose. Sec-
tion 3 describes a hybrid technique to generate tests using a
one-test-at-a-time greedy method and heuristic search. Sec-
tion 4 provides empirical results on the hybrid technique.
In these experiments, our goal is not to identify the best

1083

25000

20000 (.]

15000 | 1

10000 One-test-at-a-time — 1

Combinatorial
5000

No. of uncovered 4-tuples

1000 1500

Test No.

2000

Figure 1: Rate of 4-tuple coverage for input 5.

instantiation of the hybrid technique, but rather to exam-
ine possible instantiations that serve as a proof-of-concept
that the hybrid technique can generate solutions that have a
higher rate of t-tuple coverage than either a greedy or heuris-
tic search algorithm alone. Finally, Section 5 examines the
hybrid technique based on a different greedy algorithm and
Section 6 compares to an exhaustive one-test-at-a-time al-
gorithm.

2. MINIMUM TEST SUITE SIZE OR EARLY
COVERAGE?

Is minimum test suite size strongly correlated with cov-
erage of many t-tuples in the initial tests? If it is, rather
than generating a test suite one test at a time to maximize
early coverage of ¢t-tuples, one could use published methods
to generate a test suite with as few tests as possible, and re-
order the tests to obtain early coverage. However, we show
that smaller test suite size may not support early coverage
of t-tuples, no matter what ordering is chosen.

In order to do this, we first explicitly describe a test suite
with 1100 tests for strength four of type 57 that is smaller
than any previously published test suite for these parame-
ters. The first 600 tests are formed by taking (a,a+b+c+
d,a 4+ 2b+ 4c+ 3d,a + 3b + 4c + 2d,a + 4b + ¢ + 4d, d, d)
for a,b,c,d € {0,1,2,3,4} and either ¢ # 0 or d # O,
with all arithmetic done modulo 5. The last 500 tests are
formed by taking (a,a + b,a + 2b,a + 3b,a + 4b,¢,d) for
a,b,c,d € {0,1,2,3,4} and ¢ # d, with all arithmetic done
modulo 5. It is possible to check that this covers all of the
21,875 4-tuples through exhaustive examination. On the
other hand, a simple greedy one-test-at-a-time algorithm [3]
provides a solution of size 1,222. The ultimate sizes of the
test suites are strikingly different! Figure 1 shows the rate
of 4-tuple coverage for the two test suites. The greedy test
suite appears to be much more effective at covering 4-tuples
early on; whenever the number of tests chosen is between
25 and 1,054, it covers more 4-tuples. After 775 tests, the
greedy method has covered 1,000 more 4-tuples.

Can one reorder the test suite with 1100 tests to improve
coverage of the 4-tuples early? Naturally, trying all 1, 100!
orderings is infeasible. Despite this, we can show that no

ordering of this suite is as good as the much larger greedy
solution. To do this, call a particular 4-tuple private to a test
if the test is the unique one that covers the 4-tuple. Every
test should have at least one private 4-tuple, or the test
can be removed. Often, tests have more than one. Indeed
a simple but lengthy computation shows that of the 1,100
tests, 100 have 25 private 4-tuples each, 500 have 21 each,
and 500 have 10 each. Now consider an arbitrary ordering
of the 1,100 tests. Whenever a test is not in the initial set
of x tests, each of its private 4-tuples must be uncovered.
Hence after the first x tests in this ordering, no more than
21,875—10(1,100—z) —11 max(600—z, 0) —4 max(100—z, 0)
4-tuples can be covered, whatever ordering is chosen. This
bound suffices to show that the greedy test suite covers more
4-tuples than every ordering of the much smaller test suite
whenever 436 < xz < 1,045.

Small test suite size does not ensure early coverage of
tuples, even when the test suite can be reordered arbitrarily.
Indeed, in Section 6, it is shown that the converse also does
not hold: Early coverage does not guarantee the smallest
overall test suites.

One might further suspect that a simple method that se-
lects tests uniformly at random would afford good coverage
among initial tests. However, Figure 1 shows that selection
of tests uniformly at random from the set of all possible tests,
except when very few tests are chosen, is not at all compet-
itive. Because the objective of early coverage diverges from
that of minimum test suite size, and random selection does
not provide a sensible alternative, we treat methods that
generate one test at a time, attempting to choose a best
next test at each step.

3. A HYBRID TECHNIQUE

Although the algorithms developed herein ultimately cover
all ¢t-way interactions, the focus is on covering as many t-
tuples as possible in the earliest tests. Consider the scenario
in which tests are generated on demand. The approach is
straightforward: Use a one-test-at-a-time greedy algorithm
to initialize tests and then apply heuristic search to increase
the number of ¢-tuples in a test. A greedy method can ini-
tialize a test quickly; then heuristic search can attempt to
increase the number of ¢-tuples in a test for as long as time
permits. Indeed, testers may not run an entire test suite, so
rather than spending time to generate an entire test suite,
time may be spent to increase the number of t-tuples covered
in the subset of the test suite that is actually run.

3.1 An algorithm for test initialization

Existing one-test-at-a-time greedy algorithms for construct-
ing covering arrays fall into a framework [5]. With small
modification, this framework can be employed here. The
first portion of Figure 2 shows the greedy component of the
hybrid test generation technique, giving three major deci-
sion points [5]. For each test, a number M of candidate
tests is constructed. The candidate test that covers the
most new t-tuples is chosen. Within the construction of a
single test, factor ordering is the order in which factors
are assigned levels. For each factor, a level selection rule
specifies criteria for assigning a level to a factor.

Any one-test-at-a-time greedy algorithm may be used with
the heuristic search algorithm that we develop. For our pre-
liminary experiments, we use a specific instantiation of the
framework as follows. Only one candidate test is constructed

1084

// Select a test with an n-way greedy algorithm
for M candidate tests
choose an uncovered t-tuple T at random
fix factors of T to the specified values; other factors are free
while a free factor remains
using a factor selection rule select a free factor f
count t-tuples covered containing each level of factor f
use a level selection rule to pick a level ¢ for f
fix factor f to level ¢
end while
end for
store BestTest, the candidate test covering the most new ¢-tuples
// Refine the test using heuristic search
for p iterations do
select a factor at random
select a new level for the factor at random
accept the change according to an acceptance criterion
if the change produces a test that covers the
most t-tuples seen, store it as BestTest
end for
return BestTest

Figure 2: Pseudocode to generate a test - each test is
initialized with a greedy algorithm and refined with
heuristic search.

each time. We begin the construction of a test by selecting
a t-tuple that has not yet been covered. This ensures that
any test that we generate covers at least one previously un-
covered t-tuple. Each remaining factor is assigned a level.
The order in which factors are assigned levels is random. A
factor that has been assigned a level is referred to as fized;
one that hasn’t as free. For each factor, the level that covers
the largest number of previously uncovered t-tuples in rela-
tion to fixed factors is selected. This algorithm is similar to
AETG [10].

3.2 One-test-at-a-time search

The greedy algorithm initializes tests rapidly. For pair-
wise coverage greedy methods can be competitive, yet heuris-
tic search often yields the smallest covering arrays at the cost
of higher execution times [28]. For instance, a comparison of
a greedy method and simulated annealing for limited time
periods shows that simulated annealing often produces the
best results, but typically only after longer execution time
[28].

We apply search to individual tests with hill climbing, sim-
ulated annealing, tabu search, and great flood. All of the
search strategies implemented here have the same goal, to
maximize the number of ¢-tuples covered in a test. Each test
is initially chosen using the greedy algorithm and then mod-
ified using local search. During the search iterations, one
factor is selected at a time using a factor selection rule. Ran-
dom first-order improvement (for factor selection) is used to
diversify the search. For each factor selected, a level is as-
signed using a level selection rule. For each of these possible
tests, neighborhood pruning can be effected by using mul-
tiple candidate tests for each test that is added. Choices
of candidates are avoided here in order to focus on the im-
pact of search iterations. Figure 2 shows pseudocode of this
process which we instantiate using four heuristic search tech-
niques.

3.2.1 Hill climbing
Using hill climbing [23], a test goes through a series of

Greedy HC SA Tabu Flood
No. iterations | No. iterations | No. iterations | No. iterations | No. iterations
Test No. | 0 1,000 1,000 1,000 1,000
25 41,692 41,629 40,719 40,947 40,845
50 29,365 29,460 26,895 27,359 27,007
75 20,497 20,056 16,989 17,634 16,952
100 14,039 13,868 10,165 10,986 10,187
125 9,383 9,364 5,641 6,595 5,724
150 6,271 6,267 2,976 3,795 3,002
175 4,154 4,101 1,453 2,075 1,488
225 1,545 1,592 180 492 214
250 916 932 10 188 13
275 484 523 0 32 0
300 201 252 0 0 0
325 59 81 0 0 0
350 6 12 0 0 0

Table 3: Rate of 4-way coverage for input 3'3.

30000

30000

@ 25000 3 @ @ 25000 f;

3 8 k)

Q Q Q

2 E 2

% 20000 | 5 20000 | 3 20000

o o o

® e ©

© 15000 | S 15000 | S 15000 |

Q o Q

o o o

i= c =

2 10000 | 2 10000 | 2 10000 |

s} o [s}

s s S

Z 5000 | Z 5000 | Z 5000 |

0 . . . o . . e 0 . . St
50 100 150 200 250 300 350 50 100 150 200 250 300 350 50 100 150 200 250 300 350
Test No. Test No. Test No.
(a) 10 iterations (b) 100 iterations (c) 1,000 iterations
Figure 3: Rate of remaining 4-tuples for input 3'3

transformations. A factor and its level are selected at ran-
dom. The cost of the move is measured as the number of
t-tuples not covered in the test. If the cost c(S") < ¢(S), then
the transformation from S to S’ is accepted. We record a
final test that covers at least as many t-tuples as the initial
test.

3.2.2 Simulated Annealing

Simulated annealing applies transformations to single tests.

Factors and their levels are selected at random. To deter-
mine whether to accept the change, the cost is measured
and accepted according to a temperature schedule. The cur-
rent cost is the number of ¢-tuples not covered. If the cost
c(S) < ¢(9’), then the transformation from S to S’ is ac-
cepted. If this inequality is not satisfied, a cooling schedule
is applied. The transformation is accepted with probability
based on a temperature, 7. During the search iterations,
we record the test that covers the largest number of ¢-tuples
and record this best test once the iterations are complete.
This ensures that a final test recorded never covers fewer
t-tuples than the best test encountered during the search it-
erations. Simulated annealing has been applied to generate
covering arrays in [11].

3.2.3 Tabu search

In this implementation of tabu search, transformations are
applied to tests. In a single iteration, we select one factor at
random and a level for it at random. Cost is again the num-
ber of uncovered t-tuples. Moves are only permitted when
not tabu. A tabu move is one that has occurred during the

1085

last T moves, where T is the length of history maintained.
A tabu list of length 7" = 10 is recommended in [22], how-
ever, we experiment with list sizes that are proportional to
the size of the inputs (ie: list sizes are a percentage of the
number of levels for an input). Throughout the transfor-
mations, we record a test that covers the largest number of
t-tuples; at the end of the search iterations, we select this
“best test” encountered. Tabu search has been applied to
generate complete covering arrays in [22, 25].

3.2.4 Great Flood

The Great Flood (or “Great Deluge”) algorithm was in-
troduced in [16]. In our implementation, transformations
are applied to individual rows. In each iteration, a factor
and its level are selected at random. Cost is now the num-
ber of covered t-tuples. Moves are only permitted when
the cost does not fall below a rising threshold. Throughout
the transformations, we record the “best test” encountered
during the search iterations as one that covers the largest
number of ¢-tuples, and ultimately report this test.

4. EXPERIMENTS

Our initial experiments explore two basic questions. Do
increased search iterations improve the rate of t-tuple cover-
age over a greedy algorithm alone? How do the four search
techniques compare?

To address these, we develop a set of experiments that
serve as a proof-of-concept for our hybrid technique. A
greedy algorithm (with one candidate) initially generates
each test. Heuristic search then refines each test using 10,

20000 20000

20000

18000 | 18000 | g 18000 | g
8 16000 - 8 16000 41 8 16000 —
Q Q I, Q f,
2 14000 2 14000 [, 4 2 14000 % §
< < LY <
g 12000 E 12000 \“a_ Random — R g 12000 | =, Random — R
g 10000 g 10000 ’ HC g 10000 HC
5] L o L o L
g 8000 g 8000 sa g 8000 sA
5 6000 5 6000 F ab 5 6000 F b
5 3 abu 5 abu
S 4000 + S 4000 f - S 4000

2000 f 2000 | 1000 2000 | Flood

L L L [T L L L L LR 0 L L L Py
200 400 600 800 1000 1200 200 400 600 800 1000 1200 200 400 600 800 1000 1200
Test No. Test No. Test No.

(a) 10 iterations

(b) 100 iterations

(c) 1,000 iterations

Figure 4: Rate of remaining 4-tuples for input 5°

Greedy HC SA Tabu Flood

No. iterations: | No. iterations: | No. iterations: | No. iterations: | No. iterations:
Test No. | 0 1,000 1,000 1,000 1,000
25 47,357 45,010 44,420 45,049 44,422
50 29,766 25,764 24,625 25,580 24,491
75 19,724 15,485 14,438 15,318 14,340
100 13,143 9,496 8,522 9,425 8,493
150 6,051 3,822 3,029 3,734 3,079
200 2,786 1,510 1,065 1,480 1,059
250 1,146 566 345 543 333
300 376 177 101 151 93
350 96 28 16 11 8

Table 4: Rate of 4-way coverage for

100, or 1,000 iterations. The following heuristic search tech-
niques are initially explored:

1. Hill climbing: If the cost ¢(S") < ¢(S), then the trans-
formation from S to S’ is accepted. This permits side-
ways moves.

. Simulated annealing: We use an initial temperature
of 10% of the total number of levels and the cooling
schedule reduces by 1 degree for every 10% of the num-
ber of iterations specified. Fewer iterations mean faster
cooling. At the end of the search iterations, the best
test encountered is dispensed.

. Tabu search: Tabu lists have size equal to 25% of the
number of levels. The tabu list does not always include
an even distribution of levels for all factors.

. Great flood: The rising threshold is 90% of the best so-
lution encountered after the first iteration, and raises
at a period of once every 10% of the number of itera-
tions. The increases are to 95%, 98%, 99%, and 100%.
We incorporate a tabu list of size 25% of the total num-
ber of levels. Larger inputs maintain longer tabu lists.
As before, the best test encountered is dispensed.

In our experiments, we use two inputs that have factors
with equal numbers of levels and two inputs have mixed
numbers of levels. These inputs include: 57, 312, 21933425!,
and 10'9'8'716'51413'2 1. The experiments are run five
times each and we report the average of the runs. We cau-
tion the reader that we change the starting points for the
x-axis when we graph the results in the experiments to em-
phasize the differences in the results.

1086

input 21933425,

Results for input 3! in Figure 3 and Table 3 show that
increased search iterations appear to improve the rate of ¢-
tuple coverage. Simulated annealing has the fastest rate of
t-tuple coverage among the four search techniques, followed
by the great flood. Tabu search has the slowest rate of
coverage, followed by hill climbing.

Figure 4 shows the number of uncovered 4-tuples for in-
put 57, along with the rate of 4-tuple coverage from tests
generated at random. The tests from the hybrid algorithms
cover all 4-tuples in approximately 1,200 tests. Increased
search iterations appear to improve the rate of 4-tuple cov-
erage for all four search instantiations. Simulated annealing
often produces the quickest rate of 4-tuple coverage. Tabu
search generally produces the slowest rate of coverage with
10 or 100 search iterations. However, when 1,000 iterations
are applied, tabu search ties simulated annealing or pro-
duces a slightly faster rate of 4-tuple coverage during the
first 300 tests. Beyond the 300%" test, simulated annealing
is the most competitive with 1,000 iterations. When 1,000
search iterations are applied, all four techniques maintain
the same rate of 4-tuple coverage for the first 100 tests.

Table 4 shows 4-tuple coverage for input 2'°3%425! and
1,000 iterations of each search technique. The first column
reports the average results of running the greedy algorithm
with no search iterations five times. The next four columns
report results for each of the heuristic search techniques.
The great flood algorithm often produces the fastest rate
of t-tuple coverage, followed by simulated annealing. Hill
climbing has the slowest rate of 4-tuple coverage with 1,000
iterations. Not shown in the graphs here, all four search
techniques improve the rate of 4-tuple coverage when 10
or 100 iterations are applied. Simulated annealing generally
has the fastest rate of coverage when 10 or 100 iterations are

70000

70000

70000

0 — 0 — 0 —
60000 - 60000 — 60000
38 10 3 i 10 8 k 10
5 50000 | 100 S 50000 | % 100 S 50000 100
< < <
8 40000 | 1000 B 40000 1000 B 40000 1000
2 2 2
8 130000 - 8 30000 8 30000
g g 2
£l El El
5 20000 f 5 20000 5 20000
e E s
10000 | 10000 10000
. . e 0 oy
1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
Test No. Test No. Test No.
(a) Hill climb. (b) Simulated annealing. (c) Tabu.
70000 70000
0 — HC —
60000 — 60000
8 i 10 3 %. SA
5 50000 | * 100 S 50000 | Tabu
< +
B 40000 1000 8 40000 Flood
o o V%,
2 $
8 30000 3 30000 Sy,
g g
5 N S
5 20000 S 20000
s E
10000 10000
0 0 B
1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
Test No. Test No.
(d) Flood. (e) Comparison (100 iterations).

Figure 5: Rate of 4-tuple coverage for input 10'9'8'7'6!54!3!2!1! with 0, 100, and 1,000 search iterations.

applied, Tabu search has the worst rate of 4-tuple coverage
when 10 or 100 iterations are applied. Hill climbing and
Great Flood are between these two.

Results for input 10'9'8'7'6'5'4'3'2'1! in Figure 5 in-
dicate that all four heuristic search techniques improve the
rate of 4-tuple coverage. More iterations improve results.
When only 10 search iterations are applied, simulated an-
nealing and great flood produce the best results. With 10
search iterations, hill climbing has the slowest rate of 4-tuple
coverage in the first 650 tests and tabu search has the slow-
est rate of coverage for the remaining tests. In the case
of 100 iterations, simulated annealing has the fastest rate
of 4-tuple coverage and tabu search has the slowest rate of
coverage. Finally, with 1,000 search iterations, tabu search
and hill climbing alternate in producing the slowest rate of
coverage.

Each of the search techniques improve the greedy result.
However, this improvement costs execution time. Table 5
shows the average time in seconds to generate single tests
for the experiments run on a SunBlade 5000 machine. To
compute the average time per test, we generate full test
suites and divide the time by the number of tests. Having
amortized the initialization time across all tests, the time
to generate each individual test is impacted in a small way.
However, the initialization time is relatively small. We do
not report the time to generate entire test suites here since
our goal is not necessarily to run an entire test suite. How-
ever, for a full test suite, increased iterations can increase or
decrease execution time. Shorter overall execution time can
arise when more iterations result in fewer tests.

5. USING THE DENSITY ALGORITHM
The Density Algorithm (DA) is a one-test-at-a-time greedy
algorithm that appears to produce smaller size covering ar-
rays than the greedy algorithm here [4]. We run the experi-
ments again using DA to initialize tests to examine whether
it also benefits from the search techniques. Figure 6 shows

14000 —8 ————————————
DA 0 iterations —
» 12000 E 1
@ HC
S 10000 | SA o
<
8 8000 f
[
>
8 6000
c
=)
S 4000 |
s
2000
L L L L L L P

0 ;
300 400 500 600 700 800 900 1000 1100 1200
Test No.

Figure 6: Rate of 4-tuple coverage for input 57 using
the Density Algorithm and 4 search techniques.

that the heuristic search techniques also improve the rate of
t-tuple coverage when tests are initialized with DA. How-
ever, the density algorithm produces a faster rate of ¢-tuple
coverage than those earlier.

6. TEST SELECTION FROM EXHAUSTIVE
CANDIDATES

At the outset, Figure 1 showed that a greedy method
can produce better rates of coverage than a combinatorial
method leading to a smaller complete test suite (that covers
all 4-tuples). Later in Figure 4, our hybrid approach further
improves the rate of coverage, but it nonetheless does not
produce the smallest test suite. One may therefore hope
that better heuristic search can both achieve fast coverage
and produce smallest test suites. This raises a question:
Can a one-test-at-a-time approach result in smallest size test
suites?

To assess this, we first consider the input 28. We enumer-

1087

1200 ;

1100
3
< 1000
2
<+ 900
e
© 800
2
g 700
c
2 600
o
S 500
P4
400
MaX
300 L L L L L L
5 10 15 20 25 30 35
Test No.
(a) 2°

No. of uncovered 4-tuples

4000 ; . .

3800

3600

3400

3200

3000

2800 | 7~

‘ Max
350

2600 : :
200 250 300

Test No.
(b) 4°

400

Figure 7: The minimum, average, and maximum rate of 4-tuple coverage from a one-test-at-a-time exhaustive

algorithm.
No. of HC | SA Tabu | Flood
iterations
210334251 10 0.06 [0.06 [0.13 [0.13
210334251 100 0.21 | 021 [026 | 0.24
210334251 1,000 1.73 173 1.63 | 1.34
107987161 | 10 0.03]0.03]0.05 [0.05
541319111
109187716 | 100 0.05 | 0.05 | 0.06 | 0.06
5t413t911!
107978716 | 1,000 0.26 | 0.26 | 0.24 | 0.19
5141312111
313 10 0.03 [0.03 | 0.07 [0.07
313 100 0.09 [0.09 | 0.13 [0.12
313 1,000 0.69 | 0.69 | 0.68 | 0.58
57 10 0.00 [0.00 [0.00 [0.00
57 100 0.01 | 0.01 | 0.01 | 0.01
57 1,000 0.04 | 0.04 | 0.03 | 0.03

Table 5: Execution time per test (in seconds) using
simulated annealing, tabu search, and great flood
with 10, 100, and 1,000 search iterations.

ate all of the 28 possible tests and repeatedly select one that
covers the largest number of uncovered t-tuples. We break
ties uniformly at random. The construction of a test suite
is repeated 100 times for input 2°. Figure 7(a) shows the
minimum, average, and maximum number of 4-tuples cov-
ered. The smallest known test suite for this input and 4-way
coverage is 24 [14]. The ultimate size of our test suites here
vary from 31 to 37.

For input 4%, the first 88 tests cover the same minimum,
average, and maximum number of 4-tuples. After this, the
results differ. The ultimate sizes range from 408 to 425 tests.

Comparing to the best known results [14], any one-test-
at-a-time approach that attempts to maximize (or indeed,
maximizes) the number of ¢-tuples covered in tests may not
produce the smallest test suite. It appears that improv-
ing rate of coverage is essentially different from generating
small test suites. In retrospect, the inability of the hybrid
approach to produce smallest test suites is not surprising,
when even optimal selections of each row do not achieve
minimum test suites. We reiterate that this is not the prob-
lem addressed; rather rate of coverage is the major concern.

7. CONCLUSIONS

Interaction testing provides a systematic approach to test-
ing. The higher the strength of interaction coverage, the
closer the testing is to exhaustive. However, higher strength
testing is constrained by testing resources. Smaller sized test
suites are only of full value when testers run all tests, yet
testing budgets can prevent this. To address this, a one-test-
at-a-time approach is introduced to cover more t-way inter-
actions in earlier tests. Then while a tester is running other
tests, heuristic search techniques attempt to cover more in-
teractions in tests being constructed. A one-test-at-a-time
greedy algorithm augmented with heuristic search is used
to generate tests that have a high rate of t-tuple coverage.
This approach combines the speed of greedy methods with
the slower but more accurate heuristic search techniques.
The hybrid approach seems to have a more rapid conver-
gence of t-tuple coverage than either greedy or heuristic
search alone. Among four heuristic search techniques ex-
amined, hill-climbing is effective only when time is severely
constrained, but tabu search, simulated annealing, and the
great flood make worthwhile further improvements over a
longer time. While intended for testers who only run a par-
tial test suite, we also compare the results to an algorithm
that focusses on generating “small” test suites (that are in-
tended to be run to completion). The striking conclusion is
that smallest test suites do not ensure rapid coverage and
that rapid coverage does not lead to smallest test suites.
Indeed the algorithms focus on two different goals, each ad-
dressing a genuine need in practical testing.

8. REFERENCES

[1] R. C. Bryce, Y. Chen, and C. J. Colbourn. Biased
covering arrays for progressive ranking and
composition of web services. International Journal of
Simulation and Process Modeling, to appear.

R. C. Bryce and C. J. Colbourn. Prioritized
interaction testing for pairwise coverage with seeding
and avoids. Information and Software Technology
Journal (IST, Elsevier), 40(10):960-970, Oct. 2006.
R. C. Bryce and C. J. Colbourn. A density-based
greedy algorithm for higher strength covering arrays.
submitted for review.

1088

[4]

[5]

[9]

R. C. Bryce and C. J. Colbourn. The density
algorithm for pairwise interaction testing. Journal of
Software Testing, Verification, and Reliability, to
appear.

R. C. Bryce, C. J. Colbourn, and M. B. Cohen. A
framework of greedy methods for constructing
interaction tests. In Intl. Conference on Software
Engineering (ICSE), pages 146-155, May 2005.

K. Burr and W. Young. Combinatorial test techniques:
Table-based automation, test generation, and code
coverage. In Intl. Conference on Software Testing
Analysis and Review, pages 503—-513, Oct. 1998.

M. Chateauneuf and D. L. Kreher. On the state of
strength-three covering arrays. J. Combin. Des.,
10(4):217-238, 2002.

C. Cheng, A. Dumitrescu, and P. Schroeder.
Generating small combinatorial test suites to cover
input-output relationships. In Intl. Conference on
Quality Software (QSIC), pages 76-82, Nov. 2003.
D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: an approach to testing
based on combinatorial design. IEEE Trans. on
Software Engineering, 23(7):437-44, Oct. 1997.

D. M. Cohen, S. R. Dalal, J. Parelius, and G. C.
Patton. The combinatorial design approach to
automatic test generation. IEEE Software,
13(5):82-88, Oct. 1996.

M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and
W. B. Mugridge. Constructing test suites for
interaction testing. In Intl. Conference on Software
Engineering (ICSE), pages 28-48, May 2003.

M. B. Cohen, C. J. Colbourn, and A. C. H. Ling.
Constructing strength three covering arrays with
augmented annealing. Discrete Mathematics, to
appear.

C. J. Colbourn. Combinatorial aspects of covering
arrays. Le Matematiche (Catania), 58:121-167, 2004.
C. J. Colbourn. Covering array tables, July 2006.
public.asu.edu/~ccolbou/src/tabby/catable.html,
accessed on January 15, 2007.

S. R. Dalal, A. Karunanithi, J. Leaton, G. Patton,
and B. M. Horowitz. Model-based testing in practice.
In Intl. Conference on Software Engineering,(ICSE),
pages 285-294, May 1999.

G. Dueck. New optimization heuristics - the great
deluge algorithm and the record-to-record travel.
Journal of Computational Physics, 104(1):86-92, Jan.
1993.

S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L.
Mallows, and A. Tannino. Applying design of
experiments to software testing. In Intl. Conference on
Software Engineering, pages 205-215, Oct. 1997.

1089

(18]

(19]

20]

21]

(22]

23]

[24]

A. Hartman and L. Raskin. Problems and algorithms
for covering arrays. Discrete Math., 284(1-3):149-156,
Jul. 2004.

B. Hnich, S. Prestwich, and E. Selensky.
Constraint-based approaches to the covering test
problem. Lecture Notes in Computer Science,
3419(1):172-186, Mar. 2005.

D. Kuhn and M. Reilly. An investigation of the
applicability of design of experiments to software
testing. In 27" Annual NASA Goddard/IEEE
Software Engineering Workshop, pages 91-95, Oct.
2002.

D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software
testing. IEEE Trans. on Software Engineering,
30(6):418-421, Oct. 2004.

K. Nurmela. Upper bounds for covering arrays by
tabu search. Discrete Applied Math., 138(9):143-152,
Mar. 2004.

Stuart Russell and Peter Norvig. Artificial
Intelligence: A Modern Approach. Prentice-Hall,
Chapter 4, 1995.

Toshiaki Shiba, Tatsuhiro Tsuchiya, and Tohru
Kikuno. Using artificial life techniques to generate test
cases for combinatorial testing. In Intl. Conference on
Computer Software and Applications Conference
(COMPSAC), pages 72-77, Sep. 2004.

J. Stardom. Metaheuristics and the search for covering
and packing arrays. Masters thesis, Simon Fraser
University, 2001.

K.C. Tai and Y. Lei. A test generation strategy for
pairwise testing. IEEE Trans. on Software
Engineering, 28(1):109-111, Jan. 2002.

Y.W. Tung and W.S. Aldiwan. Automating test case
generation for the new generation mission software
system. In IEEE Aerospace Conference, pages 431-37,
Mar. 2000.

R. C. Turban. Algorithms for covering arrays. Ph.D.
Thesis, Arizona State University, Department of
Computer Science and Engineering, May 2006.

A. W. Williams. Determination of test configurations
for pair-wise interaction coverage. Testing of
communicating systems: Tools and techniques. In Intl.
Conference on Testing Communicating Systems, pages
59-74, Oct. 2000.

C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterization in complex
configuration spaces. IEEE Transactions on Software
Engineering, 31(1):20-34, Jan. 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

