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ABSTRACT 
The shaky ladder hyperplane-defined functions (sl-hdfs) are a test 
suite utilized for exploring the behavior of the genetic algorithm 
(GA) in dynamic environments. This test suite can generate 
arbitrary problems with similar levels of difficulty and it provides 
a platform for systematic controlled observations of the GA in 
dynamic environments. Previous work has found two factors that 
contribute to the GA’s success on sl-hdfs: (1) short initial building 
blocks and (2) significantly changing the reward structure during 
fitness landscape changes. Therefore a test function that combines 
these two features should facilitate even better GA performance. 
This has led to the construction of a new sl-hdf variant, “Defined 
Cliffs,” in which we combine short elementary building blocks 
with sharp transitions in the environment. We examine this 
variant with two different levels of dynamics, static and regularly 
changing, using four different metrics. The results show superior 
GA performance on the Defined Cliffs over all previous variants 
(Cliffs, Weight, and Smooth). Our observations and conclusions 
in this variant further the understanding of the GA in dynamic 
environments. 

Categories and Subject Descriptors 
F.2. [Analysis of Algorithms]: Misc. I.2.8 [Artificial Intelligence]: 
Search  

General Terms 
Algorithms  

Keywords 
Genetic Algorithms, Dynamic Environments, Shaky Ladder 
Hyperplane-Defined Functions, Building Blocks 

1. INTRODUCTION 
To facilitate controlled observations on the GA in dynamic 
environments, a test suite of problems is necessary.  A test suite 
allows us to control the inputs to the system and define metrics 
for the outputs. Moreover, the more parameters of the system (e.g. 
time and severity of shakes, difficulty of the problem) that are 
controllable, the easier it is to test explanations for the observed 
behavior. The test functions that we use to explore the GA in 
dynamic environments, the shaky ladder hyperplane-defined 
functions (sl-hdfs) [3], are a subset of the hdfs [2]. Holland 
created these functions in part to meet criteria developed by 
Whitley [9]. Other test suites for EAs in dynamic environments 
exist, such as the dynamic knapsack problem, the moving peaks 
problem and more [1], but these other suites are primarily 
concerned with comparing absolute performance of different EA 
variants. The hdfs, on the other hand, are designed to represent 
the way the GA searches by combining building blocks, and thus 
are well suited for understanding the operation of the GA [4] [5] 
[6] [8]. Previously, work on sl-hdfs [4] [5] [6], has presented three 
ways of constructing the sl-hdfs (called “variants”) by 
manipulating the way building blocks are constructed, combined, 
and changed. These different variants were called the Cliffs, 
Weight, and Smooth variants. Here we introduce a new variant 
which we call Defined Cliffs. This variant has defined short 
building blocks but combines them in complex and unrestricted 
ways. We begin by reviewing the sl-hdfs and the previous three 
variants. We then describe the new variant, and compare it to the 
previous variants using a variety of measurements. We examine 
the behavior of the GA on this new variant, discuss the results and 
draw some conclusions. 

2. SHAKY LADDER HYPERPLANE-
DEFINED FUNCTIONS AND VARIANTS 
In this section we describe the sl-hdfs and the variants we will be 
exploring. For an in-depth explanation of the construction of the 
sl-hdfs see [6]. As mentioned, the sl-hdfs are a subset of 
Holland’s hdfs [2], however, to make the hdfs usable as a test 
platform in dynamic environments we place three restrictions on 
the hdfs: (1) The Unique Position Condition (UPC), which 
requires that all elementary schemata contain no conflicting bits; 
(2) The Unified Solution Condition (USC), which guarantees that 
all of the specified bits in the positive-valued elementary level 
schemata must be present in the highest level schema, and that all 
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intermediate schema are a composition of lower level schema; 
and (3) The Limited Pothole Cost Condition (LPCC), which states 
that the fitness contribution of any pothole plus the sum of the 
fitness contributions of all the building blocks in conflict with that 
pothole must be greater than zero. These three conditions 
guarantee that any string that matches the highest level schema 
must be optimally valued. Moreover it gives us an easy way to 
create a similar but different sl-hdf by changing the intermediate 
building blocks. This process of changing schemata is referred to 
as “shaking the ladder” [3].  Shaking the ladder changes the 
intermediate schemata which alters the reward structure that 
defines the fitness landscape. The three restrictions allow us to 
transform the full class of hdfs into a distinct but similar class that 
is better suited for exploring the behavior of the GA on dynamic 
environments.  
There are many parameters that control the construction of the sl-
hdfs. One parameter is the elementary schemata length (l) which 
is the distance between fixed bits in the elementary schemata. For 
the Cliffs and Smooth variants the elementary schemata length is 
not specified. When the elementary schemata length is not 
specified the fixed bit locations are chosen from the whole string 
using a uniform random process. When the length of the 
elementary schemata is unspecified, on average the length of 
these schemata will be large, approaching the length of the string. 
For the Weight variant, the elementary schemata length is set to l 
= ls/10 = 50, where ls is the overall length of the string. This 
relationship is based on Holland’s work [2].  
To create the schemata we need to specify the weight that each 
schema contributes to the overall fitness function. Two 
parameters, mean and variance of the schemata weight, are used 
to specify the normal distribution from which the weight for each 
intermediate schemata is drawn. In all of the experiments 
described herein, the weight of the elementary schemata (2), 
potholes (1) and highest level schema (3) remains unchanged. In 
the Cliffs and Smooth variants, the weight of the intermediate 
schemata is also held constant at 3. However in the Weight 
variant the weight of each intermediate schema is drawn from a 
normal distribution with mean of 3, and variance of 1.  
In the sl-hdf there are three groups of schemata held constant: the 
elementary schemata, the potholes, and the highest level schema. 
The fourth set of schemata, the intermediate schemata, is the only 
group of schemata that changes. Thus the intermediate schemata 
can either be constructed out of any of the fixed groups of 
schemata, which we call the “unrestricted” construction method, 
or the intermediate schemata can be constructed out of just the 
elementary schemata, which we called the “restricted” 
construction method.  This second method is more similar to 
Holland’s original description [2]. The unrestricted construction 
method is used in the Cliffs variant, while the restricted method is 
used in the other two variants previously examined (Smooth and 
Weight). 
The schemata utilized for construction of the next level of 
intermediate schemata are selected randomly (“random” 
construction method) or from a prescribed order from the 
previous level (“neighbor” construction method). The random 
construction method creates new intermediate schemata at level n, 
by randomly choosing without replacement two schemata from 
level n - 1 and combining them. In the neighbor construction 
method, all of the schemata at level n - 1 are sorted by the 

location of their centers. The first two schemata that are next to 
each other in this sorted list are combined, and then the next two, 
until all pairs have been combined. If the random construction 
routine has been used then when the ladder shakes, all of the 
intermediate schemata are destroyed and new ones are created by 
randomly combining the lower level schemata to create the 
intermediate schemata, and weights are assigned by drawing from 
the distribution specified by the intermediate weight mean and 
variance. If the neighbor construction routine is specified, then the 
intermediate schemata are left alone and instead new weights are 
drawn and replace the weights associated with the already extant 
intermediate schemata. Thus when the neighbor construction 
routine is used the only thing that changes during the shakes of 
the ladder is the weights, and therefore this is called “shaking by 
weight.” When the random construction routine is used then the 
whole form of the ladder changes and thus this is called “shaking 
by form.”     
In summary, the three variants from previous studies are: 
1. The Cliffs variant which utilizes the most diverse and 

unrestrained set of building blocks in creating the 
intermediate schemata (the unrestricted, random method with 
unspecified string length). When creating a new intermediate 
schema using the unrestricted method, all of the previous 
level schemata, plus the potholes, and the highest level 
schema can be used to generate the new schemata. This has 
the effect of introducing ”cliffs” into the landscape.  These 
cliffs arise because it is possible to create schemata that have 
a disproportionate reward (by combining with the highest 
level schema) and to create schemata that cover up a pothole 
temporarily so that when the ladder shakes dramatic changes 
in fitness occur. 

2. The Smooth variant uses the restricted, random intermediate 
schemata construction method, and the intermediate 
schemata having unspecified string length. There are not as 
many sharp transitions in this landscape as the Cliffs variant. 

3. The Weight variant uses the neighbor, restricted intermediate 
construction technique, and the elementary building blocks 
have a specified length. This variant most closely resembles 
the hdf construction routine described by Holland.  

For more detailed descriptions of these variants see [7]. The main 
differences between these variants are detailed in Table 1. 
Previous work with these variants has shown that the GA 
performs better in dynamic environments than in static 
environments [3]. Also the GA performs better when transitions 
are abrupt (Cliffs) as opposed to those where the environment 
contains smooth transitions (Smooth and Weight) [7]. In the 
Smooth and Weight variants, in both the static case and the 
dynamic case, the GA becomes stuck on local optima. However, 
the Weight landscape since it has short elementary building 
blocks results in rapid progress in the early generations of a GA 
run before premature convergence sets in. 

3. THE DEFINED CLIFFS VARIANT 
Two observations of the GA’s behavior on the sl-hdfs that have 
been described before are (1) the sl-hdfs’ short elementary 
schemata lead to rapid performance increase early on relative to 
sl-hdfs built from longer schemata, and (2) the unrestricted 
construction method with shaking by form (e.g. the Cliffs variant) 
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allows for an increase in performance because it prevents 
premature convergence. These two observations have lead us to 
construct a new sl-hdf variant, “Defined Cliffs,” in which we 
combine short elementary building blocks with the unrestricted 
construction method and shaking by form method.  

In the Defined Cliffs the term “Defined” comes from the fact that 
the elementary schemata length is set to a defined length, and the 
term “Cliffs” comes from the fact that all other parameters are set 
similar to those in the Cliffs variant.  Most importantly the 
unrestricted construction technique and shaking by form are 
utilized. In the Defined Cliffs variant the intermediate schemata 
are constructed by an unrestricted construction method, from any 
of the fixed groups of schemata, rather than just the elementary 
schemata. When creating a new intermediate schema using the 
unrestricted method, all of the previous level schemata, plus the 
potholes, and the highest level schema can be used to generate the 
new schema. Because the combination of any schemata and the 
highest level schema is the highest level schema, many 
intermediate schemata are replaced by copies of the highest level 
schema. As a result any string which matches the highest level 

schema will have a much higher value relative to the other strings 
than it does in the other variants. In addition an elementary 
schema can be combined with potholes to create a new 
intermediate schema, which matches the pothole, but has a 
positive reward associated with it.  However, since intermediate 
schemata are changed at every shake of the ladder, this positive 
reward is only temporary.  When the ladder shakes this reward 
will be removed and any individual using that schemata will 
receive a penalty for the pothole that was “covered up” before.  It 
is these two effects that make the Cliffs environment’s changes 
more abrupt. 

In the Defined Cliffs variant the schemata utilized for 
constructing the next level of intermediate schemata are selected 
randomly. When the ladder shakes (shaking by form) all the 
intermediate schemata are destroyed and new ones are created. 
The variance of intermediate schemata weights is set to 0 and the 
mean of the intermediate schemata weight is 3. The elementary 
schemata length is set to the defined length l = ls  / 10 = 50 where 
ls is the over all length of the string in our case 500.  

 
Table 1. sl-hdf variants and GA Parameters 

Parameter Cliffs  Smooth  Weight  Defined Cliffs 

Population size 1000 

Mutation Rate 0.001 

Crossover Rate 0.7 

Generations 1800 

String length 500 

Selection Type Tournament , size 3 

Number Elementary schemata 50 

Elementary Schemata Order 8 

Elementary Schemata length undefined undefined 50 50 

Mean, Variance of Int. 
schemata 

3, 0 3, 0 3, 1 3, 0 

Intermediate Construction 
Method 

unrestricted   
random 

restricted 
random 

restricted 
neighbor 

unrestricted 
random 

tδ 100, 1801 

Number of Runs 30 

 

 

4. EXPERIMENT AND RESULTS 
The basic setup for our experiments is a simple GA using the sl-
hdf as its fitness function. The base GA presented here uses one-
point crossover, per bit mutation, and full population 
replacement. The GA performance is studied at tδ = 100, and tδ 
= 1801. tδ  controls the number of generations between changes 
in the sl-hdf. tδ = 1801 represents a static environment, since the 
runs we will be presenting are only observed for 1800 
generations, and tδ = 100 represents a dynamic environment. On 
the basis of previous results, it was found that tδ = 100 provides 

a good setting for understanding how the GA behaves in 
regularly changing environments [6]. Other values of tδ have 
been investigated (tδ = 1, 25, and 900) but the results are outside 
the scope of this paper. Earlier work has shown that the highest 
rates of fitness are attained by intermediate rates of change, tδ = 
(25, 100) and these intermediate values have qualitatively 
similar behavior. It has been theorized previously that the high 
performance attained by these values is because with an 
intermediate shaking of the ladder the system is forced to 
maintain diversity and not rely too heavily on any particular set 
of building blocks. In cases where the environment changes 
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slowly the GA finds local peaks and stays near them. In cases 
where the environment changes too quickly the GA is never 
able to maintain a set of intermediate schemata, and the best the 
GA can do is maintain a population which reflects an average of 
the environments it faces. However, if the time between changes 
is long enough, then the GA can track the changes in the 
environment, and the best individuals are able to attain high 
performance after changes. When tδ = 100 the system tracks and 
adapts to changes rapidly, almost constantly improving 
performance with only small dips for the changes [3]. Though 
there are some temporal differences for different intermediate 
valued tδ’s the general trend is similar, and thus we choose tδ= 
100 as a representative.  
All parameters used in the experiment are given in Table 1. The 
optimal value achievable by the sl-hdf is 1.0. All results below 
are presented at 10 generation increments in order to make the 
graphs easier to read. We present four different measurements to 
compare the behavior of the system in the Defined Cliffs variant 
to the previous variants: performance, threshold satisficability, 
loss robustness and bitwise diversity. For in-depth descriptions 
of these measures see [5]. 
In order to understand how the Defined Cliffs variant affects the 
behavior of the GA, we first present the results of the GA within 
the Defined Cliffs variant alone, and then we compare and 
contrast the behavior of the GA over time in the Defined Cliffs 
variant to the three previous variants on the four different 
measures. 

4.1 Performance  
Performance is the standard measure of how well the system 
performs on the task presented. To provide some description of 
the distribution (and variance) of the results, Figure 1 illustrates 
both the fitness of the best individual in the population (Best 
Performance) and the average fitness of the whole population 
(Average Performance) for tδ = 100 and tδ = 1801 averaged 
across 30 runs, presented every tenth generation.  
These results show that the Best and the Average Performance 
for the constantly changing environment surpasses the static 
environment, even though initially the dynamic environment 
under-performs the static environment. In particular, after the 
300th generation of the run the dynamic environment has 
achieved a superior fitness in both best individual and average 
fitness of the population. This is because the regularly changing 
environment prevents the GA from prematurely converging. 
Also, in regularly changing environments the Average 
Performance of the system falls farther than the Best 
Performance because when the ladder is shaken many 
individuals that were being rewarded before lose those rewards 
and their fitness falls greatly driving down the Average 
Performance of the system. Best Performance is not affected as 
much because there will usually be individuals who contain 
some of the schemata that are now being rewarded.  
The behavior of the GA on the Defined Cliffs landscape is 
similar to its behavior on the Cliffs landscape. In both cases the 
GA performs very well and eventually discovers the optimal 
string. Also the GA is able to make rapid progress early on 
because the shorter elementary building blocks are easy to 
discover. This result is similar to that observed in the Weight 
variant. 

 
Figure 1. Performance Results in Defined Cliffs Variant 

 

Figure 2 displays the Best fitness averaged over 30 runs of all 
four variants: Defined Cliffs, Cliffs, Weight, and Smooth in a 
regularly changing environment with tδ = 100. The GA obtains 
the best results throughout the runs when operating in the 
Defined Cliffs landscape. The GA operating in this environment 
rapidly increases fitness in the first generations, at about the 
same rate as the Weight variant. However, the GA operating in 
the Defined Cliffs variant continues to increase, surpassing the 
Weight variant, until it reaches an optimal value similar to those 
found for the Cliffs variant, and so achieves values much higher 
than those obtained within the Weight and Smooth variants. We 
believe the early rapid rise in fitness happens because the 
Defined Cliffs is discovering the short building blocks early on 
and thus is able to increase its fitness quickly, as it does in the 
Weight variant. Moreover, the rough changes in the landscape 
prevent the population from prematurely converging and allow 
the population to continue to increase in fitness, in a manner 
similar to its behavior for the Cliffs variant. 

Standard error bars are not displayed due to the fact that they 
make the graph difficult to read, but results for the Weight and 
Defined Cliffs variants are statistically indistinguishable early 
on. Both of these variants are statistically distinguishable from 
the Cliffs variant during this time period (Generations 175-400). 
Later in the run, the Cliffs and Defined Cliffs variants are 
statistically indistinguishable, but both are statistically 
distinguishable from the Weight variant (Generations 1100-
1800).  In between these two periods the Defined Cliffs variant 
is statistically distinguishable and achieves superior 
performance to all other variants (Generations 400-1100). 
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Figure 2. Performance of Defined Cliffs, Cliffs, Weight, 

Smooth Variants tδ =100  
 

 

4.2 Satisficability  
Satisficability is the ability of the system to maintain a certain 
level of fitness and to avoid egregious errors. Figure 3 illustrates 
Threshold Satisficability for tδ = 100 in all four variants. 
Threshold Satisficability is how many best of generation 
individuals out of 30 runs (Best Satisficability) were able to 
satisfy a goal of a satisficeThreshold = 0.5 (where the 
satisficeThreshold specifies what fraction of the best fitness the 
individual is able to achieve; a satisficeThreshold of 0.5 
indicates that the individual must exceed half the fitness value 
of an optimally valued individual).  

The GA operating in the Defined Cliffs environment is able to 
outperform the other environments early on with regard to this 
measure. In fact, a large number of individuals quickly have a 
fitness exceeding half the optimal value. Again this is because 
the Defined Cliffs discovers the short building blocks early on 
and achieves a high level of threshold satisficability similar to 
the Weight variant. There are drops after each shake but it 
quickly regains higher values and continues to increase. The 
drops in fitness due to shakes of the ladder decrease in 
magnitude in the last generations, and the drops in fitness are 
not any worse than the Cliffs variant. The Cliffs and Smooth 
variants start slow and achieve high results later in the run. 

4.3 Robustness 
The third measure we look at is robustness, which is a measure 
of how the system responds to change in the environment. We 

present the Loss Robustness of the best individual in the 
population (Best Robustness) for tδ = 100 across the entire run 
(averaged across 30 runs). Loss Robustness is the current 
generation’s fitness divided by the previous generation’s fitness.  
If this value exceeds 1.0 then Loss Robustness is 1.0. Figure 4 
displays these results in all four variants. 
The results illustrate that in all variants every time the ladder is 
shaken the robustness decreases substantially but then recovers. 
In the early generations the decrease is large then later in the 
runs when the GA is not affected as much by shakes of the 
ladder. This is because at the end of the run the GA has found 
most of the intermediate schemata, but has not assembled them 
into one individual, and thus it is not affected as much by shakes 
of the ladder since there is some individual in the population 
that has the new intermediate schemata. In the beginning and 
middle are when the GA has the largest decreases in robustness, 
and this is because at this phase the GA has devoted lots of 
resources to exploring particular intermediate schemata. The 
Weight variant has the smallest drops and they are the same 
magnitude until the end of the run when they start to decrease. 
This is because shakes do not greatly affect the GA’s behavior 
in the Weight variant. The Defined Cliffs variant shows the 
largest drops in the early generations but it is also the first 
variant to stop being affected by the shakes, which indicates that 
the GA is able to find the optimal string faster in this variant.  
 

 

 
Figure 3. Satisficability Results in Defined Cliffs, Cliffs, 

Weight, Smooth Variants tδ =100 
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Figure 4. Robustness Results in Defined Cliffs, Cliffs, 

Weight, Smooth Variants tδ =100 
 
 

4.4 Diversity  
Diversity is a measure of how different the members of the 
population are. To measure Bitwise Diversity, we use the scaled 
hamming distance of the population averaged across all pairwise 
combinations of individuals (Average Diversity). We present 
the results for tδ = 100, with the values averaged over 30 runs in 
all four variants: Defined Cliffs, Cliffs, Weight, and Smooth, 
which can be seen in Figure 5. 

In all variants the diversity initially drops significantly as the 
GA converges on those individuals that have some of the 
elementary schemata present in them, with the Weight and 
Defined Cliffs variants dropping further than the other two 
variants. After that, diversity increases, with the diversity of the 
Weight variant increasing at a faster rate than that of the other 
variants. As noticed in previous results [5], diversity increases 
when selection pressure decreases.  Since there is little change 
in the selection pressure in the Weight variant, the diversity, 
after its initial increase, gradually levels off. Diversity stops 
increasing because the GA in the Weight variant quickly 
converges on a group of intermediate schemata and does not 
search for additional combinations similar to its behavior in 
performance. However, in the Cliffs, Smooth and Defined Cliffs 
environments there is more change in the selection pressure 
when the ladder is shaken and hence, the diversity decreases 
immediately after the change, and the increase is more gradual 
(around some increasing average). In the Defined Cliffs variant 
the drops after the shakes are only at the beginning of the 
generations and after the GA has found the optimal string, 
around generation 900.  After this diversity stops being affected 
by these shakes and the graph becomes smoother but gradually 

increases reaching the same level as the Weight variant. This 
behavior also happens in Cliffs and Smooth variants but occurs 
much later in the generations, since this behavior is caused by 
the population converging.  In the Cliffs variant it happens after 
generation 1200 since at that point the Cliffs variant has started 
to converge on the optimally valued schema.  

 

 

 
 Figure 5. Diversity Results in Defined Cliffs, Cliffs, Weight, 

Smooth Variants tδ =100 
 
 

5. CONCLUSION AND FUTURE WORK 
This paper describes a method for constructing a new variant of 
the sl-hdfs, the Defined Cliffs, by varying the way basic 
building blocks are created and combined. In particular, 
previous observations [7] of the GA’s behavior on the sl-hdfs 
suggest two properties which are associated with high GA 
performance in dynamic environments: (1) sl-hdfs with short 
elementary schemata can initially perform quite well relative to 
sl-hdfs built from longer schemata, and (2) shaking by form 
along with the unrestricted construction technique allows for an 
increase in performance because it prevents premature 
convergence. Thus the Defined Cliffs variant uses short 
elementary schemata with sharp transitions in the environment. 
The results presented here show that GA behavior is superior on 
this new variant, compared to all previously explored variants. 
Moreover, the GA operating in the Defined Cliffs environment 
exhibits interesting behavior on the non-performance metrics 
that we examined. Thus these results support our claim that the 
differences on GA behavior over all the sl-hdf variants are a 
result of two main influences on GA performance: (1) short 
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elementary building blocks, and (2) unrestricted landscapes with 
rough transitions. Short elementary building blocks mean that 
the GA can quickly increase fitness early on and achieve a high 
level of threshold satisficability in a small number of 
generations.  Unrestricted landscapes with rough transitions 
mean that the GA does not prematurely converge and thus is 
able to move beyond local optima and achieve superior results. 
In conclusion, these experiments show that the construction of 
intermediate schemata, the method of changing those 
intermediate schemata and the length of initial building blocks 
can dramatically affect the behavior of the GA.  

The sl-hdfs are currently a model of problems where there are 
basic constant building blocks, changing sub-problems, and a 
constant global optimum. However, it would be interesting for 
future work to examine other models.  For instance, utilizing the 
sl-hdfs as a basis, we change a small number of the elementary 
schemata every ladder shake; this would also change the 
highest-level schema and thus more dramatically change the 
landscape. Yet the new sl-hdf would still be similar to the 
previous one, depending on the number of elementary schemata 
changed.  This would allow us to create a new form of the sl-hdf 
that would model continuously changing environments.   

By continuing to deepen our understanding of how the 
composition of building blocks can affect the GA’s behavior 
practitioners can start to gain insight into how to better utilize 
GAs in real world problems. However, it would be useful to use 
the insights we have gathered so far to develop a closed-form 
model of how these various factors interact.  In future research 
we hope to develop such a model that shows how changes in 
various parameters affect diversity and other measures. By 
accumulating regular observations in this environment we can 
observe how these interactions might occur and then 
hypothesize models to explain them. These experiments help to 
explore intuitions and understandings that have been informally 
observed. We plan to continue to conduct systematic controlled 
observations of the GA. We feel that this allows us to contribute 
to theory by providing a series of regular observations and to 
contribute to practice by providing suggestions for how to 
increase performance in a rich set of environments. 
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