Learning and Anticipation in Online Dynamic Optimization
with Evolutionary Algorithms: The Stochastic Case

Peter A.N. Bosman
Centre for Mathematics and Computer Science
P.O. Box 94079
1090 GB Amsterdam
The Netherlands
Peter.Bosman @cwi.nl

ABSTRACT

The focus of this paper is on how to design evolutionary al-
gorithms (EAs) for solving stochastic dynamic optimization
problems online, i.e. as time goes by. For a proper design,
the EA must not only be capable of tracking shifting op-
tima, it must also take into account the future consequences
of the evolved decisions or actions. A previous framework
describes how to build such EAs in the case of non-stochastic
problems. Most real-world problems however are stochastic.
In this paper we show how this framework can be extended
to properly tackle stochasticity. We point out how this nat-
urally leads to evolving strategies rather than explicit deci-
sions. We formalize our approach in a new framework. The
new framework and the various sources of problem—difficulty
at hand are illustrated with a running example. We also ap-
ply our framework to inventory management problems, an
important real-world application area in logistics. Our re-
sults show, as a proof of principle, the feasibility and benefits
of our novel approach.
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1. INTRODUCTION

Optimization problems in real-world settings are often
dynamic, i.e. they change with time. Typical examples are
vehicle routing [14, 19], inventory management [16, 18] and
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scheduling [1, 8]. Since the dynamic changes are typically
unknown beforehand the problem generally has to be solved
online, i.e. as time goes by [4, 9, 12, 20].

The problems to be solved, even for a single point in time,
are often hard. Also, there is typically not much time be-
tween two subsequent decision times. For these reasons,
restarting optimization from scratch is often undesirable.
The tracking of (near—) optima, once they have been found,
is therefore desirable. To be able to do this, the optimiza-
tion algorithm needs to have a proper degree of adaptivity.
Evolutionary algorithms (EAs) [11] are good candidates as
they employ a set of solutions rather than a single solution.
Adaptivity is then a virtue of issues such as maintaining di-
versity around (sub)optima and continuously searching for
new regions of interest that may appear over time [7].

Tracking optima alone is not enough however. To solve
dynamic optimization problems online, a myopic, i.e. “near-
sighted”, approach is often taken. The quality of a deci-
sion is then taken only to be how good it is in the current
situation. This approach however is blind to the impor-
tant issue of time—dependence: decisions taken now have
consequences in the future. Because of this, a myopic ap-
proach can perform poorly in the long run. To properly
tackle time—dependence, anticipation of future situations is
needed to be able to make well-informed decisions [5, 6, 8,
21]. In problems in practice, this is typically required. Con-
sider the problem of vehicle routing. Traditionally, routes
are planned to maximize profit on a daily basis. However,
poor quality of service (e.g. not being on time) for a spe-
cific customer may decrease the number of orders from that
customer over the next days. Hence, profit is not only deter-
mined by the efficiency of today’s routing, but also by the
impact the resulting quality of service has on future events.

Previous work investigated explicit modeling of anticipa-
tion for online dynamic optimization, but only for non-
stochastic problems [5]. Real-world online dynamic opti-
mization problems are however often stochastic. We will
point out that replacing the distributions that cause the
stochasticity with their expected values to obtain a non—
stochastic version of the problem does not work in general,
i.e. it is not effective. Other previous work tackles stochastic-
ity in dynamic optimization problems properly, but requires
optimization from scratch to be performed many times for
each new decision [2, 3, 10], i.e. it is not efficient.

It is the focus of this paper to obtain the best of both
worlds, i.e. to an approach that is both effective and ef-
ficient. We will specifically focus on EAs and show how



their adaptive and evolving nature can be matched to the
ongoing changes in stochastic online dynamic optimization
problems, thereby exploiting the potentials of EAs for dy-
namic optimization. The approach is richer than just using
expected values, while at the same time not requiring op-
timization from scratch for every new decision. We point
out how this approach naturally leads to evolving strategies
rather than explicit decisions and present a framework for
our proposed approach. The new framework and the various
sources of problem—difficulty at hand are illustrated with a
simple running example. We also apply our framework to
inventory management problems, an important real-world
application area in logistics. Our results show how our novel
approach can indeed be both effective and efficient.

The remainder of this paper is organized as follows. We
discuss the necessity of anticipation in online dynamic op-
timization in Section 2. In Section 3 we then discuss how
optimization can be performed in an online setting while
making use of anticipation. We describe our new framework
for solving online stochastic dynamic optimization problems
with EAs in Section 4 and apply it to inventory manage-
ment problems in Section 5. We conclude the paper with a
summary and some final remarks in Section 6.

2. ANTICIPATION

Let « denote the variables to be optimized. We will often
refer to choosing a configuration for these variables as taking
a decision in online dynamic optimization. Mathematically
defined, dynamic optimization is to optimize a functional
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x(t)

(1)

where § is a function of & and has dynamically changing
parameters «v. Note that in the discrete case, the integral
in Equation 1 is replaced by a discrete sum. Function §
can be seen as the real world. Solving this problem online
means that at any point in time ¢t"°", function § cannot be
evaluated for any ¢ > t"°¥.

The myopic approach to this problem amounts to:
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An important problem is that decisions may have future
consequences. This means that «(¢*°") may depend on pre-
vious decisions x(t),t < t"*. A schematic illustration is
given in Figure 1. If only the current situation is taken into
account, the decision that immediately leads to the highest
reward is optimal. This decision may however lead to a fu-
ture in which lower profits can be obtained. If a suboptimal
solution for the current situation is however taken, which
typically corresponds to actions like making investments, a
future may be created in which much higher rewards can be
obtained. Integrated over the entire time—span, this subop-
timal decision for the current situation may thus very well be
the better choice. Moreover, it can be shown that the differ-
ence between the optimum when using the myopic approach
compared to using anticipation can be arbitrarily big [5].

To prevent bad decisions due to the use of a myopic ap-
proach the decision for the current situation needs to be re-
garded simultaneously with future decisions in (near) future
situations. Mathematically, this amounts to solving:

max
x (tnow)
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Figure 1: A schematic illustration of why anticipa-
tion may be necessary.
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Theoretically, this approach is clearly optimal because of
the similarity with Equation 1. The problem is of course
that this approach involves evaluating function § for times
beyond the current time, which is not possible in online op-
timization. The only way we can still take into account the
future is to learn to predict it and use the predicted future
instead. The nice thing about this approach is that under
the condition of perfect prediction and the possibility of find-
ing the optimum with the optimization algorithm of choice,
optimal decisions can be taken. Summarizing, the approach
is to build and maintain (i.e. learn online) an approxima-
tion of §.(;) and to optimize decisions for the present and
for the approximated future simultaneously. In practice, it
is typically not possible to optimize the future indefinitely,
so only part of the approximated future will be optimized:

min{tnow+tple" 7tend}

S (t, (1)) dt

max

na (4)

tnow

where a are the parameters that pertain to the function
class which we use to learn approximation §. In logistics
settings, typical examples of a include the rate of customer
demand or the parameters describing the distribution of cus-
tomer demand. Function § can be seen as a simulation of
the real world. Note that an apparent drawback is that if
the consequences of decisions extend beyond the prediction
length t*'°", optimal decisions can no longer be guaranteed.

3. OPTIMIZATION

From the previous section it has become clear that op-
timization of multiple decisions in a future time interval is
required. The approach to how this can be done depends on
whether the problem is stochastic.

3.1 Non-stochastic problems

In case of a non—stochastic problem, a future trajectory
of the problem variables can be optimized directly. Be-
cause the problem changes in a fixed way, decisions can
be planned ahead. Assuming, without loss of generality,
a time—discretized representation with a discretized predic-
tion interval of "™, optimization then regards a list of de-
cisions (%), T (™7 + t77°), (™Y + 26770, .. 2 (tV +
Nfuturegpinty where N™™° is the number of time—steps to
optimize into the future, i.e. Nfruregpint — ¢plen



The adaptivity characteristic of EAs can be exploited for
optimization in this case. Each genotype encodes the con-
catenation of all variables. As the problem changes with
time, the decisions need to change accordingly. Under the
assumption that the changes in the problem are not chaotic,
adaptation by means of an EA will be more efficient than
restarting optimization from scratch.

The use of a list of decisions was formalized in a frame-
work and used in combination with EAs recently [5]. Initial
results showed that under the assumption that the learning
method that is used to compute § gives good approxima-
tions, this approach is able to tackle time-dependence and
exhibit anticipation well.

3.2 Stochastic problems

If the problem is stochastic however, as most real-world
problems are, a single list of decisions can no longer be used
directly. To see why this is the case, consider the following
very simple example pickup problem. A truck is located at
TRUCK(t) and a package appears at location PACKAGE(t),
both locations are 2D coordinates. It must now be decided
whether to send the truck to go and pick up the package.
If the package is not picked up, it disappears. Picking up
the package pays a value of 1, but costs a value equal to
the Euclidean distance that must be traveled. The number
of packages is Npackages = t"? 4 1, i.e. the time-steps are of
size 1. A decision at time ¢ is a binary variable z(t) € {0,1}
that indicates whether the package at time ¢ will be picked
up in the upcoming time unit (z(¢) = 1). The stochasticity
of this problem lies in the locations of the packages. Math-
ematically (~ means “distributed according to”):

3 (@(t) = {(1)7 || PACKAGE(t) — TRUCK(?) || if x(¢) : 1
otherwise
where
~N(0,1) x N(0,1) ift=0
TRUCK(t) = { PACKAGE(t — 1) ift>0and z(t—1)=1
TRUCK(t — 1) otherwise

Now consider a sequence of two decisions z(t),z(t + 1).
Certainly, there is time—-dependence in this problem: the de-
cision to drive somewhere changes the location of the truck
for the next time—step. Because of the stochasticity in the
problem however, it doesn’t make sense to plan z(t + 1) be-
forehand. This decision depends not only on the location of
the truck in the next time-step, but also on the location of
the package in the next time—step. For example, deciding to
set z(t+1) = 1 is a bad choice if PACKAGE(t+1) turns out to
be far away from TRUCK(t+1). Note that this is a very sim-
ple problem, meant to serve only as an illustration. There
is no higher order of time—dependence such as a response of
the system to drop packages in relation to decisions made
earlier. Instead, packages are dropped off randomly.

3.2.1 Expected value

To still be able to optimize a single sequence of decisions
if the optimization problem is stochastic, the stochasticity
must be removed from the approximation. Note that the
approximation can then no longer equal the actual problem.

A statistical approach to removing the stochasticity is to
replace each random variable in the problem with its ex-
pected value. This approach has recently been applied, with
good results, on a vehicle routing problem [6]. It is however
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important to realize the limitations of this approach. It only
works well if the variance is small and the expected value
is representative of the probability distribution. Regard the
pickup problem with a factorized normal distribution with
zero mean and unit variance for the package distribution:

PACKAGE(t) ~ N(0,1) x A(0,1)

The expected value is E[PACKAGE(t)] = (0,0), i.e. the ori-
gin. If the vehicle at time t"°" is located at the origin, a
decision not to pick up the current package has an approx-
imated profit of N™™*°. According to the approximation,
each new package arrives at the origin and there will be
no driving cost. A decision to pick up the current package
on the other hand has a maximum approximated profit of
N™vre 11— 2 || PACKAGE(t"Y) ||. Thus, if the current pack-
age is within a distance of % of the origin, a decision to pick
up the package will be made. The truck will thus remain
in the vicinity of the origin. Since the distribution generat-
ing the package is normally distributed, using the expected
value will thus result in good decisions. Experimental ver-
ification is plotted in Figure 2. A simple EA is used with
recombination as done in UMDA [17], i.e. compute for each
bit the proportion of ones in the selected set of solutions
and resample new solutions with this proportion. To pre-
vent complete convergence, the proportions are enforced to
remain in [0.2,0.8]. The EA is allowed to run for 50 gen-
erations between two subsequent decision moments. More-
over, N™™° = 8 implying that genotypes are bitstrings
of length 8, and the results are averaged over 50 indepen-
dent runs. For comparison, we also evaluated the use of a
hillclimber. The hillclimber always performs pickup if the
direct profit is larger than 0. This means that the vehicle
may wander off far from the origin, making this a subop-
timal strategy. The distribution of the packages is learned
online using maximum-likelihood estimates. For the first
few steps however there is not enough data to establish a
reliable estimate. For this reason, the hillclimber strategy is
used for the first 10 time steps. The results in Figure 2 (top
lines in the graph) clearly show that the EA outperforms
the hillclimber in the longer run.

Now consider the case where the package distribution con-
sists of four normal distributions with unit variance, with
one normal distribution located in each quadrant. Specif-
ically, the means of these distributions are (2,2), (—2,2),
(—2,—2) and (2, —2). Although the expected value is again
at the origin, the density at the origin and its vicinity is quite
low because it is beyond more than one standard deviation
of each normal. Using the expected value in anticipation and
a single decision—list leads to the same strategy as before.
In this case however, this strategy is not a good one because
only few packages will actually appear in the vicinity of the
origin. Indeed, the results in Figure 2 show that the EA in
this case performs much worse than the hillclimber.

3.2.2  Scenarios

Decision—trajectory optimization

As an alternative to removing the stochasticity from the
problem, scenario—based optimization can be used. In this
approach, multiple scenarios (i.e. events in the simulation)
are sampled and a sequence of decisions is optimized for each
scenario separately. To take a decision for the current situa-
tion, the decision that leads to the highest expected value of
the profit (i.e. average) is then taken [10]. Other choices are
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Figure 2: Profit obtained on the pickup problem
with N™*r* — 8 and a population size of 120 for the
EA; results are averaged over 50 runs.

possible as well, such as choosing the decision that leads to
the smallest risk of having losses. It has been shown recently
that this approach can provide high—quality solutions in the
expected-value sense [15]. It is important though that the
expected difference between the optimal choice for any sce-
nario and the optimal expected—value choice doesn’t become
too large. It has already been argued that this assump-
tion is satisfied in most real-world problems. It has also
been proved to be the case for a real-world problem (packet
scheduling) [15]. In addition, this approach is distribution—
independent. It therefore doesn’t have the drawback that
the expected—value approach has of possibly misrepresenting
the actual problem. Still, there are some important draw-
backs to this approach.

First, let us mention that the application of this approach
so far has been limited to sampling scenarios beforehand
and then optimizing the future decisions in these scenar-
ios [2, 3, 10]. In these papers, time-dependence is explicitly
not considered in full, which is also stated by their authors.
The type of time-dependence that is automatically tackled
is the direct influence of one decision on another decision.
For example, deciding to drive to customer 1 puts the truck
at that location instead of the location where it would oth-
erwise have stayed. What is not taken into account is the
possible influence of a decision on the future response of the
system, e.g. the stochastics. For example, deciding to drive
to customer 1 may lead to a higher frequency of new orders
from customer 1 in the near future. With the existence of
time—dependence of this kind, sampling events in a scenario
beforehand is unacceptable because the events may change
as a result of decisions made.

The general approach requires a minor modification to
allow for time-dependence in any of its forms to be tack-
led. Optimization with scenarios can be done by randomly
choosing N**°**"°* random seeds and then optimizing the
simulation for each random seed. This essentially makes the
approximation (i.e. simulation) deterministic, allowing it to
be re-evaluated under the exact same circumstances dur-
ing optimization. The computational implications of this
change are however not minor. Finding a solution (i.e. fu-
ture trajectory) for each and every scenario requires solv-
ing an interactive problem (i.e. an online dynamic optimiza-
tion problem without stochastics). To be able to do this
efficiently, this requires complex algorithmic design. It is
known that problems like this are hard. The field of online
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optimization itself is relatively young [20]. Alternatively,
exhaustive search can be used, but this is very inefficient.

A second and very related drawback also shows that this
approach is inherently more time—consuming. The use of
the expected value can be seen as using only a single sce-
nario. Hence, N®°°"*"°* as many evaluations are required
when using scenarios. When re—optimization is performed,
optimization has to be restarted N°°*"*"°° as many times.

A third drawback is that by optimizing the decisions di-
rectly, optimization from scratch at every decision moment
is mandatory. For each new decision to be made for a new
current situation, a new set of random seeds is chosen to
obtain a new set of scenarios. These scenarios are therefore
not related to the previously optimized scenarios. Also, a
new decision trajectory needs to be found for each scenario.
So not only is optimization per scenario complex as men-
tioned above, optimization is also required to be performed
often and it needs to be done from scratch. This can be
especially burdensome or even infeasible in an online time
fashion because there is typically not weeks of time available
between taking subsequent decisions and most of the un-
derlying (combinatorial) optimization problems are at least
NP-hard. Because restarting optimization from scratch is
required, the adaptivity of EAs cannot be exploited.

A fourth drawback is related to the third one. If the
decision to be made concerns continuous (e.g. real-valued)
variables, it is not possible to optimize decision trajectories
for multiple scenarios and then choose the decision for the
current situation with maximum average profit. For contin-
uous decision variables it is not likely that optimal values
will be the same under different scenarios. Discretization is
then required, but doing this properly is hard.

Strategy optimization

Most above drawbacks can be overcome by using strategies
instead of decision lists. By strategy we mean a function
that, given the current time and situation, returns a deci-
sion. In the literature, such strategies are also sometimes
called anticipative decision processes [15]. Take for example
the pickup problem. A strategy could for instance be a rule
that dictates that a pickup is only performed if the package
is within a certain distance of the truck or within a certain
distance of some other location. This distance is then a pa-
rameter of the strategy that can be optimized. The use of
strategies has several important advantages.

A first advantage is that only one strategy needs to be
optimized. The evaluation of the quality of a strategy en-
compasses its application to a set of scenarios, but because
a strategy describes what to do in any given situation, it
does not have to be re-optimized for each scenario. Hence,
the adaptivity characteristic of EAs can now be exploited
by optimizing the parameters of the strategy instead of the
individual decisions directly. Certainly, when the problem
changes, the strategy may need to change as well. For this
reason, adaptivity in a dynamic setting is still required. This
is similar to tracking a shifting optimum, which is what the
majority of the literature on dynamic EAs is about [7].

A second advantage is that a strategy, assuming it is de-
signed well, can be understood much better and allows for
easier implementation and understanding in practice. It is
harder to understand why a certain list of decisions is opti-
mized than a strategy that describes exactly the conditions
under which a certain decision is made. This builds an im-
portant bridge between computation and its practical use.




One disadvantage of the approach is that a strategy needs
to be designed in addition to modeling the problem. The-
oretically, a strategy can be built using genetic program-
ming techniques and building functions like neural nets on
the basis of all available variables, but typically the results
are then again hard to interpret. Also, it takes consider-
able additional computational effort to build such a general
strategy. Still, designing a proper strategy by hand can also
be hard. The capacity of the function class that describes
the strategy must be adequate. In other words, the strategy
must be able to express a good way of making decisions. In
addition, the design of the strategy strongly influences the
smoothness of the adaptation required from the EA. The less
adaptation is required, the less resources are required from
the EA (such as population size) to obtain good results.

Finally, we note that whereas the use of a good strategy
is expected to work well with EAs and scenario—based opti-
mization, this is typically not the case for the combination
of strategies with the expected—value approach. The rea-
son is that in the expected—value approach, the EA on the
one hand will attempt to build a strategy for the expected—
value case, as this case is used in the approximation of fu-
ture situations. However, the current situation is not an
expected—value case, but a real sampling from the distribu-
tion. Hence, the EA will also attempt to tailor the strategy
to this particular situation. Even worse, many strategies
may fit the expected—value case and give exactly the same
result on the expected—value case. However, these strate-
gies may be totally useless for actual cases. Hence, much
more computational resources are required for the EA to dis-
tinguish between good and bad strategies than if scenario—
based optimization is used. Moreover, the strategy will not
evolve to a stable situation that smoothly changes over time
as the problem changes, which is undesirable.

An experimental verification on the pickup problem using
a simple strategy is given in Figures 2, 3 and 4. The strategy
computes, using maximum-likelihood estimates, the param-
eters of the distribution for the package locations. As time
goes by, this estimation becomes more exact. As a free pa-
rameter, the strategy has a threshold. The output of the
strategy is 1 (i.e. perform a pickup) if the package location
has an estimated density of at least the value of this thresh-
old and the action doesn’t lead to a direct loss. The latter
addition is required to prevent the vehicle to drive between
clusters in the case of the four normal distributions for the
package generating distribution. The strategy may not lead
to optimal choices, but it is a sensible approach. The results
in Figure 2 show that indeed, for the case of one normal dis-
tribution, using a strategy is slightly inferior to directly op-
timizing decisions, but still outperforms the hillclimber. In
the case of four normal distributions, the approach is much
better than directly optimizing decisions. Additional results
in Figure 3 show that even for smaller population sizes for
the EA, using a strategy in combination with scenarios still
gives good results. Using a strategy in combination with
the expected value scenario however only gives good results
if the largest population size is used. Otherwise, the ca-
pacity for good optimization quickly fades. Figure 4 shows
the difference in smoothness of the strategy parameter to be
optimized in a typical run. Clearly, when using scenarios,
the strategy parameter is much more stable, allowing good
results even for smaller population sizes.
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4. ALGORITHMIC FRAMEWORK

In Figure 5 pseudo—code is given that summarizes the ap-
proach proposed in the previous section. The general idea
is that in addition to a population, a current best strategy
is maintained. This allows the EA to be run continuously.
Whenever a decision needs to be made, the current best
strategy can be applied. Evaluation of a strategy is done by
running that strategy in the simulator multiple times using
different random seeds. The quality of a strategy is then
measured by its average evaluation value. The variance is
also stored. The variance is required to compare the best
strategy in the population with the current best strategy.
Because multiple random seeds are used, corresponding to
multiple drawings from the probability distribution that un-
derlies the problem, statistical hypothesis tests are required
to be certain that an improvement has been obtained. The
statistical hypothesis test that we used in our experiments
is the Aspin—Welch—Satterthwaite (AWS) T—test at a signif-
icance level of a = 0.05. The AWS T—test is a statistical
hypothesis test for the equality of means in which the equal-
ity of variances is not assumed [13].
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Figure 5: Outline of algorithmic framework. EA
(top) and evaluating a strategy (bottom).

Note that this framework is independent of the underly-
ing dynamic EA and mainly describes the proper tackling
of time—dependence. Implications of different systemic dy-
namics (e.g. rate and severity of changes) still play a key
role in designing the underlying EA [7]. Here we specifically
focus on time-dependence however. Also note that online
learning and updating of the simulation are not presented
above. These operations can be done simultaneously with
the running of the EA (i.e. a separate thread) or in sequence
(i.e. every so many generations).

5. EXPERIMENTS

5.1 Inventory management

Inventory management (IM) is an important area in lo-
gistics [16, 18]. In Figure 6 a schematic overview is given of
IM problems. A general description of IM is the following.
Buyers, also called customers and denoted C;, order goods
from a store. The number of goods and the frequency of or-
dering is called the demand and is denoted D; for customer
C;. To prevent going out of stock, the store keeps an in-
ventory. This inventory must however be replenished from
time to time. Because the delivery of new stock from the
store’s suppliers also takes time (called the lead time, de-
noted L; for supplier Sj), the replenishment-order must be
placed before going out of stock. Time—dependence plays an
important role here. The decision of whether or not to place
a replenishment—order at a certain point in time has great
future consequences because it determines future inventory
levels. Also, a decision to place an order at a supplier leads
to a future event (delivery of goods) that is a response to
placing the order, making it impossible to completely sample
a scenario prior to optimizing the decisions in that scenario.
Maintaining a myopic view for IM problems leads to fre-
quent out—of-stock or unnecessary—stock—surplus situations
as future dynamic demand is not sufficiently taken into ac-
count. If this future dynamic demand is known, a non—
myopic view enables to see how large the inventory should
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be in the (near) future. Hence, better profits can then be
made as out—of-stock situations can be prevented.

Suppliers Vendor Buyers
L Dy
L o
t‘—» Inventory — D,
] N 1

Figure 6: Overview of inventory management.

Many models exist for simple to hard problems in IM. For
the simplest problems, exact optimal strategies are known.
For practical problems however, there are typically multiple
store—suppliers to choose from with different delivery times,
order magnitudes and costs. Also demands and lead—times
tend to be stochastic rather than deterministic. Although
these aspects increase the benefit of a non—-myopic view, they
also make the problem harder to solve [16]. Consequently,
no exact optimal strategies exist for the harder and more
general cases. For specific cases, specific heuristics exist.
There is no general flexible approach however that is appli-
cable to a variety of IM problems. Here we show how, as a
proof-of—principle, the framework in this paper may serve
as such a general approach.

5.2 Experimental setup

We have designed two IM experiments. For both experi-
ments, inventory is to be managed for 129600 minutes, i.e. 90
days. Orders can be placed any minute of the day.

5.2.1 Problems

Problem A represents problems of the type for which an
optimal strategy can be computed beforehand. There is one
supplier and one product. Product quantities are integer.
The product is sold to the buyers at a price of 50 and bought
from the supplier at a price of 20. A fixed setup cost for
each order placed at a supplier is charged at a price of 50.
Inventory holding costs are 1 per day per unit. The lead
time of the supplier is fixed to 3 days. The demand is fixed
to an order of 1 item every hour.

Problem B represents problems for which there is not a
known optimal strategy. There are two suppliers. One sup-
plier is cheaper than the other. The more expensive sup-
plier can supply immediately, but costs twice as much. This
type of setting is popular in IM research. It is typically
known as IM with emergency replenishments and is known
to be a hard problem [16]. The second supplier is used only
if the stock has become really low and stock outs are im-
minent. To add to the difficulty of the problem, we have
made the lead—time of the cheapest supplier both stochas-
tic and periodically changing. The lead time of the slower
supplier is normally distributed with mean (in minutes) of
4320 (cos((27t)/43200) 4+ 1) /2, i.e. it varies between 0 and
3 days and the period—length of the cosine is 30 days. The
variance is 14407 (cos((2t)/43200) + 1) /2, i.e. it varies be-
tween 0 and 1440 days, corresponding to a maximum stan-
dard deviation of 38 days with the same period-length as
the mean. The periodically changing lead time causes the
optimal strategy to change with time as well. Also, the de-
mand is now stochastic. The time between two subsequent
orders is normally distributed with a mean of one hour and
a variance of 60 hours. The amount ordered is also normally
distributed, with a mean of 3 and a variance of 9 products.
For this setting, there aren’t any known heuristics.



5.2.2  Dynamic EA

The EA follows the framework from in Section 4. The
strategy that we employed is a common one in IM. The strat-
egy is a so—called (s, Q) strategy [18]; s is called the re-order
point and ) the order—up—to size. One such strategy is used
for each supplier. Hence, the genotype contains 2n; real val-
ues to be optimized, where n is the number of suppliers. If
the stock drops below the re—order point s; of supplier 7, and
no order is currently outstanding for supplier i, a new order
is placed at supplier i of size QQ — stocklevel. Thus, in the
case of two suppliers, if an order from the cheaper supplier
is running late, the stock level will drop further and the rule
for the more expensive, emergency supplier becomes active.
It is not known whether this strategy can be optimal for
problem B, but it is an often used, sensible choice.

We used two different EA settings, one setting corresponds
to a situation in which there is only very little time to do op-
timization and thus the EA resources are small. The other
setting corresponds to a situation in which there is more
time and thus the EA resources are larger. In the small
settings, the population size is 50, scenario—evaluation sim-
ulates 5 days into the future, 5 generations of the EA can
be done per day, and 10 scenarios are used. In the larger
settings, the population size is 200, scenario—evaluation sim-
ulates 7 days into the future, 5 generations of the EA can
be done per hour and 30 scenarios are used. To facilitate
the simulation of the future, the EA learns the distribution
behind the stochasticity of the buyer. The stochasticity of
the supplier is assumed to be known.

5.3 Results

In Figure 7 the average profit obtained over 50 indepen-
dent runs is shown for problems A and B for both EA set-
tings. The EA approach is a scalable technique on both
problems in the sense that allowing more resources results in
better solutions. Investing in computing power thus results
in a better policy for a vendor. Moreover, even the small
settings for the EA lead to profits. The maximum profit
that can be obtained on problem A is 59231. This profit
corresponds to a setting of the strategy ((s, @) = (72,118))
that is far outside the range in which we initialized the EA
((5,Q) € [0,25]%). Out of all settings in the initialization
range, the maximum profit is only 17050. The EA is thus
also capable of finding much better solutions when initial-
ization is suboptimal.
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Figure 7: Results on inventory—management prob-
lems, averaged over 50 independent runs.

A second thing that stands out is that the profits on prob-
lem B are higher. The average demand in problem B is three
times higher than in problem A. Indeed, the EA is able to
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obtain a profit of about 3 times higher than on problem A
even though problem B is far more difficult.

Figure 8 shows the strategies obtained with the large EA
settings for both problems in a typical run of the EA. The
lack of stochasticity in problem A translates into finding
a stable strategy by the EA very quickly and maintaining
that strategy throughout the run. On problem B, the adap-
tive capacity of the EA allows the algorithm to continu-
ously adapt the strategies and find better solutions for the
situation at hand as the lead time of the cheapest supplier
changes with time. The periodic change of the lead time of
the cheapest supplier (Sp) is clearly translated into a peri-
odic change in strategy. When the average and variance of
the lead time of the cheapest supplier are small, less prod-
ucts need to be ordered and the threshold can be lower. The
threshold for emergency replenishments can even become 0.
When the lead time is the largest, emergency replenishments
may become necessary and concordantly, the EA proposes
a strategy in which emergency replenishments are made be-
fore the stock runs out completely. Also, in this case the
re—order point for the cheapest supplier is much higher as
is the number of products ordered from that supplier. It
can be seen in Figure 9 that emergency replenishments are
indeed made during the periods when the cheapest supplier
is less reliable. Furthermore, note that the strategies are
not exactly the same in each period. Note that while the
EA is optimizing strategies, it is also still learning distribu-
tions. Learning converges to the true distribution over time.
Finally, the periodic change in the lead time of the cheap-
est supplier can also be seen back in the obtained profits
in Figure 7. When the lead time of the cheapest supplier
is the smallest, the EA succeeds in finding a strategy that
uses this supplier more and therefore obtains more profit,
resulting in a steeper slope of the profit—versus—time graph
at these moments.

Strategy parameter value

20000 40000 60000 80000

Time

100000 120000 140000

Strategy parameter value

Time

Figure 8: Strategies evolved in a typical run of the
EA on problem A (top) and problem B (bottom).

Finally, we want to point out that in addition to the pos-
itive results of the anticipatory EA approach on the prob-
lems in this paper, one of the most beneficial aspects of this
approach is that when the problems are changed (e.g. add
more suppliers or buyers or change distribution settings),
the approach remains the same and is able to obtain posi-
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Figure 9: Quantities ordered in a typical run of the
EA on problem B.

tive results. In other words, no in—depth redesigning needs
to be done when something changes in the definition of the
problem. Often, well-designed heuristics need to be com-
pletely redesigned when transferring a problem from theory
into practice because of discrepancies between the theoretic
case and the practical case and the fact that the heuristics
are very problem—specific.

6. SUMMARY AND CONCLUSIONS

In this paper we have focused on designing evolutionary
algorithms for solving online stochastic dynamic optimiza-
tion problems. We have indicated that an EA is not only
required to be able to track optima as they shift with time,
an EA is also required to be able to perform anticipation,
i.e. take into account consequences of decisions taken earlier.
To this end, optimization needs to be performed for the cur-
rent decision but also, simultaneously, for future decisions
in future, anticipated situations.

We have argued that if the expected value is representa-
tive of the stochasticity in the problem, a list of decisions for
the current situation and for future situations can be opti-
mized. Evaluation of future situations is done by replacing
the stochasticity in the simulation with the expected value.
If the expected value is however not representative, as is
the case in many practical applications, this approach fails
to perform efficient optimization. In this case, a strategy
can be evolved. Evaluation of the strategy in future, an-
ticipated, situations is then done using multiple scenarios,
i.e. simulations with a fixed random seed. We have shown
that, if a strategy is designed properly, the optimal param-
eters for this strategy can be tracked using the adaptivity
of EAs, thus eliminating the need for re—optimizations and
allowing optimization to be performed continuously. We
have also shown that the combination of strategies and the
expected value case only works with relatively great com-
putational effort and generally doesn’t result in smoothly
adapting trajectories of the strategy parameters. An addi-
tional advantage of the approach proposed in this paper is
that a strategy can be interpreted more easily by the end—
user, thereby giving more insight into the decision process
compared to when decisions are optimized directly.

We have presented an algorithmic framework for this ap-
proach. This framework can be used in the future design of
EAs for specific problems, which is one of the main avenues
of future research that we shall explore.
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