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ABSTRACT
This paper investigates how genetic algorithms (GAs) can
be improved to solve large-scale and complex problems more
efficiently. First of all, we review premature convergence,
one of the challenges confronted with when applying GAs to
real-world problems. Next, some of the methods now avail-
able to prevent premature convergence and their intrinsic
defects are discussed. A qualitative analysis is then done on
the cause of premature convergence that is the loss of build-
ing blocks hosted in less-fit individuals during the course of
evolution. Thus, we propose a new improver - GAs with
Reserve Selection (GARS), where a reserved area is set up
to save potential building blocks and a selection mechanism
based on individual uniqueness is employed to activate the
potentials. Finally, case studies are done in a few standard
problems well known in the literature, where the experimen-
tal results demonstrate the effectiveness and robustness of
GARS in suppressing premature convergence, and also an
enhancement is found in global optimization capacity.
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1. INTRODUCTION
Genetic algorithms (GAs) are search and optimization al-

gorithms based on the principles of natural evolution, which
were first introduced by Holland [9]. An overview about
GAs and their implementation in various fields was given
by Goldberg [7] or Michalewicz [11].

The important characteristics of GAs are: (i) use a code
of parameters, (ii) work on a population of points, (iii) use
probabilistic evolution rules to obtain a satisfying result,
and (iv) use simple operations on the value of the objective
function [1]. Hence, GAs have been successfully applied to
many fields such as the combinatorial optimization in re-
cent decades, especially in searching for the global optimum
of complex problems with many local optima, where tra-
ditional optimization methods may fail to provide reliable
results effectively.

In applying GAs to solve large-scale and complex real-
world problems, however, confronted with the conflict be-
tween high accuracy and low time consumption, GAs often
result in an unsatisfactory compromise, characterized by a
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lack of accuracy and a slow convergence, when a more pre-
cise solution is expected within the given time. Furthermore,
one of the commonest difficulties frequently encountered is
premature convergence [3, 6].

In this work, we develop a new mechanism called reserve
selection to enhance the performance of GAs, aiming to
avoid premature convergence, i.e. maintain population di-
versity, and finally achieve global optimization.

2. RELATED WORKS
Roughly speaking, premature convergence occurs when

the population in a genetic algorithm is trapped in such a
suboptimal state that most of the genetic operators can no
longer produce offspring that outperforms their parents [6].

It is widely recognized that the decrease of population
diversity leads directly to premature convergence. One in-
tuitive explanation may be that individual solutions are se-
lected through a fitness-based process, where fitter solutions
(as measured by a fitness function) are typically more likely
to be selected. Popular and well-studied selection methods
such as roulette wheel selection and tournament selection are
stochastic and designed so that a small proportion of less fit
solutions are also selected. This, to some extent, helps keep
the population diversity high, preventing premature conver-
gence on poor solutions.

Moreover, several methods have been proposed to fight
against premature convergence in GAs [2, 5, 7, 8]. For ex-
ample, the enlargement of population size, the increase of
mutation rate, the use of more disruptive crossover opera-
tors, and the modification of fitness assignment, for example,
will reduce the possibility of losing genes and thus maintain
population diversity.

However, enlarging population size which is a simple and
intuitive way will bring about a remarkable growth in both
time and space complexity. Besides, a few individuals being
mutated may not resume the diversity of the whole popula-
tion since the new offspring will soon be cleared away with
large possibility. It can be extremely hard to jump out of
the suboptimum by mutation around the current optimal
individual. As for the scaling of fitness function, it is shown
that it does not affect the converging speed obviously [10].

3. GENETIC ALGORITHMS WITH
RESERVE SELECTION (GARS)

3.1 Premature Convergence
As we all know, when premature convergence happens,

all the individuals in a population tend to be identical with
almost the same fitness value. It is really hard for such a
low-entropy population without sufficient genetic informa-
tion to evolve any more. However, how does the abundant
gene contained in the initial population which is usually ran-
domized with a certain size lose gradually with the evolution
process?

During the course of evolution, the individuals with higher
fitness values are selected more than once, whereas many
less-fit individuals are rejected. However, the well-known
building block hypothesis suggests that short, low-order, and
highly-fit schemata (or building blocks) contribute to the
evolution towards better solutions [7]. Note that it is still
possible for the individuals which seem poor at the moment
to contain building blocks, which even though not having

Table 1: Great loss of genetic information in evolu-
tion

Generation ID Nu N Rloss

1 68 100 68%
2 65 100 65%
3 69 100 69%
4 66 100 66%
5 70 100 70%
6 66 100 66%
7 64 100 64%
8 72 100 72%
9 67 100 67%
10 65 100 65%

been “activated”yet, may play an important role in future
evolution. Unfortunately, they are permanently eliminated
together with their host individuals from the population,
subject to the law of “survival of the fittest”.

The great gene loss in evolution for the multiple sequence
alignment problem (see also Section 4.3) is shown in Table
1, where a tournament selection is employed with tourna-
ment size 5. We measure the loss of genetic information by
the loss rate (Rloss), calculated using the ratio of the num-
ber of unselected individuals in each generation (Nu) to the
population size (N) as follows.

Rloss =
Nu

N
× 100%, 0 ≤ Nu ≤ N

The result obtained reveals two facts: (1) In each gener-
ation, only about one-third of the individuals are selected
to produce offspring, while all the others are died out due
to their low fitness. Apparently, the genetic information
has not been fully utilized, which seems a disadvantage to
global optimization; (2) Besides, there may exists some re-
dundancy in offspring, since they derive from only a small
part of their ancestors. This may indirectly give rise to pre-
mature convergence.

As a matter of fact, the building blocks buried in less-fit
individuals should be reserved, partially or as much as pos-
sible, being expected to be unleashed in a new environment,
i.e. a new host individual. Meanwhile, the offspring redun-
dancy should be effectively removed, without sacrificing the
converging speed excessively. In the solution given below,
with population size remaining unchanged, we do a good
tradeoff between the two objectives.

3.2 Reserve Selection
In this section, we present an improver of conventional

GAs, which is a new selection mechanism called reserve se-
lection. As we stated before, we hope it can hit the target
effectively - to prevent premature convergence for the pur-
pose of global optimization.

The new algorithm is based on the technique called popu-
lation segmentation, which divides the offspring population
into two parts: non-reserved area and reserved area, as dis-
played in Figure 1.

• Non-reserved area (NRA): similar to the popula-
tion of standard GAs, this part mainly works as an
intensified searcher, approaching the local optima via
the exploitation of the individuals of good quality. The
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Figure 1: Reserve selection via population segmentation

offspring in NRA usually originate from more-fit in-
dividuals of the preceding population since they are
produced via elite and tournament selection. Consid-
ering that NRA is now merely a part of the whole
population, the redundancy in offspring could to some
extent be alleviated when compared with the conven-
tional method.

• Reserved area (RA): this part is specially set up
to reserve the building blocks buried in poor individ-
uals and thus maintain a diversified search so as to
explore the global optimum. The size of RA is called
reserve size. The offspring in RA derive exclusively
from those not having been selected yet in producing
NRA, which are of low fitness values in general. In
doing so, a record called selected table is used to la-
bel the individuals selected in producing NRA, with
O(N) space complexity where N is population size.
RA helps to restrict the loss of genetic information.

The way of segmentation, or the choice of reserve size,
depends on various demands and thus a balance can be done
between exploitation and exploration. In particular, when
reserve size becomes zero, the implementation completely
reduces to a conventional GA.

3.3 Evolution of Reserved Area
It is far from satisfactory just reserving less-fit individuals,

because the building blocks hosted there still remain to be
activated. Therefore, proper genetic operators need to be
performed to turn the reserved genes to full account.

While the same procedure of selection and recombination
is applied for NRA as that in standard GAs, a set of ge-
netic operators is elaborately designed for RA. Considering
that individuals available for producing RA are in common
of low fitness values, we cancel the elite selection, and both
crossover rate and mutation rate are set to one, inducing po-
tential building blocks to migrate into a better environment
as soon as possible. In addition, we renovate the tourna-
ment selection by substituting the uniqueness of individuals
for fitness value as the criterion of selection so as to diversify
the population.

Figure 2: Estimate the density of individuals

The uniqueness is defined using the crowded comparison
approach originally presented in NSGA-II [4]. A slight mod-
ification is done in order to match it with single-objective
problems. We get an estimate of the density of individuals
surrounding a particular individual (i) in the population by
calculating the distance between two points (i−1 and i+1)
on both sides of this point along the axis of fitness value
(f), which is shown in Figure 2. This quantity d(i), called
the crowding distance, serves as a measure of the size of the
largest interval enclosing the point i without including any
other point in the population.

The computation of crowding distance requires sorting of
the population according to the fitness value in their as-
cending order of magnitude. Thereafter, the boundary indi-
viduals (individuals with smallest and largest fitness values)
are assigned an infinite distance value. All other interme-
diate individuals are assigned a distance value equal to the
absolute difference in the fitness values of its two adjacent
individuals. The following algorithm clearly outlines the
crowding distance computation procedure of all individuals
in a population P .

Algorithm 1. Compute the crowding distance
crowding-distance-assignment(P )
l = |P | number of individuals in P
P ′ = sort(P, f) sort P by fitness f
d(1) = d(l) = ∞ boundary points are always selected
for i = 2 to (l − 1) for all other points

d(i) = |f(i + 1) − f(i − 1)|

Here, f(i) refers to the fitness value of the i-th individual.
The above algorithm has O(N log N) time complexity, where
N is population size. After each individual i in the popu-
lation P is assigned a distance metric d(i), we can compare
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Figure 3: Flowchart of GAs with Reserve Selection

the uniqueness of individuals, u(i), which is a monotonic
increasing function of d(i). Between two different individ-
uals, the one with a higher uniqueness is more preferred in
selection procedure.

For practical use, according to the genetic operators
through which the offspring is reproduced, we can further
divide NRA into three subareas: NRA.elite, NRA.crossover
and NRA.mutation, while RA may consist of two subareas:
RA.crossover and RA.mutation. The flowchart of Genetic
Algorithms with Reserve Selection (GARS) is displayed in
Figure 3. The difference from conventional GAs lies in its
two-stage procedure, where the evolution of RA is carried
out successively after that of NRA. Note that the individuals
selected in producing some subarea of NRA are urged to
be reused for others in order to derive more benefit from
superior genes. However, this rule is not applicable to RA
so that more building blocks could be reserved.

4. CASE STUDIES AND EXPERIMENTAL
RESULTS

4.1 Multimodal Function Optimization
Compared with monomodal function optimization, the

multimodal function optimization is more influenced by pre-
mature convergence. Once the process gets caught in a local
optimal state, one will probably receives solutions far from
the global optimum.

In this test, we compare the new algorithm with the con-
ventional GA to evaluate its performance, where the real
number encoding is employed. The population size is set to
10, and the generation number is set to 100. The reserve
size is set to 4. Besides, our results are the average outcome
of 1000 independent runs.

1. Search the minimum of function

f(x) = (x + 0.9)(x + 0.7)(x + 0.2)(x − 0.4)

(x − 0.7)(x − 0.9) + 0.04, x ∈ [−1, +1]

Figure 4: f(x) on [−1, +1]

Figure 5: g(x) on [0, 1]

The function curve is depicted in Figure 4, where there
are three minima and the global one is

x = 0.077152, fmin(x) = 0.00517542

2. Search the maximum of function

g(x) = | sin(30x)| × (1 − x

2
), x ∈ [0, 1]

which has many maxima as depicted in Figure 5. The global
one is

x = 0.0517900, gmax(x) = 0.9739626

The results are shown in Table 2. Given the same popula-
tion size (space limit) and generation number (time limit),
the precision of our new algorithm (1.69% and 0.40%) is
much higher than that of the conventional GA (14.14% and
7.79%). In fact, premature convergence occurs in conven-
tional GA during the search period and the population can
no longer be renewed in that all individuals tend to be iden-
tical. The proposed method takes the advantage of the re-
serve selection to prevent GAs from premature convergence
such that the better solution can always be searched for.

4.2 Traveling Salesman Problem
The traveling salesman problem (TSP) is a problem in

discrete or combinatorial optimization, which belongs to the

1176



Table 2: Compare GA and GARS in multimodal
function optimization

Function Global Optimum GA GARS
f(x) 0.00517542 0.00590726 0.00526281
g(x) 0.9739626 0.898096 0.970057

Table 3: Compare GA and GARS in traveling sales-
man problem

Instance TSP Dimension GA GARS
tsp225 225 28434.8 25044.5

kroA200 200 264647 227692
ch130 130 35133.9 29614.2

class of problems known as NP-complete. One of the tradi-
tional lines on attacking the NP-hard problems is devising
“suboptimal”or heuristic algorithms. TSP is a touchstone
for many general heuristics devised for combinatorial opti-
mization such as genetic algorithms. That is why here we
study in this case the proposed method.

We also adopt a real number encoding scheme in the ex-
periment. Both the population size and the generation num-
ber are set to 100. The reserve size is set to 30. In addition,
the results are the average outcome of 100 independent runs.
The testing instances are all picked from TSPLIB, a library
of 110 sample instances of traveling salesman problem (and
related problems) from various sources and of various types
for the benchmark of TSP algorithms.

Table 3 lists the solutions to three instances in TSPLIB,
obtained using both conventional GA and GA with Reserve
Selection. Evidently, our improved algorithm performs bet-
ter than the conventional one with a promotion in result
fitness by 11.92%, 13.96% and 15.71% respectively.

More details are given by fitness curves for the instance
kroA200 in Figure 6, contrasting the evolution process of
both methods. In the earlier period of evolution, the pro-
pose method converges more slowly than the conventional
one till the 23rd generation since building blocks are being
accumulated but their powers have not been fully released
yet. In the long run, with the building blocks saved by the
reserve selection mechanism being activated in new envi-
ronments, our algorithm progressively demonstrates its effi-

Figure 6: Fitness curves of traveling salesman prob-
lem

Figure 7: Fitness curves of multiple sequence align-
ment

ciency, while the conventional method loses its convergence
speed resulting from lack of population diversity.

4.3 Multiple Sequence Alignment
The multiple sequence alignment (MSA) is among the

most important and most challenging tasks in Bioinformat-
ics, which is crucial to humans’ understanding of the phe-
nomena of life. However, the problem is characterized by
very high computational complexity in terms of both time
and space. In fact, MSA with the sum-of-pairs (SP) score
is an NP-hard problem [15]. Most practical algorithms are
therefore based on heuristics producing quasi-optimal align-
ments. The problem of aligning multiple sequences can be
converted into that of searching for optimal solutions in a
problem space. Hence, a genetic algorithm can be designed
for MSA.

In this case, we also make a comparison of both algorithms
to show the effectiveness of the new improver, where binary
coding is used. The population size and the generation num-
ber are set to 100 and 5000 respectively. The reserve size
is set to 30. The biological sequences we use for the ex-
periment are retrieved from the SRS database [12], whose
general information is listed in Table 4.

Figure 7 portrays the evolution process of both methods.
As can be learned, on the one hand, our new algorithm con-
verges more quickly than a conventional GA as the evolution
process passes by so that a better alignment can be found
in a shorter period of time. On the other hand, for the con-
ventional method, there is an undistinguishable difference
between the maximal and average fitness values which is
used as a yardstick to measure premature convergence by
Srinivas and Patnaik [14]. However, the proposed method
maintains population diversity successfully by reserving the
building blocks hosted in less-fit individuals from the very
beginning, as indicated by the different gene loss before and
after reservation in Table 5.

5. CONCLUSIONS AND FUTURE WORK
Premature convergence is one of the major problems faced

by genetic algorithms. The population diversity gets worse
and worse since the building blocks buried in less-fit in-
dividuals are losing along with the evolution. GARS, an
improved genetic algorithm with a reserve selection mecha-
nism, saves the potential building blocks to a reserved area
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Table 4: Multiple sequences to be aligned
ID Entry Name Molecule Type Sequence Length
1 EMBLRELEASE: AB075784 genomic DNA 500
2 EMBLRELEASE: AB080848 genomic DNA 500
3 EMBLRELEASE: AB099717 genomic DNA 500

Table 5: Gene loss in evolution before and after reservation
Generation ID Nu Before Reserve Rloss Before Reserve Nu After Reserve Rloss After Reserve

1 61 61% 30 30%
2 68 68% 37 37%
3 67 67% 36 36%
4 66 66% 35 35%
5 67 67% 36 36%
6 69 69% 38 38%
7 64 64% 33 33%
8 66 66% 35 35%
9 67 67% 36 36%
10 64 64% 33 33%

in each offspring population, and attempts to activate them
with the help of innovative genetic operators. The experi-
ments are conducted in several cases, whose results indicate
that the proposed method succeeds in avoiding premature
convergence by maintaining a diverse population. Moreover,
compared with standard GAs, the improver exceeds in both
solution quality and convergence speed, without a notable
increase in the computational complexity. We believe this
idea may be generalized to some population-based evolu-
tionary algorithms other than GAs.

Future work will mainly involve four aspects. First, we
will examine by experiments how different reserve sizes affect
the performance; second, the working principle of building
blocks will be investigated to explain in theory why GARS
works with a quantitative analysis; thirdly, we will try com-
bining GARS with other effective methods to build a hybrid
solution; fourthly, the proposed method will be applied to
solve a wider range of complex problems. Our goal is to
build a highly efficient and robust evolutionary algorithm.
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