
Self-Adaptive Simulated Binary Crossover
for Real-Parameter Optimization

Kalyanmoy Deb
Dept. of Mechanical

Engineering
Indian Inst. of Tech. Kanpur
Kanpur, PIN 208016, India

deb@iitk.ac.in

S. Karthik
Dept. of Mechanical

Engineering
Indian Inst. of Tech. Kanpur
Kanpur, PIN 208016, India

ksindhya@iitk.ac.in

Tatsuya Okabe
Honda Research Institute

Japan
8-1 Honcho, Wako-shi

Saitama, 351-0188, Japan
okabe@jp.honda-ri.com

ABSTRACT
Simulated binary crossover (SBX) is a real-parameter re-
combination operator which is commonly used in the evo-
lutionary algorithm (EA) literature. The operator involves
a parameter which dictates the spread of offspring solutions
vis-a-vis that of the parent solutions. In all applications of
SBX so far, researchers have kept a fixed value throughout
a simulation run. In this paper, we suggest a self-adaptive
procedure of updating the parameter so as to allow a smooth
navigation over the function landscape with iteration. Some
basic principles of classical optimization literature are uti-
lized for this purpose. The resulting EAs are found to
produce remarkable and much better results compared to
the original operator having a fixed value of the parameter.
Studies on both single and multiple objective optimization
problems are made with success.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Problem Solving, Con-
trol Methods, and Search

General Terms
Algorithms

Keywords
Self-adaptation, simulated binary crossover, real-parameter
optimization, recombination operator.

1. INTRODUCTION
Most real-world optimization problems involve decision

variables which are real-valued. Despite the dedicated real-
parameter EAs, such as evolution strategy, differential evo-
lution etc., real-parameter GAs have gained adequate pop-
ularity in the recent past. The main challenge in developing
an efficient real-parameter GA lies in devising a recombina-
tion operator in which two or more real-parameter vectors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

must be blended to create two or more offspring vectors of
real numbers [11, 2, 9, 7]. These recombination operators
employ a non-uniform probability distribution around the
parent solutions to create an offspring solution. A theo-
retical study [1] attempted to find similarities among these
operators.

In this paper, we concentrate on a particular recombina-
tion operator – the simulated binary crossover (SBX) op-
erator [2]. The SBX operator uses two parent vectors and
apply the blending operator variable by variable to create
two offspring solutions. The operator involves a parameter,
called the distribution index (ηc), which is kept fixed to a
non-negative value throughout a simulation run. If a large
value of ηc is chosen, the resulting offspring solutions are
close to the parent solutions. On the other hand, for a small
value of ηc, solutions away from parents are likely to be cre-
ated. Thus, this parameter has a direct effect in controlling
the spread of offspring solutions. Since a search process of
finding the minimum solution of a function landscape largely
depends on controlling the spread (or diversity) of offspring
solutions vis-a-vis the selection pressure introduced by the
chosen selection operation, fixing the ηc parameter to an
appropriate value is an important task.

Here, we suggest a self-adaptive procedure of updating the
ηc parameter by using the extension-contraction concept in
a classical optimization algorithm. If the created child so-
lution is better than the participating parent solutions, the
child solution is extended further in the hope of creating even
a better solution. On the other hand, if a worse solution is
created, a contraction is performed. Either task will result
in a update of ηc, so that the newly-created extended or
contracted offspring solution has an identical probability of
creation with an updated η′

c. This modification procedure
has been applied to three single-objective and three two-
objective optimization problems and compared with corre-
sponding GAs with a fixed ηc value. In all cases, better
performance of the suggested self-adaptive procedure is ob-
served.

In the remainder of the paper, we briefly describe the SBX
operator. Thereafter, we suggest the self-adaptive ηc update
procedure and show simulation results on single-objective
optimization problems. In each case, a parametric study
with a parameter α is performed to find a suitable working
range of this parameter. Then, a scale-up study by vary-
ing the number of decision variables is performed to demon-
strate the polynomial complexity of the suggested algorithm.
Finally, the self-adaptive update of ηc is extended to multi-

1187

objective optimization and results are discussed. Finally,
conclusions from the study are made.

2. SIMULATED BINARY CROSSOVER (SBX)
As the name suggests, the SBX operator [2, 6] simulates

the working principle of the single-point crossover opera-
tor on binary strings. In the above-mentioned studies, it
was shown that this crossover operator respects the inter-
val schemata processing [7], in the sense that common in-
terval schemata between the parents are preserved in the

offspring. The procedure of computing the offspring x
(1,t+1)
i

and x
(2,t+1)
i from the parent solutions x

(1,t)
i and x

(2,t)
i is de-

scribed as follows. A spread factor βi is defined as the ratio
of the absolute difference in offspring values to that of the
parents:

βi =

˛̨̨
˛̨x

(2,t+1)
i − x

(1,t+1)
i

x
(2,t)
i − x

(1,t)
i

˛̨̨
˛̨ . (1)

First, a random number ui between 0 and 1 is created.
Thereafter, from a specified probability distribution func-
tion, the ordinate βqi is found so that the area under the
probability curve from zero to βqi is equal to the chosen ran-
dom number ui. The probability distribution used to create
an offspring is derived to have a similar search power to that
in a single-point crossover in binary-coded GAs and is given
as follows [2]:

P(βi) =

(
0.5(ηc + 1)βηc

i , if βi ≤ 1;
0.5(ηc + 1) 1

β
ηc+2
i

, otherwise. (2)

Figure 1 shows the above probability distribution with ηc =
2 and 5 for creating offspring from two parent solutions

(x
(1,t)
i = 2.0 and x

(2,t)
i = 5.0). In the above expressions,

the distribution index ηc is any non-negative real number.
A large value of ηc gives a higher probability for creating
‘near-parent’ solutions (thereby allowing a focussed search)
and a small value of ηc allows distant solutions to be selected
as offspring (thereby allowing to make diverse search).

c
η
cη

865

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
2 74P
r
o
b
a
b
i
l
i
t
y

d
e
n
s
i
t
y

p
e
r

o
f
f
s
p
r
i
n
g

Offspring solution

o

= 5
 = 2

310−1
o

Figure 1: The probability density function for cre-
ating offspring under an SBX-ηc operator.

After obtaining βqi from the above probability distribu-

tion, the offspring are calculated as follows:

x
(1,t+1)
i = 0.5

h
(1 + βqi)x

(1,t)
i + (1 − βqi)x

(2,t)
i

i
, (3)

x
(2,t+1)
i = 0.5

h
(1 − βqi)x

(1,t)
i + (1 + βqi)x

(2,t)
i

i
. (4)

The SBX operator biases solutions near each parent more
favorably than solutions away from the parents. Essentially,
the SBX operator has two properties:

1. The difference between the offspring is in proportion
to the parent solutions.

2. Near-parent solutions are monotonically more likely
to be chosen as offspring than solutions distant from
parents.

An interesting aspect of this crossover operator is that for
a fixed ηc the offspring have a spread which is proportional
to that of the parent solutions“

x
(2,t+1)
i − x

(1,t+1)
i

”
= βqi

“
x

(2,t)
i − x

(1,t)
i

”
. (5)

In initial populations, where the solutions are randomly

placed, making the difference in parents ((x
(2,t)
i − x

(1,t)
i))

large, this allows to create a child solution which is also far
away from the parents. However, when the solutions tend
to converge due to the action of genetic operators (thereby
making the parent difference small), distant solutions are
not likely to occur, thereby focusing the search to a nar-
row region. As we discuss in the following section that this
aspect of self-adaptive nature of SBX operator is not ade-
quate alone in reaching near the optimum in large-sized and
complex functions.

3. SELF-ADAPTIVE SBX
The SBX operator discussed above involves a parameter:

the distribution index ηc. In most applications of SBX, a
fixed value of ηc = 2 is used for single-objective optimization
[2]. For a fixed value of ηc, the difference between the created
child solution and the closest parent solution depends on
the net difference between the two parent solutions, thereby
causing a self-adaptive property of such a operator [5]. It
has always been a research issue whether such a self-adaptive
property is adequate in solving difficult optimization prob-
lems. Past studies of real-coded genetic algorithms with the
SBX operator was not found to be suitable for multi-modal
problems, such as Rastrigin’s function [4]. Here, we sug-
gest a procedure for updating the ηc parameter adaptively
to solve such problems.

To illustrate the modified procedure, let us consider Fig-
ure 2, in which a typical child solution c is shown to be
created from two parent solutions p1 and p2 by using SBX
with a distribution index of ηc. Say, the random number
used for this particular crossover operation is u (∈ (0, 1)).
Then, if β (> 1) corresponds to the spread factor for the
specific case of crossover, we obtain the following from the
definition of spread factor:

β = 1 +
2(c − p2)

p2 − p1
. (6)

By noting thatZ β

1

0.5(ηc + 1)

βηc+2
dβ = (u − 0.5),

1188

ηc
’

ηc ηc

p1 p2 c c’

u u

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Figure 2: A schematic diagram showing the ηc up-
date procedure.

we obtain the following relationship:

ηc = −
„

1 +
log 2(1 − u)

log β

«
. (7)

We now get into four scenarios (resulting in equations 9 to
12), as discussed below.

If this child solution c is better than both parent solu-
tions, we assume that the region in which the child solution
is created is better than the region in which the parents so-
lutions are and intend to extend the child solution further
away from the closest parent solution (p2, in the case shown
in the figure) by a factor α (> 1). This idea is similar to
that followed in Nelder and Meade’s simplex search method
[10], in which an intermediate solution is either expanded
or contracted or kept the same depending on the function
value of the solution compared to that of the previously com-
puted solutions. Rechenberg’s 1/5th rule also keeps track of
proportion of successful mutations over a certain number of
trials [13]. If the success happens too often, the mutation
strength is increased to create solutions away from the par-
ent, else the mutation strength is reduced. By using α > 1,
the difference between the new child solution c′ with closest
parent p2 is made α times than that between original child
solution c and p2, such that

(c′ − p2) = α(c − p2).

We then modify the distribution index to a value η′
c such

that with this value and having the identical random number
u, the modified child solution c′ gets created from parent
solutions p1 and p2, thereby yielding

η′
c = −

„
1 +

log 2(1 − u)

log β′

«
. (8)

Here, β′ is the corresponding distribution index, given by

β′ = 1 +
2(c′ − p2)

(p2 − p1)
,

= 1 + α(β − 1).

Using the above relationship between β′ and β and using
equations 7 and 8, we obtain the following update relation-
ship for a child solution being found to be better than the
nearest parent solution and the child lies outside the region
bounded by parents:

η′
c = −1 +

(ηc + 1) log β

log (1 + α(β − 1))
. (9)

To make the η′
c value meaningful and free from numerical

underflow error, we restrict it within [0, 50], that is if η′
c < 0

is obtained by the above equation, we set it to be zero and
if η′

c > 50 is used, we set it to be 50. This equation gives
us an update procedure of ηc for providing a distribution
index which is able to create children solutions in the right
direction away from the parents. It is interesting to note that
if a child c was created to the left of p1, a similar update
relationship will also be achieved.

If the child solution c is worse than both parent solutions,
we would like to move the modified child c′ to get closer to
the parents and we may use 1/α instead of α in equation 6:

η′
c = −1 +

(ηc + 1) log β

log (1 + (β − 1)/α)
. (10)

However, if a child solution is created inside the region
bounded by both parents, a different update relationship will
be obtained, since the SBX probability distribution function
is different in this case. By following the above arguments,
we obtain β′ = βα and the relationship for an improved child
solution between ηc and η′

c values is obtained as follows:

η′
c =

1 + ηc

α
− 1. (11)

Once again, we restrict its value within [0, 50] to avoid any
computational error and to make η′

c meaningful.
For a scenario of creating a worse child, the above update

relationship changes to

η′
c = α(1 + ηc) − 1. (12)

If the child solution c has a function value which is within
the function value of the two parent solutions, we set η′

c =
ηc.

To implement the update concept, we assign a ηc value
within [ηL

c , ηU
c] in the initial population. In all simulations

here, we use ηL
c = ηU

c = 2. For a child solution, one random
number is created and a corresponding β is computed. This
β is used for all n variables and a child is created by variable-
wise application of the SBX operator. This results in a line-
SBX operator which produces a child along the line joining
the two parent vectors. Thereafter, depending on the event
of whether a better child (than both parents) or a worse
child (than both parents) is created, ηc is updated and is
assigned to the corresponding child solution. We assign a
new η′

c value to each child solution separately.
It is interesting to note that if α = 1 is used, all the

above update of ηc procedure result in η′
c = ηc and the

above procedure is identical to the fixed ηc (original SBX)
procedure.

3.1 Effect of mutation operator
In addition to the above modified SBX operator, a mu-

tation operator can be used to perturb the created child c′.
In such an event, there is an extra solution evaluation per
child creation. Solution c gets evaluated during the crossover
operator and the mutated version of the modified solution
c′ is evaluated. In our implementation, we add such extra
function evaluations in the computation of performance of
the modified procedure. However, if the mutation probabil-
ity is so low that no variable gets mutated by the mutation
operator, there is no extra evaluation recorded.

4. SIMULATION RESULTS
We now apply the modified approach to three different un-

constrained functions which are popularly used in the GA

1189

literature. Many studies in the literature on the chosen test
problems use a population which is initialized symmetrically
around the global minimum of the functions. When an algo-
rithm with such a population uses recombination and muta-
tion operators, which have a tendency to create solutions in
the central region of the search space bounded by the pop-
ulation members, it finds an easier time converging to the
global minimum. To avoid any such undue advantage from
the operators, in all simulations here, the initial population
is bounded in the range xi ∈ [10, 15] for all i, such that the
global minimum is not bracketed in the initial population.
This provides a stiff test to an algorithm to first get out of
the region bounded by the initial population and then keep
moving in the correct direction so as to reach the global
minimum.

4.1 Sphere Function
The sphere function is the simplest of the three functions

used in this study:

f(x) =
nX

i=1

x2
i . (13)

First, we employ the real-coded GA with the original fixed-
ηc based SBX operator on the 30-variable sphere function
with following parameter settings: population size = 150,
pc = 0.9, ηc = 2, pm = 1/30, and ηm = 50. A run is
terminated when a solution having a function value equal
to 0.001 is found. Eleven runs are made from random ini-
tial populations. Figure 3 shows a typical variation of best
population function value with the number of function eval-
uations. To investigate the effect of recombination operator
alone, we make another set of runs with pm = 0 and a typ-
ical performance is also shown in the figure. Both results
indicate that the fixed-ηc based GA is unable to find the
true optimum in any reasonable number of evaluations for
a 30-variable sphere function. However, it is worthwhile to
mention here that after a variable-wise creation of two off-
spring vectors, if the variables values are swapped randomly
between the two offsprings (similar to a uniform crossover
operator or the crossover operator in differential evolution
[12]), a much quicker convergence with a fixed ηc = 2 can
be obtained for variable-wise separable functions, like the
sphere function [5]. This is because variables can indepen-
dently reach near the true optimum in different population
members and a uniform swapping of such solutions can cre-
ate a complete solution having near optimal variables values.
However, this uniform-like crossover operation may not work
well in rotated and more complex problems. In this paper,
we only concentrate on the blending part of the operation
and investigate whether the fixed nature of ηc or the self-
adaptive nature of ηc is more effective without having any
crossover-like swapping effect.

Next, we employ our self-adaptive update procedure of ηc.
All initial population members are initialized with ηc = 2
and then allowed to change based on our update procedure
described above. All other parameters are the same as above
and to investigate the effect of the self-adaptive recombina-
tion operator alone, we use pm = 0 and reduce the crossover
probability to pc = 0.7. For the ηc update we use α = 1.50.
A typical variation of the best population function value
is shown in Figure 3 and is found to have good converging
property. Table 1 shows the best, median and worst number
of function evaluations to reach a solution with f = 0.001

out of 11 runs. It is clear that compared to the fixed-ηc

schemes, the self-adaptive scheme is able to steer the search
towards the true minimum solution quickly and converge
close to the minimum. It is clear that even with 300,000
function evaluations, the fixed ηc scheme is not able to find
a near-optimum solution, whereas with a median of 184,050
function evaluations, a solution with three decimal places
accuracy from the true optimum is found repeatedly in 11
runs.

4.1.1 Parametric Study
Figure 4 does a parametric study with α in the range

[1.05, 2.00]. Recall that the parameter α signifies the extent
of change in the offspring solution performed to recompute
the ηc parameter for an identical probability event of creat-
ing the modified solution. Once again, 11 runs are performed
for every case and the best, median and worst number of
function evaluations are shown in the figure. It can be said
that the effect of α is not significant. Although there is a
degradation of the median performance with increasing α,
the performance is best in the range α ∈ [1.05, 1.50]. Thus,
despite the introduction of a new parameter (α) for updat-
ing an existing parameter (ηc), the effect of the parameter
α is not significant.

4.1.2 Scale-up Study
Finally, we perform a scalability study by varying the

number of variables (n) from 20 to 200. In this study, we
have used the following update of parameter due to the in-
crease in number of variables: population size = 5n. All
other parameters are kept the same as before and we use
α = 1.50. Figure 5 shows that (i) the real-coded GA with
self-adaptive recombination operator is able to find a solu-
tion close to the true minimum (within a tolerance of 0.001
in the function value) and (ii) the increase in number of func-
tion evaluations is polynomial to the increase in number of
variables (O(n2.21)). The GA with the self-adaptive SBX
operator suggested here does not exploit the variable sepa-
rability of the objective functions. This is the reason why
the proposed GA takes more number of evaluations than
other approaches which favor the variable separability and
unimodality of the sphere function [5, 4].

4.2 Rosenbrock Function
Next, we consider the Rosenbrock’s function:

f(x) =

n−1X
i=1

100(x2
i − xi+1) + (xi − 1)2. (14)

This function has the global minimum at xi = 1 for all i with
a function value equal to zero. Near the minimum region,
this function has a very small slope towards the minimum.
This property of the landscape causes an algorithm to have
a slow convergence to the minimum.

Once again, we first employ the original SBX operator
with a fixed ηc = 2 and initialize xi ∈ [10, 15] for all i.
Figure 6 shows a typical variation of population-best func-
tion value with the number of function evaluations for the
30-variable Rosenbrock function with following parameter
settings: population size = 150, pc = 0.9, pm = 1/30, and
ηm = 50. The algorithm is terminated when a solution with
a minimum function value of 0.001 is found. The procedure
is not able to come close to the true minimum. When we use

1190

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 50000 100000 150000 200000 250000 300000
Function Evaluations

F
u
n
c
t
i
o
n

V
a
l
u
e

Self−adaptive

Orig. (p_c=0.9,p_m=0)

Orig. (p_c=0.9,p_m=0.033)

Figure 3: Variation of population-
best function value with number
of function evaluations for the 30-
variable sphere function.

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
α

F
u
n
c
t
i
o
n

E
v
a
l
u
a
t
i
o
n
s

Figure 4: Parametric study of α for
the 30-variable sphere function.

Slope = 2.21

 10000

 100000

 1e+06

 1e+07

 1e+08

20010080503020
Number of Variables

F
u
n
c
t
i
o
n

E
v
a
l
u
a
t
i
o
n
s

Figure 5: Scale-up study with
number of variables for the sphere
function.

Table 1: Performance of real-coded GAs with fixed and self-adaptive ηc update on 30-variable sphere function.

Method Optimized function value (func. eval.)
Original (pc = 0.9, pm = 0.033) 1.24e03 (300,000) 4.16e03 (300,000) 4.30e03 (300,000)

Original (pc = 0.9, pm = 0) 1.21e03 (300,000) 4.13e03 (300,000) 4.24e03 (300,000)
Self-adp.(pc = 0.7, pm = 0) 10−3 (151,800) 10−3 (184,050) 10−3 (213,450)

pm = 0, a somewhat better performance is observed, but the
procedure is unable to reach near to the global minimum.

Now, we apply the self-adaptive recombination operator
starting with ηc = 2 to all initial population members. We
use α = 1.5 for the update procedure. Figure 6 shows a
typical variation in the population-best function value. The
self-adaptive property of the recombination operator is able
to adjust the ηc adequately to navigate through the fitness
landscape to reach near the global minimum. Table 2 shows
the best, median and worst performance out of 11 runs of
original and self-adaptive GAs. For the self-adaptive case,
we have shown results with α = 1.4, which produces the best
result. With as many as 10 million function evaluations, the
fixed ηc scheme is not able to find a near-optimum solution
(in fact, the best solution has a function value of 6.85(106)),
whereas with a median of about 6.9 million function evalu-
ations, a solution with three decimal places accuracy from
the true optimum is found repeatedly.

4.2.1 Parametric Study
A parametric study on α is shown in Figure 7. Although

there is a upward trend in number of function evaluations
with increasing α, with α ∈ [1.05, 1.50] the performance is
better. Interestingly, in this problem also we find that the
effect of α in a good range of values is not significant.

4.2.2 Scale-up Study
A scale-up study is made next by varying the number of

variables from 20 to 200. Figure 8 shows that the number
of function evaluations needed to reach up to three decimal
places of accuracy varies as O(n3.496(log n)−9.147) by the
proposed self-adaptive procedure.

4.3 Rastrigin’s Function
Next, we consider the Rastrigin’s function which has many

local optima and one global minimum at xi = 0 for i =
1, 2, . . . , n:

f(x) =

nX
i=1

x2
i + 10 (1 − cos(2πxi)) . (15)

In an earlier study [4], this function was difficult to solve
for global optimality using the real-coded GA with a parent
centric recombination operator, particularly when the ini-
tial population did not bracket the global optimum. In this
study, we initialize a population with each xi created ran-
domly in [10, 15], away from the global minimum solution.
In a single dimension, an algorithm has to overcome at least
10 different local optima to reach to the global minimum.
With a larger variable size, exponentially more local optima
must be overcome to reach the global minimum.

First, we apply the real-coded GA with the original SBX
operator on the 20-variable Rastrigin function with a stan-
dard parameter setting: population size = 100, pc = 0.9,
ηc = 2, pm = 1/20, ηm = 50. GAs are run from 11 different
initial populations till a maximum of 40,000 generations or
till a solution having a function value of 10−4 is obtained.
Table 3 shows the best function values obtained by the pro-
cedure. In this case, the best obtained function value (in
11 runs) with four million function evaluations is 319.523,
whereas the globally best solution has a function value equal
to zero. It is clear that no run is able to find a solution close
to the global minimum. With pc = 0.7 and pm = 0.01, we
obtain slightly better performance, but even now no solution
close to the global minimum is found.

Next, we apply the real-coded GA with our proposed self-
adaptive SBX operator with pm = 0.7 and pm = 0.01. All
initial population members are initialized with ηc = 2 and
then allowed to change using the proposed ηc update proce-
dure described earlier. We use α = 1.5 here. Table 3 shows

1191

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 2e+06 4e+06 6e+06 8e+06 1e+07

Self−adaptive

Orig. (p_c=0.9, p_m=0.033)

Orig. (p_c=0.9,p_m=0)

F
u
n
c
t
i
o
n

V
a
l
u
e

Function Evaluations

Figure 6: Variation of population-
best function value with number
of function evaluations for the 30-
variable Rosenbrock’s function.

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1.1e+07

 1.2e+07

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
α

F
u
n
c
t
i
o
n

E
v
a
l
u
a
t
i
o
n
s

Figure 7: Parametric study of α for
the 30-variable Rosenbrock’s func-
tion.

 1e+06

 1e+07

 1e+08

 1e+09

20010080503020

F
u
n
c
t
i
o
n

E
v
a
l
u
a
t
i
o
n
s

Number of Variables

Figure 8: Scale-up study with
number of variables for the Rosen-
brock’s function.

Table 2: Performance of real-coded GAs with fixed and self-adaptive ηc update on 30-variable Rosenbrock’s
function.

Method Optimized function value (func. eval.)
Original (pc = 0.9, pm = 0.033) 6.85e06 (10M) 7.44e06 (10M) 8.30e07 (10M)

Original (pc = 0.9, pm = 0) 9.94e06 (10M) 4.94e07 (10M) 5.19e07 (10M)
Self-adp.(pc = 0.7, pm = 0) 10−3 (2,200,650) 10−3 (6,832,950) 10−3 (7,836,300)

that in all cases the self-adaptive update of ηc is able to
find a solution with desired accuracy in a fraction of total
evaluations used in the case of fixed-ηc procedures. Despite
being started far away from the global minimum, the pro-
cedure is able to converge to the correct globally minimum
solution. Figure 9 shows the decrease in best function value
with number of function evaluations for a typical simulation
run with a fixed ηc = 2 procedure (pc = 0.7, pm = 0.01) and
with the self-adaptive procedure. The figure clearly shows
that the fixed ηc run is poor in its performance, whereas
the self-adaptive procedure steadily finds better and better
solutions with function evaluations.

Original SBX

Adaptive SBX

eta_c

 1e−05

 1e−04

 10

 100

 1000

 10000

6e05
Function Evaluations

f
(
x
)

o
r

e
t
a
_
c

 0.001

 0.01

 0.1

 1

 0 1e05 2e05 3e05 4e05 5e05

Figure 9: Decrease in best population function value
with number of function evaluations for the 20-
variable Rastrigin’s function.

To understand the effect of the proposed self-adaptive up-
date of ηc, we record the ηc value of the top 15 percentile

solutions in terms of their function values and show its varia-
tion with number of function evaluations in Figure 9. The y-
axis of this figure is made logarithmic. Although, the above
ηc value seems to end at 10−5 in the figure, the actual value
recorded by the procedure is ηc = 0. An interesting aspect is
that the ηc value seems to take a value zero at various stages
of the simulation. The line corresponding to the best func-
tion value (marked as ‘Adaptive SBX’) indicates that there
are a number of function values, especially within f = 10
to f = 1, in which the algorithm seems to get stuck for
a large number of evaluations before finding a better solu-
tion. Within this range of function values, this function has
one local minimum at every integer value of the function,
thereby having a possibility to get stuck 10 times. Interest-
ingly, every time the best population member gets stuck at
a local minimum, the ηc of the best 15 percentile solution
gets updated to zero, thereby increasing the spread of cre-
ated solutions by the SBX operator. Since an ηc = 0 will be
the smallest possible ηc which provides the maximum spread
in created solutions, the algorithm finds that the best way
to counteract a local statis is to increase the diversity of
created solutions to the extent possible. However, as soon
as a better solution is found, the ηc is immediately updated
to a value close to one, thereby providing a more focussed
search around population members. With an assigned fixed
value of ηc over the entire simulation run, such a variation
in spread in solutions in an offspring population is not possi-
ble. The proposed procedure seems to employ this principle
adaptively and multiply in as many times as the algorithms
get stuck to a locally optimal solution and improve from such
a situation. In the absence of such an adaptive update of ηc

with the original SBX operator, the corresponding GA was
not able to improve its performance efficiently every time it
gets stuck to a locally optimal solution.

1192

Table 3: Performance of real-coded GAs with fixed and self-adaptive ηc update on 20-variable Rastrigin’s
function.

Method Optimized function value (func. eval.)
Original (pc = 0.9, pm = 0.05) 319.523 (4M) 338.093 (4M) 342.363 (4M)
Original (pc = 0.7, pm = 0.01) 124.368 (4M) 210.929 (4M) 335.380 (4M)
Self-adp.(pc = 0.7, pm = 0.01) 10−4 (287,822) 10−4 (429,511) 10−4 (569,597)

4.3.1 Parametric Study
A parametric study of α to investigate its effect on the

performance of the proposed procedure is made next. For
the 20-variable Rastrigin’s function and with above param-
eter settings, 11 different runs are made. Figure 10 shows
number of function evaluations needed to find a solution
with a function value equal to or smaller than 10−4. It
is interesting to note that for a large range of values of α
(∈ [1.05, 8.00]), the performance of the proposed procedure
remains fairly independent of α. However, the best perfor-
mance seems to happen for α = 3 with best, median and
worst number of function evaluations of 221,082, 342,741,
and 718,680, respectively.

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1 2 3 4 5 6 7 8 9 10
alpha

F
u
n
c
t
i
o
n

E
v
a
l
u
a
t
i
o
n
s

Figure 10: Effect of parameter α on number of func-
tion evaluations to obtain the global minimum with
four decimal places of accuracy for the 20-variable
Rastrigin’s function.

4.3.2 Scale-up Study
Motivated by the success of the self-adaptive SBX pro-

cedure on the 20-variable Rastrigin’s function, we now try
to solve larger size Rastrigin’s function with n varying in
[20, 200]. With an increase in n, the number of local minima
in a particular range of the variable values increase exponen-
tially and the resulting problem is likely to provide more dif-
ficulty to an optimization algorithm. Since a function with
a larger number of variables should ideally require a larger
population size for a GA initialized with a randomly created
population [8], we use the following parametric update for
different n: population size=5n, pm = 0.2/n, and pc = 0.7.
Here also, we initialize population with xi ∈ [10, 15], so as
to not bracket the global minimum in the initial population.
We also use α = 1.5 for all n. We run till a solution with
a function value equal to or smaller than 10−4 is obtained.
Figure 11 shows that the required number of function eval-

uations increased polynomially (O(n1.807)) with n over the
entire range of number of variables used in this study. It is

Slope=1.807

1e+05

 1e+06

 1e+07

 1e+08

200100503020
Number of Variables

N
u
m
b
e
r

o
f

F
u
n
c
t
i
o
n

E
v
a
l
u
a
t
i
o
n
s

Figure 11: A polynomial increase in function eval-
uations with number of decision variables for the
Rastrigin’s function using proposed algorithm.

noteworthy that the proposed procedure is able to overcome
exponentially many local minima to converge to the globally
minimum solution with polynomially increasing number of
function evaluations to as complex as a 200-variable Rastri-
gin’s function.

5. SELF-ADAPTIVE SBX FOR
MULTI-OBJECTIVE OPTIMIZATION

Like the way we made the SBX operator self-adaptive
for single-objective optimization, we extend the idea here
for multi-objective optimization. The main difficulty arises
in deciding when a child solution is better than a parent.
Here, we simply use the idea of non-domination to decide
on this matter. Let us consider Figure 12. For the two
parent objective vectors shown in the figure, if a child lies on
the non-dominated shaded region (marked with ‘A’), we call
that the child to be better than the parents and we use the
ηc update equations described earlier. On the other hand,
if the child lies on the region marked as ‘B’ in the figure,
we call that the child is worse than the parents and we use
the appropriate equation (described earlier) to update ηc.
If, however, the child lies on the region marked as ‘C’ in
the figure, we do not update ηc. The remaining part of the
NSGA-II algorithm [3] is used as usual.

1193

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

A

C

B

parents

f1

f2

Figure 12: A sketch showing different regions in
which the child may lie for an appropriate update
of ηc.

6. SIMULATION RESULTS
Here, we show the working of NSGA-II with the self-

adaptive SBX on three test problems: 30-variable ZDT1
and ZDT2 and 12-variable DTLZ2 problems.

6.1 ZDT1, ZDT2 and DTLZ2 Problems
We use the hyper-volume measure to indicate the perfor-

mance of a procedure. We compare the performance of the
self-adaptive procedure with NSGA-II having the fixed-ηc

based SBX procedure with standard setting: ηc = 15 and
ηm = 20. We use the following parameter setting for self-
adaptive EA: population size = 100, pc = 0.9, pm = 1/30,
pm = 0 and maximum number of generations = 500. We
initialize all population members with ηc = 2, as before. Ta-
ble 4 shows the hyper-volume measure for various α values
with the self-adaptive procedure.

Table 4: Performance
(hyper-volume) comparison
of self-adaptive NSGA-II
with fixed-ηc based SBX on
ZDT1 and ZDT2.

α Best Median Worst
ZDT1

Original, fixed ηc = 15
0.72745 0.72133 0.72075
Self-Adaptive SBX

1.05 0.72768 0.68531 0.62985
1.20 0.73949 0.72203 0.56250
1.50 0.72908 0.72222 0.61360
1.70 0.73984 0.72228 0.72210
2.00 0.72282 0.72238 0.72196

ZDT2
Original, fixed ηc = 15
0.38883 0.38846 0.38800
Self-Adaptive SBX

1.05 0.38959 0.37661 0.15350
1.20 0.38940 0.38912 0.38874
1.50 0.38957 0.38920 0.38891
1.70 0.39040 0.38930 0.38890
2.00 0.38942 0.38922 0.38880

We observe that with
α values near 1.70,
the performance of
the self-adaptive NSGA-
II is better than
the fixed-ηc based
NSGA-II. Table 4
also shows the per-
formance for 30-variable
ZDT2 problem. Here,
we observe that for
α values larger than
1.20 the performance
of the self-adaptive
NSGA-II is better.

For the three-objective
DTLZ2 problem, self-
adaptive EA obtained
better hyper-volume
values of 0.57461,
0.56975 and 0.56597,
compared to 0.55993,
0.55645 and 0.55539
as best, median and
worst values obtained
using original fixed-
ηc EA.

7. CONCLUSIONS
In this paper, we have suggested a self-adaptive procedure

for updating the distribution index ηc used in the simulated
binary crossover or SBX operator which is a commonly-used
real-parameter recombination operator. The update pro-
cedure mimics the extension-contraction concept in Nelder
and Meade’s simplex search procedure and also follows, in
principle, Rechenberg’s 1/5-th update rule. On three single-
objective optimization problems and on three two-objective
optimization problems, the suggested procedure is found to
be perform much better than the original SBX procedure.
Further investigations are now needed for solving problems
having a linkage among variables and problems having more
than two objectives. A similar self-adaptive idea can also be
used with other real-parameter recombination operators.

8. ACKNOWLEDGMENT
This study is supported by a research grant from Honda

R&D, Japan.

9. REFERENCES
[1] H.-G. Beyer and K. Deb. On the desired behavior of

self-adaptive evolutionary algorithms. In Parallel Problem
Solving from Nature VI (PPSN-VI), pages 59–68, 2000.

[2] K. Deb and R. B. Agrawal. Simulated binary crossover for
continuous search space. Complex Systems, 9(2):115–148,
1995.

[3] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast
and elitist multi-objective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation,
6(2):182–197, 2002.

[4] K. Deb, A. Anand, and D. Joshi. A computationally
efficient evolutionary algorithm for real-parameter
optimization. Evolutionary Computation Journal,
10(4):371–395, 2002.

[5] K. Deb and H.-G. Beyer. Self-adaptation in real-parameter
genetic algorithms with simulated binary crossover. In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-99), pages 172–179, 1999.

[6] K. Deb and A. Kumar. Real-coded genetic algorithms with
simulated binary crossover: Studies on multi-modal and
multi-objective problems. Complex Systems, 9(6):431–454,
1995.

[7] L. J. Eshelman and J. D. Schaffer. Real-coded genetic
algorithms and interval-schemata. In Foundations of
Genetic Algorithms 2 (FOGA-2), pages 187–202, 1993.

[8] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic
algorithms, noise, and the sizing of populations. Complex
Systems, 6(4):333–362, 1992.

[9] T. Higuchi, S. Tsutsui, and M. Yamamura. Theoretical
analysis of simplex crossover for real-coded genetic
algorithms. In Parallel Problem Solving from Nature
(PPSN-VI), pages 365–374, 2000.

[10] J. A. Nelder and R. Mead. A simplex method for function
minimization. Computer Journal, 7:308–313, 1965.

[11] I. Ono and S. Kobayashi. A real-coded genetic algorithm
for function optimization using unimodal normal
distribution crossover. In Proceedings of the Seventh
International Conference on Genetic Algorithms
(ICGA-7), pages 246–253, 1997.

[12] K. V. Price, R. Storn, and J. Lampinen. Differential
Evolution: A Practical Approach to Global Optimization.
Springer-Verlag, Berlin, 2005.

[13] I. Rechenberg. Evolutionsstrategie: Optimierung
Technischer Systeme nach Prinzipien der Biologischen
Evolution. Stuttgart: Frommann-Holzboog Verlag, 1973.

1194

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

