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ABSTRACT
We have developed an algorithm for reduction of search-space,
called Domain Optimization Algorithm (DOA), applied to global
optimization. This approach can efficiently eliminate search-space
regions with low probability of containing a global optimum. DOA
basically works using simple models for search-space regions to
identify and eliminate non-promising regions. The proposed ap-
proach has shown relevant results for tests using hard benchmark
functions.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
Search-Heuristic methods

General Terms
Algorithms

Keywords
Search-space Reduction, Heuristics, Metaheuristics, Optimization

1. INTRODUCTION
Several real-world problems can be modeled as global optimiza-

tion problems, which are common in fields such as engineering and
science. In general, these problems cannot be efficiently solved by
deterministic techniques. As a consequence, probabilistic and non-
deterministic algorithms have been largely used for global optimi-
zation. Two of the main difficulties in solving these problems are
to escape from local optima and to prevent premature convergence
of the algorithm. As the problem complexity increases, due to a
great number of variables or local optima, the possibility of the al-
gorithm finding a global optimum drastically decreases. Thus, the
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resolution of these problems requires efficient and robust search
techniques.

One frequent search strategy to deal with complex optimization
problems have been the exploration of scattered points in the so-
lution space. As there is no information about a global optimum
location before solving an optimization problem, algorithms based
on such strategy can evenly scan a feasible region of the search-
space to determine good solutions (points) for better exploration in
subsequent iterations. As the algorithm iterates improving a popu-
lation (set) of solutions, a subset of solutions in general move closer
to a global optimum.

In order to reduce the running time of optimization algorithms,
advanced metaheuristics have been developed. For example, these
approaches can emphasize promising regions of the solution space
obtaining better performance. Metaheuristics using complex prob-
abilistic models to determine promising regions have shown rela-
tively high capacity to find optimum solutions. On the other hand,
such strategies are computationally less efficient due to the com-
plexity of the probabilistic models employed.

The main difficulties in using metaheuristic algorithms are: inad-
equate initialization of the population, bad configuration of the al-
gorithm, poor operators to determine the next population and guide
the search, etc. In the Genetic Algorithm (GA)[8], the crossover
operator generates new points (children) based on selected points
(parents) which were previously sampled from the search-space.
Different crossover implementations try to help the creation of bet-
ter children solutions. The similarity between GAs and Design of
Experiments techniques (DoE) [18], first presented by Reeves and
Wright [23, 22], guided some researches to incorporate DoE into
the crossover operator, resulting in a more robust and statistically
sound one, improving the solution quality of a GA.

Lung and Zhang [16, 28] developed a crossover operator us-
ing a DoE method called Orthogonal Design. In the Orthogonal
Crossover (OC), the values of the parents’ chromosome genes are
grouped into an orthogonal array. However, instead of consider-
ing the full combination of the parents’ genes, the orthogonal array
stores a small but representative sample of combinations for test-
ing the resulting children. As the optimal combination may not be
included in the orthogonal array, it may not be applicable for para-
metrical problems.

Chan, Aydin and Fogarty tried another DoE technique: the Ta-
guchi method. It is an efficient DoE approach that can be used in
simultaneous modeling, evaluation and optimization of operating
conditions in complex systems [3]. Using this method, the poten-
tial drawback in OC can be overcame because combinations not
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included in the orthogonal array can be considered. Based on this,
they developed the Taguchi Crossover operator (TC) in which the
children are formed from the best combinations of the genes with
the best main effect (the gene with the greatest influence in the re-
sponse variable). Experimental results show that TC outperforms,
in solution quality, OC and classical crossover operators on a set of
global numeric optimization benchmark problems [3].

Estimation of Distribution Algorithms (EDAs) [20], also known
as probabilistic model-building evolutionary algorithms, have at-
tracted increasing attention by researchers during the last few years.
EDAs incorporate methods for automated learning of correlations
among variables of the encoded problem solutions. The process of
sampling new individuals from a probabilistic model, that is, the
creation of the offspring based on a model obtained by a set of so-
lutions, respects these mutual dependencies such that disruption of
important building blocks is avoided, in comparison with classical
recombination operators. Using these operators there is no need to
specify certain EA parameters. The complex probabilistic model
used to guide the search through the offspring sampling is one of
the main drawbacks of this method, due to the process of statistical
information extraction and manipulation [11].

We propose a search strategy using simple models (linear) [18]
to determine non-promising regions. This approach is iteratively
applied to eliminate regions where the algorithm guarantees, with
high probability, that there is no global optimum. The algorithm
finishes if it cannot guarantee that an additional reduction will not
lose the optimum solution. Our approach, a Domain Optimization
Algorithm (DOA) belongs to a class called search-space reduction
algorithms (SRAs) [24, 4]. A SRA is a technique to determine one
or more promising regions before the use of an optimization al-
gorithm, instead of detecting them during the optimization process.
This way, one can concentrate the population into the limits defined
by the SRA, where there is a high probability of finding the global
optimum.

As the proposed technique is a pre-optimization process, the ob-
jective of this paper is to show how a search-space reduction us-
ing simple linear models can help global optimization algorithms.
The results obtained with the optimization algorithms tested in this
work dont’t intend to be better than results obtained by state-of-art
algorithms, but to be better than a simple random initialization or,
at least, to obtain similar results.

This paper is presented as follows. In section two, the DoE
methodology of Multiple Linear Regression is introduced. In sec-
tion 3, the Domain Optimization Algorithm (DOA) is presented and
briefly commented. In section 4, the applicability of our proposed
SRA is demonstrated using some global optimization benchmark
functions. Next, we finalize this paper with some conclusions and
future work.

2. DESIGN OF EXPERIMENTS
The objective of statistical methods is to make this process the

most efficient possible and is exactly what optimization algorithms,
like GAs, need. There is an interesting relationship between GAs
and an area of statistics known as Design of Experiments (DoE) [1,
5, 7, 12, 18, 27]. Reeves and Wright [22, 23] show details about
this relationship, and some of the main differences between them
are presented in Table 1.

Thus, it is reasonable to think that one ideal algorithm should be
capable of automating the decisions that must be taken in a typical
DoE to guide the search process (using a GA, for example) to eval-
uate the next best point, chosen according to the whole information
available. This strategy was adopted in the Orthogonal Crossover
[16] and Taguchi Crossover [3] operators, with great success.

In this work, we use the information obtained by a DoE to select
a limited region of the search-space where the best point (global
optimum) can be located, called a promising region. Concentrating
the search in this promising region, one can expect a reduction of
the number of evaluated points needed to find the global optimum.
To select the promising region, our approach uses the Multiple Lin-
ear Regression technique, explained in the next subsection.

2.1 Multiple Linear Regression
Multiple Regression is a set of statistical methods used to build

mathematical models when one intends to study the behavior of a
response variable according to one or more explicative/predictive
variables of a determined process. As such model is subtle to er-
rors, it is common to accept models with reasonable precision. The
regression analysis is a technique applied in several fields of knowl-
edge [17]. The main objectives of the regression analysis can be
summarized in the following stages:

1. Choice of variables: in general, the set of variables which
affects the response variation y is unknown. To highlight this
question, initial studies are made with a big number of vari-
ables. The regression analysis aids in the process of selection
of variables, eliminating (in the final stage of the process)
the ones which contribution to the model explanation isn’t
significant;

2. Parameters estimation: from a set of observations (sample
of size n) and a model related to the response and predictive
variables, one applies some process to fit a model (linear or
non-linear) to the data by obtaining values (estimates) to the
model parameters;

3. Inference: the fitting of a regression model allows to make
inferences like hypothesis tests of the model reliability and
confidence intervals to the prediction;

4. Prediction: with the regression analysis, one expects that the
response variation y be explained by the fitting of a model to
the predictive variables x, with a reasonable quality. There-
fore, one can use this model to predict y values corresponding
to x values not sampled. In general, x values that are inside
the sampling region are used. Values outside this interval are
called extrapolation and the prediction of these values with
the fitted model will probably be of low confidence.

The multiple linear regression tries to fit a straight line (linear model)
and to identify how k variables contribute to make the observed
phenomenon. The functional part of this method is a linear func-
tion

y = f(x1, x2, ..., xk) + ε, (1)

such that

f(x1, x2, ..., xk) = β0 + β1x1 + β2x2 + ... + βkxk. (2)

Thus, f is an unknown function which relates the x variables with
the y response. β0 describes the interception of the hyper-plan with
the k+1 axis and ε is the error (associated to another unknown func-
tion which relates other variables not included in the model, which
can or not be known). As the sample set has n observations, one
can rewrite the equation 1 as

yi = β0 + β1x1i + β2x2i + ... + βkxki + εi, (3)

for i=1,...,n.
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Table 1: Some differences between GAs and DoEs
Genetic Algorithms Design of Experiments
Started with random subsets of the solution universe. Uses a carefully structured subset.
Need a big set of points. Try to extract information using a minimum set of points.
Doesn’t remember, explicitly, previous results. Incorporate the discovered information in a cumulative manner.
Can be automatically executed. Need human interaction and interpretation to take decisions
Make no explict use of modelling concepts. Has an explicity model with which it attempts to account the observed phenomena.

Table 2: Data input to the multiple linear regression
X Y

x1 x2 · · · xk y
x11 x21 · · · xk1 y1

x12 x22 · · · xk2 y2

...
... · · ·

...
...

x1n x2n · · · xkn yn

Table 2 presents the data input to the response variable y and
its respective explicative variables (x1,x2, ..., xk). Separately, one
has an X matrix, which corresponds to the explicative variable’s ob-
servations, and an Y vector, which contains the set of the observed
values of the sample’s response variable.

This model describes a hyper-plan with k spatial dimensions, ac-
cording to the k explicative variables. The estimatives β̂0, β̂1, ..., β̂k

of the coefficients β0, β1, , ..., βk can be calculated by the Mini-
mum Square Method [12, 17]. Such method is one of the most
used to estimate the regression parameters and it’s purpose is to
minimize the differences between the observed and predicted val-
ues [9].

2.1.1 Minimum Square Method
One assume that the errors (εi, i = 1, ..., n) are independent and

identically distributed with zero mean and σ2 variance. Supposing
that the relation among the variables is satisfactory, one can esti-
mate the regression model and solve some related inference prob-
lems.

The minimum square method is an efficient strategy to estimate
the regression parameters. The sum of the squared errors εi in the
equation 3 can be minimized, and the β̂s values can be estimated
using the following equation:

β̂ = (X ′X)−1(X ′Y ), (4)

such that Y is a vector n * 1, X is a matrix n * (k + 1) (the col-
umn zero has only values equal to 1, the intercept) and β̂ is the
vector (k + 1) * 1 of the coefficients estimated by the equation.

2.1.2 Regression Hypothesis Tests
In the regression analysis, it is important to evaluate how much

the relation between the response value (y) and the explicative vari-
ables (x) can be considered significant. Hypothesis tests are usable
to verify which the significant parameters of the model are.

One suppose that the errors εi have a normal distribution and are
independent with zero mean and unit variance. The yi variables
also have normal distribution and are independent, but with β0 +

kP
j=1

βjxij mean and σ2 variance.

To achieve good predictions using the model found by the re-
gression, it is interesting that the model contains only significant
parameters, that is, the ones which have some influence upon the

response. The choice of these parameter is made applying for-
mal tests which determine the significance of each estimated co-
efficient, as presented in [19].

2.1.3 Significance Tests for Regression
This test verifies if there is any influence of the explicative vari-

ables upon the response variable. The hypothesis are:

H0 : β1 = ... = βk = 0

H1 : βj 6= 0, for at least one j

To reject H0 means that at least one of the independent variables
contributes significantly to the model. The null hypothesis can be
tested by an analysis of variance (ANOVA) [18]. The test procedure
is presented in the equation 5:

SST =

nX
i=1

(yi − ȳ)2 =

nX
i=1

(ŷi − ȳ)2| {z }
SSR

+

nX
i=1

(yi − ŷi)
2

| {z }
SSE

(5)

such that:
ȳ is the arithmetic mean of the n observations (sample) of Y;
yi is the output value of the observation i;
ŷi is the response predicted by the model for the observation i;
SSR is the amount of the ŷi variation due to the regression mean

(Sum Square of Regression);
SSE is the Sum Square of Errors, that measures the amount of

variation not explained by the regression;
There is yet that SSR and SSE are independent and their respec-

tive Mean Squared are given by MSR = SSR
k

and MSE = SSE
n−k

.
The quotient F0 = MSR

MSE
follows the distribution F(k,n−k−1)(1 −

α), being α the test significance level, which represents the proba-
bility of rejecting H0, being H0 true [18]. Thus, one rejects H0 if
F0 is bigger than F(k,n−k−1)(1− α).

Yet, one can calculate the p-value, which is the probability of
F(k,n−k−1)(1− α) > F0. If the p-value is less than α, one rejects
H0. The standard value for α is 5%.

2.1.4 Tests for each Coefficient
The hypothesis to test the significance of the coefficient β̂j are

H0 : βj = 0

H1 : βj 6= 0, j = 0, ..., k.

If H0 isn’t rejected, one has the indication that the variable xj

doesn’t need to be included in the model, because the statistics
shows that this variable is little significant. The test statistics for
this hypothesis is:

t0 =
β̂jp
σ2Cjj

∼ t(n−k−1)(1− α/2), (6)
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Surface 1 - Good regression Surface 2 - Poor regression

Figure 1: DOA using a linear model

such that Cjj is an element of the matrix C = (X ′X)−1. As σ2

is unknown, one uses the MSE value. The null hypothesis H0 is
rejected if |t0| > t(n−k−1)(1 − α/2). Significant values for t0
must be bigger than 2.

In the next section, the use of linear regression models to locate
promising regions is presented.

3. SEARCH-SPACE REDUCTION
In this work, we present a different approach to use DoE. Instead

of elaborating complex probabilistic models to determine promis-
ing regions in the search-space, we apply a simple DoE method
(Multiple Linear Regression) to, starting from the search-space lim-
its, iteratively eliminate portions of the search-space where the al-
gorithm guarantees, with a high probability, that there is no global
optimum. The algorithm ends when it cannot guarantee a fur-
ther reduction. Our approach, a Domain Optimization Algorithm
(DOA) is a Search-space Reduction Algorithm (SRAs) [24, 4, 10].
A SRA is a technique to determine one or more promising regions
before the use of an optimization algorithm, instead of detecting
one region during the global optimization process. This way, one
can, for instance, concentrate the initial population into the limits
defined by the SRA, where there is a high probability to find the
global optimum. The DOA is presented to follow.

• Domain Optimization Algorithm

Domain Optimization Algorithms (DOAs) have as objective to
aid the global optimization algorithms by indicating the initial search-
space areas (domain) with larger possibility of finding the global
optimum. Such algorithms can be used to reduce the initial search-
space, excluding areas considered unfavorable. This way, DOAs
try to increase the efficiency of global optimization algorithms, and
can be essential to obtain satisfactory results in situations where the
execution of a great number of experiments is unviable.

Aiming efficiency and precision, DOAs must be generated in a
simple way so that they can be quickly tested. More sophisticated
algorithms are generated according to the need of each problem.
Box [1] says that "all models are wrong, but some are useful". Fol-
lowing that idea, the DOA proposed in this work uses a model
which guarantees, with high probability, that the global optimum
is not in the discarded area of the search-space. Some stochastic-
search techniques generate highly complex models of the solution
space, trying to guide the search [14, 15, 21, 26]. The approach
proposed in this work uses the opposite strategy, where a simple
model (linear) is employed. If that model presents an appropriate

fitting, one can take the decision of eliminating the area which ap-
pears to be farther from the global optimum. Two examples can be
seen in the Figure 1.

Analyzing the sampled points, it is possible to notice that, in
spite of being noisy, the Surface 1 can be appropriately explained
by a linear model. That means that the values predicted by the
model, represented by the straight line, aren’t very different from
the sampled values (points). This means that the model possesses
a relatively low error. This way, the decision of eliminating an
area can be taken with a considerable confidence. In a minimiza-
tion problem, the cut (elimination of an area of the search-space)
is accomplished in the superior limit (area 2), because the global
optimum tends to be in the inferior part on the left side. Otherwise,
the inferior limit is cut (area 1). The slice size can be defined by the
user or estimated from a small sampling in the area to be eliminated
(area 1 or 2). That small sampling tries to give larger safety in the
cut, avoiding the elimination of a big area which could contain the
global optimum.

On the other hand, the Surface 2 could not be well explained. It
is possible to notice that the minimization and maximization global
optima are at the same side. A cut to minimize (area 2) unfortu-
nately would lose the optimum. The same would not happen if
one wanted to maximize the function. However, in area 1 there
is a point which y value is very close to that of the maximization
global optimum, in other words, this point is a local optimum. Op-
timization algorithms often get stuck in local optima. After area 1
elimination, this point isn’t part of the promising area anymore.

The basic algorithm of our approach is presented in Figure 2.
It works basically as follows: First, the algorithm generates some
random points (X matrix) inside the user defined search-space and
evaluates them using an evaluation function (Y vector). Then, the
algorithm uses the linear regression technique to build a linear model
using the generated XY matrix. If it is a good model, the algorithm
selects the more significant variables of the model, identifies the
direction to do the reduction, determine the slice size, and elimi-
nates one small region. If not, it samples new points and try again
for a maximum of 10 trials. If it fails, the algorithm increases the
STOP criterion and reduces the search-space in both sides of each
variable just a little and restart the loop until the STOP criterion is
met.

By optimizing the initial search-space, the initialization of the
points can be concentrated in a promising region. Thus, it tries to
avoid the creation of points distant from the global optimum, and
to guarantee a good sampling near the optimum. The population
is initialized, for example, in the vertexes and in the central point
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of the promising region (and around these points). Figure 3 is a
2D example of this kind of initialization.

The slice size in the basic algorithm defines the DOA’s flexibility.
A small size means that the algorithm will make small reductions
and can stop prematurely. Bigger sizes can make fast and extreme
reductions and, sometimes, get very close to the global optimum.
However, DOA can lose it too. To deal with this problem, a portion
of the population can be randomly initialized outside the promis-
ing region, to try to put at least one individual near to the global
optimum when the optimization loses it.

After the domain optimization, a local search can be started with
an heuristic initialization (inside the promising region). To evalu-
ate DOA’s efficiency, we tested some benchmark functions and the
results are presented in the next section.

Figure 3: Preferential initialization inside the promising region

4. EXPERIMENTS
The benchmark functions used in the tests with the DOA are part

of a set of benchmarks proposed recently in the literature (see [25])
to evaluate new global optimization algorithms. In the preliminary
experiments, presented in this paper, the functions from 1 to 12 are
used. The benchmark functions proposed in [25] are variations of
functions previously cited in the literature. There are evolutionary
algorithms which take advantage of certain known properties of the
original functions as global optimum located along the axes, global
optimum which possess equal values in some variables, among oth-
ers. For that reason, Liang and colleagues [13] proposed modifica-
tions in the benchmark functions, such as displacement, rotation
and positioning of the global optimum close to one of the search-
space edges, that increases the difficulty of these problems for any
optimization algorithm.

Two well known global optimization algorithms are tested in this
work: the GA and the PSO (Particle Swarm Optimization) [6, 2]
The configuration of the algorithms, presented in Table 3, were de-
termined after experimental analysis.

There are two methods to experiment: RAND (simple GA or
PSO with random initialization) and DOA (GA or PSO executed
after the search-space reduction). Each one of the methods is ex-
ecuted 50 times, for each function from f1 to f12, with a maxi-
mum amount of evaluations equal to 10,000. The number of vari-
ables/dimensions (k) is 30. One half of the population is generated
inside the promising region. The other half is generated anywhere
in the search-space. We evaluate the population and replace the
worst individual with the best point found by the DOA.

For the RAND method, consider f
∗(i)
RAND = f(S

∗(i)
RAND), where

S
∗(i)
RAND is the best solution found by the RAND method in the ith

repetition, i=1,... ,50. This way, f∗RAND is a vector of size 50 with
the best solutions found by the RAND method in the i repetitions.

For the DOA method, consider the variables f
∗(i)
DOA = f(S

∗(i)
DOA),

where S
∗(i)
DOA is the best solution found by the DOA method in the

ith repetition, i=1,... ,50. Hence, f∗DOA is a vector of size 50 with
the best solutions found by the DOA method in the i repetitions. In
that method, for each repetition a search-space reduction is made
and the number of evaluations used by DOA is stored. After that,
the optimization algorithm (GA or PSO) is used to minimize the
function, limiting the amount of evaluations to 10,000 minus the
evaluations made by DOA. Besides the promising region found by
DOA, the best point sampled during the process is also passed to
the optimization algorithm.

Given the high magnitude of some standard deviations obtained
in this experiment, the simple comparison between two means can
lead to low confidence conclusions. For that reason, a statistical
test was adopted to compare the methods.

Let f∗RAND and f∗DOA be two independent random samples from
a normal distribution with unequal variances, one can test the hy-
pothesis that both possess the same means using a t-test [18]. For
such, a significance level α = 0.05 and the null hypothesis H0 =
equal means were adopted. This way, if the p-value returned by
the t-test is smaller than α, then H0 is rejected. Otherwise, H0 is
accepted and one concludes that the means are equal. If H0 is re-
jected, the best algorithm is the one which presents the smallest
mean. Some staticians consider that as the p-value gets closer to 1,
more similar the means are. Therefore, the closer to 0, more they
are different. However, this affirmation isn’t fully accepted in the
literature.

The results of the experiments using a GA and a PSO, with stop
criterion equal to 10 fails (Table 3) are presented in the Tables 4
and 5. The Min, Mean, Max and σ columns are calculated from
the f∗ vectors. The p-value is calculated by the t-test with the
independent samples f∗RAND and f∗DOA. The

√
symbol in the Best

column indicates which of the two initialization methods obtained
the best result in the optimization process. That occurs only when
H0 is rejected. If H0 is accepted, in the Best column is indicated
that the means are equal.

In the experiment with the GA (Table 4), one can see in the
Mean column that the RAND algorithm achieved better results in
the functions 3, 5, 10, and 11. In the other 8 functions, the GA was
benefited by the DOA. However, a statistical analysis presents that
many of the differences in the means aren’t significant. This way,
the p-value obtained by the t-tests presents that the RAND algo-
rithm achieved a better result only in the function 10. On the other
hand, the DOA helped the GA only in 4 functions (1, 6, 7, and 9),
instead of 8. In the other 7 functions, the means are equal.

In very hard problems, as functions 8 and 11 where the means
are very close, even the reduction can’t help the optimization algo-
rithm. On the other hand, in simple problems, as functions 2 to 5,
a simple optimization algorithm can lead to good results. One can
conclude about this experiment that, in the majority of the func-
tions, the computational cost of the DOA doesn’t worth. The GA
algorithm can deal with them. However, in the functions where the
DOA initialization lead to a better result, the mean differences are
very clear. Thus, in these functions, the DOA is really useful.

The PSO algorithm, which results are presented in Table 4, had
the opposing behavior. The RAND algorithm achieved better re-
sults in 8 functions: 1 to 7, and 11. On the other hand, the DOA
helped the PSO only in 4 functions: 8, 9, 10, and 12. There are
clear differences in the means in the functions 2, 6, 9, and 10.

In this experiment, the statistical analysis shows that the RAND
algorithm was the better one in the functions 1, 2, 6,7, and 11.
On the other hand, the DOA helped the PSO in 3 functions (8, 9
and 10). In the other 4 functions, the means are considered equal.
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For each      with t0>2, 
being BP the best
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β̂

Figure 2: Basic Flowchart of DOA using Linear Regression

In general, we would expect that the DOA would lead to a clear
advantage over the simple random initialization in all benchmark
functions or, at least, be as good as the random initialization. How-
ever, as one could see in the presented results, this doesn’t hap-
pened. In 24 functions (12 GA + 12 PSO) the results were: RAND
= won 6 times, DOA = won 7 times, Equal means = 11 times.

Analyzing the promising regions found in the experiments, we
detected that the DOA lost the global optimum in some of the 30
variables. When the optimum is located near of an edge in a deter-
mined variable, the first reduction can lose it. Thus, further reduc-
tions gets even farther from the optimum in that variable. Even
initializing 50% of the population outside the promising region,
the optimization algorithm needed, sometimes, a higher number
of function evaluations to find where the lost optimum is.

When the promising region is very close to the global optimum
in 20 of the 30 variables, for example, the GA and PSO had difficult
searching outside only for the other 10 variables. This way, another
conclusion is that more sophisticated optimization algorithms can
use the promising region found by the DOA and achieve much bet-
ter results than the GA and PSO.

5. CONCLUSIONS
In this work, we presented an approach to use a simple DoE

method (Multiple Linear Regression) to, starting from the search-

space limits, iteratively eliminate portions of the search-space where
the algorithm guarantee, with a high probability, that there is no
global optimum. The algorithm ends when it cannot guarantee a
further reduction. Our approach, a Domain Optimization Algo-
rithm (DOA) belongs to a class of algorithms called Search-space
Reduction Algorithms (SRAs). A SRA is a technique to determine
a promising region before the use of an optimization algorithm,
instead of detecting one region during the global optimization pro-
cess.

The DOA proposed in this work uses a simple model that tries
to guarantee that the global optimum is inside the optimized area.
In general, algorithms as EDAs try to guide the search by model-
ing the space of solutions through highly complex models. That is
exactly the opposing of what we propose in our algorithm.

Analyzing the presented results, one can conclude that the pro-
posed approach definitely shows relevant results for tests using hard
benchmark functions. However, we will explore ways to keep the
global optimum inside the promising region. Other search-space
analysis can be taken in consideration before eliminating a portion
of the space, trying to guarantee even more that the global optimum
remains inside the promising region.

Another important step is to test our approach with more sophis-
ticated optimization algorithms, which can use information pre-
sented by the DOA in a more efficient way.
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Table 3: Algorithms Configurations
DOA GA PSO

Stop criterion: 10 errors Population: 60 Population: 20
Slice size: 20% BLX Crossover (%): 60 Weight: 0.1

Cut on both sides: 3% Mutation (%): 10 Mode: Asynchronous
Sampling: 60 points Tournament selection

Table 4: GA with random and DOA initialization. G.O. is the global optimum and k=30
F Method G.O. Min Mean Max σ p-value Best
f1 RAND -450 -416.036 -266.110 282.983 138.230 0.007

DOA -434.750 -347.824 -59.531 85.351 0.007
√

f2 RAND -450 15871.700 41634.426 64128.000 11777.791 0.377 =
DOA 20456.900 39038.016 62851.400 11184.884 0.377 =

f3 RAND -450 17417300.000 71901009.677 147706000.000 29016433.685 0.758 =
DOA 25783200.000 74741180.645 172674000.000 41942346.051 0.758 =

f4 RAND -450 33548.700 53035.910 81493.700 12485.205 0.437 =
DOA 23011.300 50236.706 91727.800 15518.717 0.437 =

f5 RAND -310 5169.960 8623.271 14491.600 2272.487 0.835 =
DOA 4691.000 8738.822 12690.100 2083.124 0.835 =

f6 RAND 390 39309400.000 324228864.516 1379190000.000 351368505.112 0.011

DOA 9122110.000 146523417.097 385401000.000 113833448.586 0.011
√

f7 RAND -180 -156.087 -66.622 110.808 69.105 0.012

DOA -166.871 -107.231 150.549 53.716 0.012
√

f8 RAND -140 -119.058 -118.902 -118.828 0.061 0.714 =
DOA -119.013 -118.907 -118.800 0.052 0.714 =

f9 RAND -330 -214.750 -168.576 -129.405 18.917 0.002

DOA -260.884 -194.958 -115.171 41.172 0.002
√

f10 RAND -330 -114.094 -90.767 -60.215 14.369 0.019
√

DOA -127.690 -81.024 -53.162 17.388 0.019

f11 RAND 90 125.002 132.705 134.661 1.980 0.818 =
DOA 129.069 132.604 134.927 1.424 0.818 =

f12 RAND -460 258605.000 338641.531 520407.000 67000.262 0.615 =
DOA 157757.000 329313.121 568836.000 81160.613 0.615 =
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