
Adjacency List Matchings — An Ideal Genotype
for Cycle Covers

Benjamin Doerr
Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany

Daniel Johannsen
Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany

ABSTRACT
We propose and analyze a novel genotype to represent walk
and cycle covers in graphs, namely matchings in the adja-
cency lists. This representation admits the natural muta-
tion operator of adding a random match and possibly also
matching the former partners.

To demonstrate the strength of this set-up, we use it to
build a simple (1+1) evolutionary algorithm for the problem
of finding an Eulerian cycle in a graph. We analyze several
natural variants that stem from different ways to randomly
choose the new match.

Among other insight, we exhibit a (1+1) evolutionary
algorithm that computes an Euler tour in a graph with
m edges in expected optimization time Θ(m log m). This
significantly improves the previous best evolutionary solu-
tion having expected optimization time Θ(m2 log m) in the
worst-case, but also compares nicely with the runtime of an
optimal classical algorithm which is of order Θ(m). A simple
coupon collector argument indicates that our optimization
time is asymptotically optimal for any randomized search
heuristic.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, algorithms, performance

Keywords
Evolutionary algorithm, randomized local search, runtime
analysis, cycle cover, Euler tour

1. INTRODUCTION
We continue the on-going analysis of how to solve the

Euler tour problem using evolutionary computation. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

problem is particularly interesting because choosing a good
representation of the individuals is highly non-trivial.

The main contribution of this paper is a new representa-
tion for walk and cycle covers and its successful application
to the Eulerian cycle problem. By comparing variants of an
appropriate mutation operator, we obtain, besides consid-
erable other theoretical insight, an evolutionary algorithm
for the Euler tour problem having an expected optimiza-
tion time of Θ(m log m) in worst-case. This clearly beats
the previous best Θ(m2 log m) solution. Here and in the re-
mainder of the paper, m shall always denote the number of
edges of the input graph.

1.1 The Euler Tour Problem
Let G = (V, E) be a connected, undirected graph with m

edges. A closed walk using each edge exactly once is called
an Euler tour. There is an Euler tour in G if and only if
each vertex v of G has even degree d(v) := |{e ∈ E : v ∈ e}|.
This famous result, often referred to as the solution of the
Seven Bridges of Königsberg problem, is due to Euler [4]
and considered by many to be the birth of graph theory.

Euler’s proof does not reveal an efficient way to actually
compute an Euler tour. A reasonably simple O(m) time
algorithm can be deduced from Hierholzer [5].

1.2 Evolutionary Computation
Even though a theoretically optimal algorithm for the Eu-

ler tour problem was given in [5], there is a strong motiva-
tion to study generic approaches to the problem like, for
example, randomized local search (RLS) or evolutionary al-
gorithms (EAs).

One motivation is that in most applications generic ap-
proaches are less costly to implement and need less exper-
tise on the underlying problem. Another reason to favor a
generic approach is that, given it proved to be effective for
a particular problem, it can often be adapted easily to solve
a generalization of the problem. See, e. g., [3] for generaliza-
tions of the Euler tour problem.

The concept of evolutionary computation is to decompose
the problem of designing an algorithm into an appropriate
choice of nature-inspired building blocks like representation
of the individuals, fitness function and variation operators.

For many problems, this choice suggests itself. If, for ex-
ample, a pseudo-boolean function f : {0, 1}n → N0 has to
be maximized, then taking f as the fitness and performing
bit-flips as mutation are natural choices. For graph-theoretic
problems, these choices are much harder as there are a num-
ber of natural ways to represent the underlying objects and

1203

to define variation operators. A problem that attracted at-
tention in this respect is the Euler tour problem.

The first work addressing this problem is due to Neu-
mann [6]. He represented the individuals by permutations
of the edges. Given such a permutation (e1, . . . , em) of the
edges, he defines its fitness to be the largest ` such that
e1, . . . , e` form a walk. Hence, a fitness of m is equivalent
to having an Euler tour. Neumann investigated the run-
time behavior of RLS and the (1+1)-EA using two different
mutation operators.

The canonical exchange operator swaps the positions of
two randomly chosen edges in the permutation. For this,
Neumann presented a graph such that the expected opti-
mization times of RLS and the (1+1)-EA are exponential.

More appropriate for the problem was the jump operator.
For i, j ∈ {1, . . . , m}, the operation jump(i, j) moves the ith
edge in the permutation to position j and cyclically shifts
the edges in between in the appropriate direction. For ex-
ample, if i < j, the permutation (e1, . . . , em) is mutated to
(e1, . . . , ei−1, ei+1, . . . , ej , ei, ej+1, . . . , em). For this opera-
tor, the expected optimization time is O(m5).

This result was improved by Doerr, Hebbinghaus and
Neumann [1]. They showed that if only jumps of type
jump(i, 1) are used, then, surprisingly, the optimization time
drops to O(m3). A closer look at the proofs reveals that
there are two issues that each lead to an O(m) factor im-
provement. First, only jumps in one direction are used, i. e.,
only operations jump(i, j) with i > j. This leads to a speed-
up by replacing a random walk behavior by a one-directional
search. Second, the first edge in the permutation is always
part of the jump. This increases the chance to pick a muta-
tion that is accepted.

Doerr, Klein and Storch [2] introduced a different repre-
sentation of the individuals (and, in consequence, used a
different mutation operator and fitness function). Since an
Euler tour is a walk containing all edges, they chose col-
lections of edge-disjoint walks covering all edges as individ-
uals. Naturally, such a collection is an Euler tour if and
only if it consists of a single element which is a closed walk.
Hence, the fitness function (to be minimized) was chosen to
be the total number of components plus (twice) the number
of components that are not closed walks. They also defined
a mutation operator that allowed the walks to be joined,
split and twisted at a common vertex. This setting was
shown to be more suitable to work with. In particular, Do-
err, Klein and Storch [2] showed an expected optimization
time of Θ(m2 log m) for the resulting (1+1)-EA.

Our representation builds on the representation by Doerr,
Klein and Storch, but uses more appropriate genotypes in-
spired by adjacency lists, the classical data-structure used
in most graph algorithms.

1.3 Phenotypes and Genotypes
An important concept in evolutionary computation is that

we can distinguish between the phenotype of an individual
and its genotype.

In [2], Doerr, Klein and Storch distinguished between the
“graph theoretical” representation of a solution as collection
of edge disjoint walks covering the graph and a “technical”
representation as an array of edges each with two pointers
pointing to the next and previous edge in the walk. Though
not made explicit these two representations may be seen as
the phenotype and the genotype of an individual.

The improvement in optimization time achieved in [2] was
due to the superiority of their choice of the phenotype and
the mutation operator it allowed. However, their genotype
representation was not very elaborate, in fact, they did not
care too much for this point at all.

In this paper, we shall see that the choice of the geno-
type representation is equally important in designing evo-
lutionary algorithms. We stress that this is not only for
the purpose of implementation, but already for the design
of the evolutionary algorithm, in particular, the variation
operators.

Classical experience with graph algorithms often suggests
to represent a graph via adjacency lists. Here, for each ver-
tex v we keep a list Lv of its neighbors. In contrast to the
representation via adjacency matrices, this data-structure
has linear space complexity. This is particularly useful for
sparse graphs. Note that in practice, almost all graphs we
find are sparse.

Adjacency lists also allow fast access to neighbors, again
opposed to Θ(n) time for adjacency matrices or Θ(m) for
edge arrays as implicitly used in [2].

Guided by this insight, we will develop a genotype rep-
resentation that builds on adjacency lists. Recall that for
each vertex v, we have a list Lv of its neighbors.

Suppose we have an Euler tour in our graph. Then when-
ever it passes through a vertex v, it uses an edge {u, v} to
reach v and another one {v, w} to leave v. In this situa-
tion, we call u and w matched (as neighbors of v, or in Lv).
Since an Euler tour traverses all edges, it induces a perfect
matching in Lv , i. e., a partition of Lv into 2–element sets.
Clearly, it does so for all vertices v of the graph.

In general, as we shall see, each family of matchings in
the lists Lv immediately yields a collection of walks and
tours covering all edges, and vice versa. Hence, these are
the genotypes we shall work with.

Our genotype representation has several advantages that
in the end lead to faster evolutionary algorithms. An advan-
tage that we will not detail further, but that should not be
overlooked, is that using a standard data-structure in gen-
eral and this one in particular (see above) has several ad-
vantages from the view-point of actually implementing the
algorithm.

For the theoretical analysis we strive for in this work, the
representation via matchings in the adjacency lists has two
main advantages. The first is that any variation operator
building on this representation can only try to match edges
that share a vertex. Clearly anything else would not make
sense anyway, but previous algorithms typically spent much
time in trying such useless operations.

The second advantage is that we can easily generate an
initial individual that already is a cycle cover (by simply
greedily choosing perfect matching in each list). In fact,
this allows two sub-types of representations, namely arbi-
trary matchings (representing a cover by walks and cycles)
and perfect matchings (representing a cover by cycles only).
We show that using the latter is of advantage: Surprisingly,
often it takes much longer to find an arbitrary cycle cover
starting with a random walk cover than to transform any
cycle cover into a single (Eulerian) cycle.

Still, even when starting with the empty matching our
algorithms are faster than previous ones. The details (to
be made precise in Section 3) depend on how we choose the
random edges in the mutation step.

1204

There are three reasonable alternatives, namely (i) start-
ing with a randomly chosen vertex and then trying a random
match in its adjacency list, (ii) starting with a randomly
chosen edge and then trying to match one of its end-vertices
with a random vertex in the corresponding adjacency lists,
or (iii) picking a potential match from all lists uniformly at
random. All three choices may differ in the respective muta-
tion probabilities, but not in the set of operations available
on each individual.

We investigate these variants and prove sharp bounds for
their optimization times. It turns out that the particular
choice of what randomly means has a strong impact on the
resulting optimization time. Surprisingly, there is no unique
best way for the random choice, but the two representation
sub-types have different best ways for the random choice in
the mutations step.

However, all choices lead to a significant improvement
of the expected optimization time over the currently best
bound of Θ(m2 log m) from [2].

2. A CYCLE COVER REPRESENTATION
The concept of evolutionary computation is to succes-

sively modify a set of solution candidates (population of
individuals) by adding new individuals and removing old
ones until the population contains an individual with de-
sired properties.

We investigate the two basic evolutionary search strategies
randomized local search (RLS) and the (1+1) evolutionary
algorithm (EA). As our main source of progress lies in choos-
ing a suitable representation for the individual, we start with
making this point precise, then develop an appropriate fit-
ness function and mutation operator, and finally combine
these components to an RLS algorithms and an (1+1) EA.

2.1 Representations
We distinguish between the phenotype and the genotype

of an individual. In general, the set of phenotypes (pheno-
type space) consists of the objects among which we search
for the solution of a given problem. The genotype space,
on the other hand, contains representations or encodings of
these objects. The evolutionary search heuristic itself oper-
ates mainly on the genotype space. For example, mutation
is applied to the genotype of an individual.

2.1.1 Phenotypes
Motivated by the promising results in [2], we let the phe-

notype space consist of all walk covers of the input graph G.
Let G = (V, E) be a connected, undirected graph with n

vertices and m edges such that all vertices of G have an even
degree.

A walk in G of length k is defined by an alternating
sequence of vertices and edges v0, e1, v1, e2, . . . , vk−1, ek, vk

having the following properties. It starts and ends with a
vertex. These two vertices are called end-vertices.

Each edge in the sequence is incident with its preceding
and succeeding vertex. In other words, ei = {vi−1, vi} for
all 1 ≤ i ≤ k. In addition (and contrary to the standard
terminology), we require that all edges in a walk are differ-
ent. Vertices may appear several times, in particular the
two end-vertices can be the same. A walk has no distin-
guished direction, i. e., the sequence vk, ek, vk−1, . . . , e1, v0

defines the same walk.

A tour in G of length k is defined by an alternating
sequence of vertices and edges v0, e1, . . . , vk−1, ek, starting
with a vertex and ending with an edge, such that the se-
quence v0, e1, . . . , vk−1, ek, v0 is a walk. A tour has neither
a distinguished direction nor a distinguished starting vertex,
i. e., the sequences vi−1, ei, . . . , vk−1, ek, v0, e1 . . . , vi−2, ei−1

and vi, ei, vi−1, . . . , e1, v0, ek, vk−1, . . . , vi+1, ei+1 define the
same tour for any 1 ≤ i ≤ k. Thus, a tour does not have
end-vertices and can be represented by 2k sequences.

A tour which contains all edges of G is called an Euler
tour.

In the following, we use the term walk for both, walks and
tours, and distinguish only if necessary. Thus, a walk cover
of G is a collection of walks and tours such that each edge
of the graph appears in exactly one walk or tour.

A tour cover of G is a walk cover such that all its walks
are tours.

Obviously, a walk cover contains an Euler tour if and only
if it is a tour cover with one element.

2.1.2 Genotypes
In the previous section we defined the phenotype of our

individuals to be walk covers.
We will now define the genotype of the individual to be a

collections of matchings in the adjacency lists.
This definition of the genotype is motivated by two sim-

ple observations. First, a sequence defining a walk or a tour
can be completely described by listing all pairs of subsequent
edges. Second, two edges of such a pair share a common ver-
tex. Thus, the definition focusses on how the edges sharing
one vertex are matched in a walk cover. Such a matching is
best represented on the adjacency list of the given graph.

A typical encoding of a graph in application is that of an
adjacency list. This structure keeps for every vertex of the
graph list of all adjacent vertices. We are not interested in
implementation details, but only need the structural prop-
erty to gather all edges that share a common vertex.

Hence, we define an adjacency list L as a family of n lists,
one for every vertex, such that the list Lv corresponding to
vertex v consists of all vertices adjacent to v. More precisely,
let L := (Lv) v∈V with Lv := {w ∈ V : {v, w} ∈ E}.

The edge {u, v} of G is represented in L by the two oc-
currences of its vertices, namely of u in Lv and of v in Lu.
Hence, the total number of vertices appearing in all lists of L
is 2m.

A matching Mv in Lv is a set of disjoint unordered pairs
(two-element sets) of vertices of Lv. A matching M in L is
a family of n matchings Mv, one for each list Lv. The size
of M is defined as |M | :=

P

v∈V |Mv|.
If all vertices in a list Lv are matched, we call Mv a perfect

matching in Lv. Clearly, we have |Mv| = d(v)/2 in this case.
If Mv is perfect for all vertices v ∈ V , we call M a perfect
matching in L. Such a perfect matching is of size |M | = m.
Note that the definition of a matching in L is different from
the notion of a (graph-theoretical) matching in G. In par-
ticular, {u, w} ∈ Mv does not imply that {u, w} ∈ E, but
rather defines the subsequence {u, v}, v, {v, w} of some walk.

Theorem 1. There exists a 1-1-correspondence between
the phenotype space of walk covers of G and the genotype
space of matchings in L. Moreover, this 1-1-correspondence
maps tour covers of G to perfect matching in L and vice
versa.

1205

Proof. The main idea is that the unmatched vertices
correspond to end-vertices of a walk and matched vertices
to interior vertices of a walk or arbitrary vertices of a tour.

We first show that a walk cover of G defines a match-
ing M = (Mv)v∈V in L. Let v ∈ V and u, w ∈ Lv. Then
{u, w} ∈ Mv, if and only if there exists a walk in the cover
such that the edges {u, v} and {v, w} are subsequent in one
of the sequences defining the walk. Since in a walk cover
each edge {v, w} appears exactly once and in exactly one
walk, in M this edge appears at most twice, once in Lv and
once in Lw. Thus, M is a proper matching.

In case of a tour cover, M is a perfect matching in L, since
there exists a w ∈ Lv for all v ∈ V and u ∈ Lv such that
{u, w} ∈ Mv. This is due to the fact that in a tour there
is no distinguished starting or end-vertex, in particular u is
not such a vertex.

We next show that a matching M in L defines a walk
cover of G. This definition is best explained recursively by
the number of matched edges in M .

The empty matching in L defines the walk cover consisting
of the walks v, {v, w}, w for all edges {v, w} ∈ E. For a non-
empty matching M , we choose a pair {u, w} ∈ Mv for some
v ∈ V .

Let M ′ be M without {u, w}. Then we can recursively de-
fine a walk cover corresponding to M ′. Since u and w are not
matched in M ′, there exist either two walks defined by the
sequences v, {v, u}, u, . . . , u′ and w′, . . . , w, {w, v}, v or a sin-
gle walk defined by the sequence v, {v, u}, u, . . . , w, {w, v}, v.

In the first case, the walk cover corresponding to M is
defined as the walk cover corresponding to M ′ where the
two walks from above are joined to one walk that is defined
by the sequence w′, . . . , w, {w, v}, v, {v, u}, u, . . . , u′.

In the latter case, the new walk cover is defined by replac-
ing the single walk from above by the tour defined by the
sequence v, {v, u}, u, . . . , w, {w, v}.

If the matching is perfect, then no edge is adjacent to an
end-vertex and the cover is a tour cover.

By assumption, all vertices of G are of even degree. Thus,
all Lv of L are of even length, and it is always possible to
find a perfect matching in all Lv , and hence on L.

In the following, we investigate evolutionary search heuris-
tics on both search spaces. The one of all arbitrary match-
ings in L and the one of all perfect matchings in L. Note
that an initial perfect matching in L can be constructed very
easily by matching pairs of vertices in the order of their ap-
pearance in the lists of L.

2.2 Fitness Function
The phenotype of an individual is a walk cover of G. As

we have seen, two conditions have to be fulfilled for the
individual to be an Euler tour. First, no walk of the cover is
allowed to have open ends, i. e., the walks have to be tours.
Second, the cover has to have exactly one element.

While the second condition is best formulated in terms
of the phenotype, we have seen that we can formulate the
first condition in terms of the genotype. In particular, the
genotype of individual has to be a perfect matching. Thus,
a suitable fitness function to be minimized for the problem
of finding an Euler tour in G is to take the total number of
unmatched vertices in the genotype of an individual plus the
number of walks in its phenotype. As the number of ver-
tices that are not matched by a matching M in L is always
even, we divide this number by two in the fitness function,

which then equals m minus the size of M plus the number
of components induced by M .

Formally, for a matching M in L representing a walk cover
of G consisting of k walks, the fitness f of M is defined by

f(M) = m − |M | + k .

This fitness function can attain values from 1 to 2m, 1
for individuals representing an Euler tour and 2m for the
empty matching.

Lemma 2. Let 1 ≤ k ≤ 2m. The phenotype of an individ-
ual with fitness k is a walk cover with at least k/2 elements.

Proof. In a matching each unmatched vertex is an end-
vertex of a walk. Thus, for every two such vertices there
exists a walk in the cover. In other words, the number of
elements in the walk cover contribute at least as much to
the fitness function than the number of unmatched vertex
pairs.

For the genotype space of perfect matchings the same fit-
ness function applies, but only takes values between one
and m/3, as the number of unmatched vertices is zero and
each tour has at least three edges.

2.3 Mutation Operators
An evolutionary search heuristic based on a population

of size one has to make use of a mutation operator. This
operator transforms one individual to another based on a
randomized change in the genotype of that individual.

We want this choice to be as local as possible, i. e., to affect
one or at most two pairs of matched vertices. A natural way
to do this is the following, even if the following definition is
quite technical.

Given a matching M = (Mv)v∈V in L, the mutation op-
erator ϕ defines a new matching ϕ(M) as follows. First,
we randomly choose two vertices u and w from one of the
lists Lv . The distribution of this random choice is discussed
later. If u = w then M is not changed. Otherwise, we sepa-
rate u and w from their current matches (if existent), match
u and w (unless they were matched before), and match the
former partners of u and w if possible. More precisely, we
do the following:

• If u and w are unmatched, then add {u, w} to Mv.

• If u and w are matched to each other, then remove
{u, w} from Mv.

• If u is matched to some w′ and w is unmatched, then
remove {u, w′} from Mv and add {u, w} to Mv .

• If u is unmatched and w is matched to some v′, then
remove {u′, w} from Mv and add {u, w} to Mv .

• If u is matched to some w′ and w is matched to some
v′, then remove {u, w′} and {u′, w} from Mv and add
{u, w} and {u′, w′} to Mv .

If we operate on the space of perfect matchings, then
{u, w} is not removed from Mv if u and w are already
matched. Instead, M remains unchanged.

It is not immediately clear how to randomly choose the
the ordered pair (u, w). In fact, there are three natural ways
to do so.

Recall that d(v) is the degree of the vertex v as defined in
Section 1.1 and let d(G) be the average degree of G, ∆(G)

the maximum degree of G, and d̃(G) := 1
2m

P

v∈V d(v)2.

1206

2.3.1 Vertex-based distribution
First choose a vertex v ∈ V uniformly at random. Then

independently choose u and w uniformly at random from
Lv . The probability p to choose the pair (u, w) in list Lv

satisfies

p =
1

d(v)2 n
=

d(G)

2 d(v)2 m
≥

d(G)

2 ∆(G)2 m
.

2.3.2 Edge-based distribution
Choose the vertex u uniformly at random from all 2m

vertices in all lists in L. Suppose u is in list Lv. Choose the
vertex w uniformly at random from Lv. The probability p
to choose the pair (u, w) in list Lv satisfies

p =
1

2 d(v)m
≥

1

2 ∆(G) m
.

2.3.3 Pair-based distribution
Choose the pair (u, w) uniformly at random from all or-

dered pairs of the 2m vertices in all lists in L with both
vertices in the same list Lv. The probability p to choose the
pair (u, w) in list Lv satisfies

p =
1

2 d̃(G) m
.

The three distributions are equal for the special case of
regular graphs, where d(G) = d̃(G) = ∆(G). In general,

d(G) ≤ d̃(G) ≤ ∆(G) and thus the lower bound of the edge-
based distribution also applies to the vertex-based distribu-
tion and the lower bound of the pair-based distribution also
applies to the edge-based distribution. If we compare the
distributions in detail, then we observe that a pair of ver-
tices (u, w) in a large adjacency list Lv is strongly favored
by the vertex-based distribution, moderately favored by the
edge-based distribution, and treated independently of the
list size in the pair-based distribution. We will see that this
bias of the distributions depending on the degree sequence
of G has a strong impact on the expected optimization time.

2.4 RLS and the (1+1) EA
To allow an easy comparison with previous works, we fo-

cus on the two basic randomized search strategies: random-
ized local search (RLS) and the (1+1) evolutionary algo-
rithm (EA). In both cases we have a population of size one.

We use the genotype spaces, fitness function and mutation
operators introduced in the previous subsections.

The choice whether to search the genotype space of all
matchings or the space of perfect matchings is done during
initialization the algorithms.

For the genotype space of all matchings in L, the natu-
ral choice for the initial individual of this population is the
empty matching. This corresponds to the phenotype of the
walk cover that consists of m walks each formed by a sin-
gle edge. Alternatively we can choose a random matching.
However, this does not seem to give any advantage.

For the genotype space of perfect matchings in L we choose
as initial individual a perfect matching in L at random. The
corresponding phenotype is a random tour cover of G. Actu-
ally, we can as well choose an arbitrary individual by match-
ing pairs of vertices in the order of their appearance on the
lists of L, since the choice does not affect the runtime anal-
ysis of the proposed search heuristics.

Randomized local search combines the given components
in a straightforward way. Starting with a population of one
initial individual, in each step the mutation operator is ap-
plied to the current individual to produce a new individual.
The new individual replaces the old one if its fitness is at
least as good as that of old one. Otherwise, the old indi-
vidual is kept. The algorithm runs until it finds an Euler
tour.

RLS

1 Initialize(M)
2 while (f(M) > 1)
3 do
4 M ′ := ϕ(M)
5 if f(M ′) ≤ f(M)
6 then M := M ′

The (1+1) evolutionary algorithm is slightly more sophis-
ticated. For the canonical genotype of n-bit string, the
(1+1) EA flips each bit independently with probability 1/n.
Since such a simultaneous independent change is not possi-
ble with a complex mutation operator, the (1+1) EA applies
such a mutation operator successively for a number of times
given by the Poisson distribution Pois(λ) with λ = 1 (see
[2, 6] for a discussion on this approach). Afterwards, the
fitness of the new individual is checked and the population
modified as in RLS.

(1+1) EA

1 Initialize(M)
2 while (f(M) > 1)
3 do
4 M ′ := M .
5 for i := 0 to Pois(1)
6 do M ′ := ϕ(M ′)
7 if f(M ′) ≤ f(M)
8 then M := M ′

3. RUNTIME ANALYSIS
In the previous section we described several alternatives

to build an evolutionary search strategy for Euler tours.

Genotype space: arbitrary or perfect matchings in L.
Distribution: vertex-, edge- or pair-based.
Generic strategy: RLS or (1+1) EA.

In this section, we prove bounds for the expected opti-
mization time of the resulting twelve combinations. More
precisely, we first prove upper bounds for the twelve vari-
ants in Section 3.1.

Then, in Section 3.2 we show that several of these bounds
are tight and in particular that the discrepancies indicated
by them are real.

As usual, the optimization time of a randomized search
heuristic is defined as the number of fitness evaluations. In
our set-up, this equals the number of times the while-loop
is executed (plus one).

3.1 Upper Bounds for the Optimization Time
We analyze the expected optimization time first with arbi-

trary matchings as genotypes, then with perfect matchings.
In both cases, we regard the three different distributions
introduced in Section 2.3. For the vertex- and edge-based

1207

distribution, the bounds for arbitrary matchings are a fac-
tor of ∆ higher than for perfect matchings. As our lower
bounds in Section 3.2 show, this gap is real.

We start with analyzing the optimization time of RLS. In
Section 3.1.2, we show that identical bounds hold for the
(1+1) EA.

3.1.1 Randomized Local Search
We prove the following bound for arbitrary matchings.

Theorem 3 (Arbitrary Matchings).
The expected optimization time of randomized local search
on the genotype space of arbitrary matchings as genotypes is

O(∆(G)2

d(G)
m log m) for the vertex-based distribution,

O(∆(G) m log m) for the edge-based distribution, and

O(d̃(G) m log m) for the pair-based distribution.

These bounds are independent of the initial individual.

Proof. Recall from Section 2.3 that the probability p
that a particular pair (u, w) in a particular list Lv is chosen
by the mutation operator, satisfies

p ≥ q :=

8

>

<

>

:

d(G)

2 ∆(G)2 m
for the vertex-based distribution,

1
2 ∆(G) m

for the edge-based distribution,
1

2 d̃(G) m
for the pair-based distribution.

We show that the expected time to improve the fitness of
an individual having fitness k is O(1

k q
).

By Lemma 2, a fitness of k implies that the corresponding
phenotype consists of at least k/2 components. If a compo-
nent is a closed cycle, there is at least one pair (u, w) in a
list Lv such that the corresponding mutation connects the
cycle with some other component. If the component is not
a closed cycle, again there is at least one pair (u, w) in a list
Lv such that the corresponding mutation either connects the
component to some other component or closes it to a cycle.

Since in both cases the involved edges {u, v} and {w, v}
belong to at most two different components, we over-count
by at most a factor of two. Hence, there are Ω(k) differ-
ent mutations that increase the fitness. In consequence, the
probability to do so in a single step is Ω(kq), and hence the
expected time to reach this improvement is O(1/kq).

Now any initial solution has a fitness of at most 2m. It
follows that the expected optimization time is uniformly
bounded by

Pm
k=1

1
k q

= 1
q

Pm
k=1

1
k

= O(1
q

log m). Replac-
ing q by the values given above finishes the proof of the
statement.

We now analyze RLS for the situation where we work
with perfect matchings as genotypes. Recall that this is
equivalent to saying that the corresponding phenotypes are
cycle covers.

Surprisingly, for the vertex- and edged-based distributions
we obtain superior runtime bounds than before. This indi-
cates that finding an entire cycle cover is more difficult than
joining its cycles to to an Euler tour. This will be proven in
Section 3.2.

Theorem 4 (Perfect Matchings).
The expected optimization time of randomized local search
on the genotype space of perfect matchings as genotypes is

v2rv2r−1v2i+2v2i−2 v2iv4v2v0

K2r+1 v1 v3 v2i−1 v2i+1 v2r−1

Figure 1: The graph on 2(r + s) + 1 vertices showing
the lower bound for the pair-based distribution.

O(∆(G)
d(G)

m log m) for the vertex-based distribution,

O(m log m) for the edge-based distribution, and

O(d̃(G) m log m) for the pair-based distribution.

These bounds are independent of the initial individual.

Proof. Let M = (Mv)v∈V be a perfect matching in L.
Then M represents a tour cover of G consisting of f(M) = k
tours. Again, we bound the expected time needed to im-
prove the fitness (necessarily by joining two tours).

Two tours are joined if the mutation operator ϕ is applied
to two vertices of a list Lv that belong to different tours.
Hence, we estimate the probability to choose such a pair.

Suppose that v is shared by exactly s ≥ 2 tours t1, . . . , ts.
We count the number of pairs (u, w) in Lv such that {u, v}
and {v, w} are in different tours of t, . . . , ts. To do so, we
have to know how many edges of each tour are incident
with v, in other words, how many of the vertices in Lv belong
to the tour.

For 1 ≤ i ≤ s let di vertices of Lv belong to tour ti.
Then

Ps
i=1 di = d(v), the di are even, and, in particular,

di ≥ 2. The number of vertex pairs of Lv belonging to
different tours is d(v)2 −

Ps
i=1 d2

i ≥ s d(v). The probability
that any of these pairs is chosen, equivalently, that two tours
are joined in v, is at least sq with

q :=

8

>

<

>

:

d(G)
2 ∆(G) m

for the vertex-based distribution,
1

2 m
for the edge-based distribution,

1

2 d̃(G) m
for the pair-based distribution.

Next, we sum over the probability of all such pairs in
the graph. Each of the k tours has at least one vertex it
shares with another tour. Hence, if s(v) is the number of
tours containing the vertex v, and V ′ is the set of vertices
contained in more than one tour, then

P

v∈V ′ s(v) ≥ k.
In consequence, the probability to join any of the k tours

is at least
P

v∈V ′ s(v) q ≥ kq and the expected number of
steps needed for this improvement is at most 1/kq.

Any initial perfect matching has a fitness of at most m/3,
since each tour consists of at least three edges. Hence, the
expected number of steps needed to join all tours is bounded

by
Pm/3

k=1
1

k q
≤ 1

q

Pm
k=1

1
k

= O(1
q

log m). Replacing q by the
bounds given above completes the proof.

3.1.2 The (1+1) Evolutionary Algorithm
In this section, we show that the (1+1) EA fulfills the

same runtime bounds as RLS. The main reason for this is
that in Section 3.1.1 we actually proved bounds for the ex-
pected times RLS needs to obtain a fitness improvement.
These bounds only depended on the current fitness, but were
independent of the particular current solution. Hence, we
may re-use these bounds here.

1208

Theorem 5. The (1+1) evolutionary algorithm on the
genotype space of arbitrary matchings has an expected opti-
mization time bounded as in Theorem 3. The (1+1) evolu-
tionary algorithm on the genotype space of perfect matchings
has an expected optimization time bounded as in Theorem 4.

Proof. The probability that the (1+1) EA applies the
mutation operator exactly once in a given step is 1/e. Since
our bounds for the expected times to increase the fitness
in the proofs in section 3.1.1 only depended on the current
fitness, we may completely ignore the fact that the (1+1) EA
may change the current solution in different ways than RLS.
Also, since in expectation the (1+1) EA performs a step
with only one mutation every e-th step, we see that the
expected time to improve the fitness from a certain level k
is at most e times the one for RLS. In consequence, the
expected optimization times of the (1+1) EA satisfy the
same bounds as proven for RLS.

3.2 Lower Bounds for the Optimization Time
In this section, we give several lower bounds for the opti-

mization times of our algorithms.
In Section 3.2.1 we show that for the vertex- and edge-

based distributions there is indeed a gap between the ex-
pected optimization times of finding a cycle cover and of
uniting such a cover to an Euler tour. That there is no such
gap for the pair-based distribution is shown in Section 3.2.2.
Finally, in Section 3.2.3 we sketch an elementary coupon col-
lector argument which indicates that Ω(m log m) is a lower
bound for the optimization time of any evolutionary algo-
rithm for the Eulerian cycle problem, even if we already
start with a cycle cover.

We restrict the analysis to RLS and omit the analysis of
the (1+1) EA as the bounds can be obtained similarly and
the proofs yield no further insight.

3.2.1 Finding a cycle cover is hard for the vertex-
and edge-based distributions

In this section we give worst-case lower bounds that show
that Theorem 3 is asymptotically tight.

We consider d–regular graphs (all vertices have degree d
with 2 ≤ d ≤ n − 1 even). For such a d–regular graph G
the vertex-, edge-, and pair-based distribution are equal. All
three choose a fixed ordered pair of vertices in a fixed list
with probability 1/2dm. Since ∆(G) = d(G) = d, we cover
all possible values of d(G) and ∆(G). Furthermore, the three
upper bounds in Theorem 3 coincide.

Theorem 6. Let d ≥ 2 be even. For a d–regular graph G,
randomized local search initialized with a random1 or empty
matching needs an expected number of Ω(d m log m) steps
until its current solution is a perfect matching for the first
time.

If G is a complete graph on n vertices (n odd to en-
sure existence of Euler tours), then RLS needs Θ(n3 log n)
steps just to find a perfect matching. However, if we use

1A matching drawn uniformly at random from the set of all
matchings. However, the result remains true for any way of
generating a random matching that has the property that
each list Lv has a probability of at least 1/2 of not being
perfectly matched, independently for all v ∈ V . Note that
this is a very weak requirement. All reasonable random
matchings would leave the list Lv not perfectly matched
with probability at least 1 − Θ(1/d).

the vertex- or edge-based distribution, it then only needs
O(n2 log n) steps to find the Euler tour afterwards. It seems
that the (for deterministic algorithms trivial part of) finding
a perfect matching is relatively hard for randomized search
heuristics.

Proof. For an individual M , let `(M) be the number of
lists Lv, v ∈ V , that are not yet perfectly matched. Note
that RLS does never increase `(M), and in each step de-
creases it by at most one.

A list can only become perfectly matched if before it has
exactly two vertices u and w not matched to other vertices.
In this case, the probability that the pair (u, w) or (w, u) is
chosen by the mutation operator is exactly 1/dm. Hence,
the probability that `(M) decreases in a single step is at
most `(M)/dm. Consequently, the expected number of steps
needed for this is at least dm/`(M).

The expected time needed to completely match some so-

lution M is at least
P`(M)

k=1
dm
k

= Ω(d m log(`(M))). If our
initial M is the empty set, then clearly `(M) = n. If M is
a random matching, then with probability 1 − exp(−Ω(n)),
at least n/4 of the lists are not perfectly matched. Thus, in
both cases `(M) = Θ(n) and log(`(M)) = Θ(log m), which
shows the claim.

3.2.2 Uniting a cycle cover to an Eulerian cycle is
hard for the pair-based distribution

Theorem 6 also holds for the pair-based distribution and
yields an lower bound of Ω(d̃(G) m log m) for RLS on arbi-
trary matchings. But, in contrast to the other two distribu-
tions, finding an Euler tour in the perfect matching model
seems much harder for this distribution. Theorem 4 yields
only an upper bound of O(n3 log n) for this second step.
This is surprising, as the pair-based distribution was the
best among the three in the general matching model. How-
ever, this suboptimal behavior is true. Below, we present a
graph having Θ(n2) edges, for which RLS with pair-based
distribution and perfect matchings needs Θ(n3 log n) steps.

Obviously, this time we can not start with an arbitrary
perfect matching, as this could already represent an Euler
tour in G. Hence, we start with a random perfect matching
M = (Mv)v∈V in L. Note that this is canonically defined by
choosing Mv uniformly at random among all perfect match-
ings in Lv for every vertex v.

Theorem 7. There exists a graph G with d̃(G) ≥ n
4

such
that randomized local search using the pair-based distribution
initialized with a random perfect matching finds an Euler
tour in G in expected optimization time Ω(d̃(G) m log m).

Proof. We omit the proof due to lack of space, the bound
is obtained for the graph depicted in Figure 1.

3.2.3 The coupon-collector bounds
We now sketch a coupon collector argument that indicates

that all reasonable evolutionary algorithms for the Eulerian
cycle problem have an expected optimization time of at least
Ω(m log m) in the worst-case. This looks natural, but is less
simple if we start with a cycle cover.

Consider a graph consisting of a sequence of k triangles
(the right half of the graph depicted in Figure 1). Then n
and m are both Θ(k). We call a vertex belonging to two
triangles critical. There are k − 1 = Θ(k) critical vertices.

We argue that if we start with a reasonably random ini-
tial individual, a constant fraction of the critical vertices

1209

perfect matchings arbitrary matchings

vertex-based O(∆(G)
d(G)

m log m) Θ(∆(G)2

d(G)
m log m)

edge-based O(m log m) Θ(∆(G) m log m)

pair-based Θ(d̃(G) m log m) Θ(d̃(G)m log m)

Table 1: Bounds on the Expected Optimization time
of RLS and (1+1) EA. Columns: genotype spaces.
Lines: probability distributions.

(or the edges incident with them) will need further modifi-
cation. This is clear for a random cycle cover since (using
the 1-1-correspondence between cycle covers and adjacency
matchings) there are three perfect matchings on the adja-
cency list of a critical vertex, and one of them leaves the two
triangles disconnected. For other random initial individuals,
things are even worse as there are more ways how the two
triangles may be disconnected.

Assuming a reasonably natural mutation operator, we see
that with high probability there are Θ(k) critical vertices
such that each of them needs the attention of one of a certain
set of mutations. These sets are disjoint. In consequence,
in each iteration we can fix at most one of these critical
vertices.

This makes the problem of fixing all critical vertices a
coupon collector problem. Now we do not know the par-
ticular distribution on the set of mutations, but it is well
known that the coupon collector has the smallest expected
optimization time if all coupons are equally likely. Hence
even in this best case, we need Ω(k log k) steps.

This in particular shows the O(m log m) bound for the
strongest variant of our algorithm to be asymptotically tight,
as well as the one for the vertex-based distribution and per-
fect matchings in the case that ∆(G) = O(d(G)).

4. CONCLUSION
We proposed a novel genotype representation for walk and

cycle covers in graphs, namely matchings in the adjacency
lists. Since a perfect matching in all adjacency lists can be
computed in a straight-forward way, the variant of only us-
ing perfect matchings is equally feasible. We showed that
there is a natural one-one correspondence (i) between the
genotypes of all matchings in adjacency lists and the pheno-
types of all walk covers in the graph, and (ii) between the
set of all perfect matchings and the set of all cycle covers.

Besides being superior from the viewpoint of implemen-
tation, our representation yields faster evolutionary algo-
rithms. To demonstrate this, we analyzed randomized local
search (RLS) and the (1+1) evolutionary algorithm (EA)
obtained from our representation together with the simple
mutation operator of adding a random match (and possi-
bly matching the former partners). This mutation operator
resembles the 2-OPT heuristics for the travelling salesman
problem.

There are three natural ways of picking a random match.
Since they lead to a quite different runtime behaviors, we
analyzed all three distributions for both sub-types of the
representation (arbitrary and perfect matchings). The re-
sults, which are identical for RLS and the (1+1) EA, are
summarized in Table 1.

Most notably, the variant working on the genotype space
of perfect matchings and using the edge-based distribution
has an expected optimization time Θ(m log m) in the worst-
case. This is clearly superior to the optimization time of
Θ(m2 log m) presented in [2], the so-far best known opti-
mization time for an evolutionary algorithm for the Euler
tour problem. In fact, all six variant we investigated have
an expected optimization time better than this previous so-
lution. Also, as indicated in Section 3.2, the optimization
time of Θ(m log m) is likely to be best possible for any ran-
domized search heuristics, due to the coupon collector phe-
nomena arising in a typical run.

Comparing the optimization times of the six variants, we
see that finding an Euler tour in the space of arbitrary
matchings takes at least as long as in the space of perfect
matchings. For the vertex-based and edge-based distribu-
tion, the optimization times differ by a factor of ∆(G). This
discrepancy is real, in fact, we proved that these larger times
are already necessary to simply find any cycle cover. In
other words, uniting an existing cycle cover to an Euler tour
is much easier than finding any cycle cover.

For the pair-based distribution this discrepancy does not
exist. This stems from the surprising result that the pair-
based distribution is the best among the three for the geno-
types of arbitrary matching, but the worst for the genotypes
of perfect matchings.

In summary, this research produced a valuable genotype
representation for walk covers, the current best evolution-
ary algorithm for the Eulerian cycle problem, and the in-
sight that the interplay of the three natural distributions
and the two representation sub-types leads to some unex-
pected differences between the six resulting variants of our
evolutionary algorithm.

5. ACKNOWLEDGMENT
We thank an unknown referee for several hints to improve

the presentation.

6. REFERENCES
[1] B. Doerr, N. Hebbinghaus, and F. Neumann. Speeding

up evolutionary algorithms through restricted mutation
operators. In Proc. of the 9th International Conference
on Parallel Problem Solving From Nature (PPSN),
volume 4193 of LNCS, pages 978–987. Springer, 2006.

[2] B. Doerr, C. Klein, and T. Storch. Faster evolutionary
algorithms by superior graph representation. In Proc.
of the 2007 IEEE Symposium on Foundations of
Computational Intelligence (FOCI), pages 245–250.
IEEE, 2007.

[3] J. Edmonds and E. L. Johnson. Matching, euler tours
and the chinese postman. Mathematical Programming,
5:88–124, 1973.

[4] L. Euler. Solutio problematis ad geometriam situs
pertinentis. Commentarii academiae scientiarum
Petropolitanae, 8:128–140, 1741.

[5] C. Hierholzer. Ueber die Möglichkeit, einen Linenzug
ohne Wiederholung und ohne Unterbrechung zu
umfahren. Mathematische Annalen, 6:30–32, 1873.

[6] F. Neumann. Expected runtimes of evolutionary
algorithms for the Eulerian cycle problem. In Proc. of
the 2004 IEEE Congress on Evolutionary Computation
(CEC), pages 904–910. IEEE, 2004.

1210

