
Genetic Algorithms for Large Join Query Optimization

Hongbin Dong, Ph.D.
International School of Software,Wuhan

University
Wuhan, Hubei, P.R.China 430072

86 - 27 - 68778870
hbdong@whu.edu.cn

Yiwen Liang, Ph.D.
Computer Science School, Wuhan University

Wuhan, Hubei, P.R. China 430072
86 - 27 - 61080011

ywliang@whu.edu.cn

ABSTRACT
Genetic algorithms (GAs) have long been used for large join
query optimization (LJQO). Previous work takes all queries
as based on one granularity to optimize GAs and compares
their efficiency with other query optimization algorithms.
However, we believe that large join queries are based on a
granularity that is too large (1) to optimize GAs and (2) to
compare the efficiency of different randomized optimization
algorithms. Besides, while previous work only discusses the
efficiency of basic GAs for LJQO, we believe that hybrid
GAs reduce search space to improve GAs efficiency.

We will present a genetic optimization model which includes
factors affecting the efficiency of GAs. In this model, the
query model is the granularity upon which GAs are opti-
mized. Based on six typical query models, experiments have
been done, first, to optimize four classes of GAs; and second,
to prove the rationality of the query model as a trade-off
between the efficiency and robustness of GAs. Finally, we
will provide suggestions for choosing one of four classes of
GAs and for the settings and combinations of components
of GAs.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query process-
ing, relational database

General Terms
Algorithms, Performance, Experimentation

Keywords
genetic algorithm, large join query, optimization, query model

1. INTRODUCTION
In the relational database systems the join is one of the rela-
tional algebraic operators and has a very high execution cost.
Join query optimization transforms a declarative query ex-
pression into procedural query execution plans (QEPs) and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, J uly 7-11, 2007, L ondon, E ngland, United K ingdom .
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00

determines the lowest query execution plan (QEP). But join
query optimization is a combinatorial optimization problem.
When a query includes more than 10 relations (this is called
a large join query), the exhaustive optimization algorithms
can not optimize the query in a reasonable period of time
due to their time complexity.

However, many new relational database applications pro-
duce very complex join queries. A very large database sys-
tem is one kind of application. The decision support system
is another. The data warehouse is the data center of a de-
cision support system and uses a relational model to store
and manage data. The data flowing in (data are integrated
and transferred from multiple databases and flat files to a
data warehouse) and out (data in the data warehouse are
transferred to data for on-line analytical processing tools
and data mining tools) of the data warehouse produce very
large join queries.

To optimize large join queries, randomized local search al-
gorithms, such as Simulated Annealing (SA) and Iterative
Improvement (II), have been used as viable alternatives to
exhaustive searches. Based on one regular query model,
Swami and Gupta test SA and II, then conclude that the
relatively simple II is better than all other local search al-
gorithms including SA [12]. The interesting thing is that a
different conclusion arises later. Based on three star schema
query models, Ioannidis tests SA and II, then concludes that
in most cases SA identifies a lower cost QEP than II [7].

While randomized local search algorithms have proved their
efficiency for large join queries, they have been found to
be easily trapped in local optima as well. Due to the na-
ture of global searching and their successful application to
different combinatorial optimization problems, genetic algo-
rithms (GAs) are used to solve large join query optimization
(LJQO). Bennet et al. start to design GAs and compare
GAs with the System-R algorithm for queries with a max-
imum 16 joins and the experiments show that in left-deep
tree space GAs can find near optimal QEP, but the optimiz-
ing time is longer than the System-R algorithm, while in the
whole space, GA can find a better QEP than System-R’s [2].
Steinbrunn et al. compare the efficiency of heuristic, ran-
domized local search algorithms and GAs for queries with a
maximum 30 joins. It concludes that a heuristic avoids high
time complexity but the optimized result is rarely accept-
able, while randomized and genetic algorithms need a longer
optimizing time, but the optimized result is far better [10].

1211

Lahiri and Kang compare a GA in left-deep tree space and a
genetic programming (GP) in the whole space, and conclude
that the GP performs significantly more effectively than the
GA [8]. Stillger and Spiliopouhou propose a GP, compare
the GP with II, and conclude from the experiments of using
two cost models that the GP can converge towards the near
optimal QEPs but II is more effective [11].

Previous work in randomized optimization algorithms for
large join query optimization is based on all queries to opti-
mize algorithms and compare their efficiency. In fact, they
are based on an assumption that some randomized algo-
rithms are generally better than others for any queries. How-
ever, for two reasons we think all queries are based on too
large a granularity due to the wide range of complexity and
diversity of queries. First, GA is a randomized algorithm
and its efficiency depends on the nature of the problem.
The settings and combinations of the components of GAs
decide the efficiency of a GA for the problem. Second, ac-
cording to the no-free-lunch theorem, no algorithm can solve
all problems and be generally superior to all competitors [9].

In this paper, we will explore a proper granularity, a good
trade-off between the efficiency of GAs and robustness of
GAs, then explain the rationality of this granularity. Besides
the basic GAs used by previous work for LJQO, we will also
test the efficiency of different hybrid GAs, then compare the
efficiency of different GAs.

2. LJQO PROBLEM
The optimizing process for a large join query includes two
parts: logical optimization and physical optimization. The
query, submitted in high-level declarative language such as
SQL, is translated to a query graph as the input of a log-
ical optimizer. In a query graph each node represents a
base relation and each edge a common attribute between
two connected base relations. According to relational alge-
braic equivalent rules — the associative rule and commuta-
tive rule of join operators — the logical optimizer generates
many equivalent join trees for the query graph as its out-
put. In a join tree each leaf represents a base relation and
each inner node a join operator. A join operator is the join
result of its left child and right child. For each join tree, a
physical optimizer selects a physical operator from several
candidates for any join operator in the join tree to produce
many equivalent operator trees. In an operator tree each leaf
represents a base relation and the inner node is a physical
operator. A physical operator is an algorithm for execut-
ing the join operator. Finally, the optimizer estimates the
cost of each operator tree then determines the lowest cost
operator tree, the optimal QEP.

Therefore, the optimizing process is meant to choose the
optimal join order for the relations in a query graph then to
determine the optimal join algorithm for each join operator.
We will focus on the logical optimization, i.e. choose an
optimal join order for a query. The logical optimization is
still a combinatorial optimization problem.

The solution space of a query is the set of all QEPs for the
query. The goal of large join query optimization is to find the
optimal QEP in the solution space. A desirable LJQO will
solve three sub-problems: (1) choose a search space which

is the subset of the solution space and includes lowest cost
QEP, (2) choose a cost model which can accurately estimate
the cost of QEPs, and (3) choose a search algorithm which is
effective and efficient. Each of these three tasks is nontrivial.

Commonly, according to the shape feature of join trees, a
solution space is divided to three non-overlapping search
spaces: a left-deep tree space, a right-deep tree space, and a
bushy space. If any inner node has a base relation as right
child, the tree is called a left-deep tree. If any inner node has
a base relation as left child, the tree is called a right-deep
tree, which is symmetrical to a left-deep tree. Otherwise,
it is called bushy. Given N is the number of relations in
a query, the left-deep tree space has N! QEPs, right-deep
tree space has N! QEPs and the whole solution space has
CN−1

2N−2 ∗ (N − 1)! QEPs. As is the case for most LJQO
algorithms, we use left-deep tree space as the search space.

A cost model is a set of formulas that is used to estimate the
cost of a QEP before it is run. Generally the cost includes
the CPU cost and disk access cost. In a large database
system the disk access cost is much higher than the CPU
cost, so we take into account only the disk access cost. We
use the simple cost model used in [8]. The GAs we designed
can be easily changed to other cost models.

The simple cost model is based on two assumptions: (1) the
uniform distribution of attribute values and (2) the sum of
the size of the intermediate relations determines the cost of
a join tree. The formulas are as follows:

If ti (i = 1,2,. . . ,n-1) is an inner node in a join tree, then
the cost formula of the join tree is

Cost =
n−1X
i=1

n(ti) (1)

Where, n(ti) is the number of tuples in the relation ti

For inner node t, if r and s are relations represented respec-
tively by left child and right child of t, and C is a common
attribute group in relation r and s, then:

n(t) =
n(r) × n(s)Q

Cj∈C

max(V (Cj, r), V (Cj, s))
(2)

V (A, t) =

8<
:

V (A, r) A ∈ r − s
V (A, s) A ∈ s − r
min(V (A, r), V (A, s)) A ∈ r&A ∈ S

(3)

V(A,r) is the number of distinct values that appear in the
relation r for attribute A.

To estimate the cost of a join tree, formulas (2) and (3)
are used for every inner node (or intermediate relation) to
calculate the number of tuples (or size) and the number of
distinct values for its join attributes. Then formula (1) is
used to sum up the size of every inner node. So the cost
estimating of a join tree consumes much computation time.

Generally, search algorithms are classified into three cate-
gories: (1) Exhaustive algorithms; (2) Heuristic algorithms;
(3) Random search algorithms. GAs are a class of random
search algorithms.

1212

3. A GENETIC OPTIMIZATION MODEL

3.1 Four types of GAs for LJQO
Basic GAs include the following components: (1) Code; (2)
Fitness function; (3) Genetic factors, which include initial-
ization operator, crossover operator, mutation operator, se-
lection strategy, replacement strategy, and termination cri-
teria; (4) Genetic parameters: population size (N), crossover
probability (Pc) and mutation probability (Pm). The set-
tings and combinations of all components decide the effi-
ciency of GAs. So, finding an efficient GA for the problem
itself is an optimization problem.

Hybrid GAs combine some problem-specific heuristics, or
constraints, into genetic operators, or add extra steps of ran-
domized local search methods into basic GAs to enhance the
performance. Generally, the hybrid GAs include constraint
GAs, heuristic GAs, and genetic local search (GLS) algo-
rithms. Constraint GAs improve performance by reducing a
search space through problem-specific constraints. Heuristic
GAs use problem-specific heuristics to reduce a search space.
GLS algorithms are based on a basic GA framework but
perform local search algorithms for each individual before
genetic operators [6]. In fact, GLS lets GA search the local
optima’s space instead of the whole search space. The goal
of this paper is to test the existence of variation on efficiency
of four types of GAs for LJQO. We are not going to test all
constraints or all heuristics or all local search methods in
relational database systems to determine the optimal GAs.
Instead, we use the commonly used constraint – avoiding
Cartesian-products to design constraint GAs, use the small-
est cardinality heuristic to design heuristic GAs, use two
commonly used local search methods – Swap and 3Cycle,
which are proposed in [12], to design GLS algorithms.

3.2 A Query Model as a Granularity
The efficiency of GAs depends on the nature of the problem.
That means the GAs for LJQO have to be optimized based
on join queries. Because the efficiency and robustness are
two conflicting goals, the granularity of join queries has to
be chosen carefully. Too large a granularity will produce
very high robustness but low efficiency, while too small a
granularity will produce low robustness but high efficiency.
So, a proper granularity has to be chosen carefully.

A query model is the method of characterizing a query graph.
Factors, such as number of relations, shape of query graph,
distribution of relation cardinalities, distribution of distinct
values of attributes, and join cutoff probability, characterize
a query model.

We believe that a query model will be a proper granular-
ity to be based on to optimize GAs. From the applica-
tion aspect, an assumption has existed that the queries in
a database application or a data warehouse application fol-
low a query model. Therefore, first, we can find the query
model through sampling queries from the application envi-
ronment, and then optimize GAs based on this query model
to determine the optimal GA. When a query is submitted
to the database system, the optimal GA is used to optimize
this query. The advantage is that the process of optimizing
GA is offline. Even more, when the application environment
has been changed too much to fit the original query model,

the system can go through sampling queries, to determine
the new query model, and then optimize GA again.

3.3 A Genetic Optimization Model for LJQO
Taking left-deep tree space as a search space and the simple
cost model [8] as a cost model, the task of GAs for LJQO is
to determine the optimal GA. The efficiency of GAs for large
join query optimization is affected by many factors. Based
on a query model to optimize GAs, we present a genetic
optimization model for LJQO as follows:

Opti model (Query model, GA model)
Query model(Num rel, GraphJoin ProR disA dis)
GA model (Code, Func, Init, Cros, Mut, Selec, Repla, Stop
crit, N, Pc, Pm)

Where Opti model is the genetic optimization model for
LJQO and its elements are two sub-models: Query model,
and GA model. Query model is a query model. GA model
is a genetic algorithm model. The goal of Opti model is
based on queries from a certain Query model to determine
an optimal GA determined by a GA model.

The elements of a Query model(Num rel, Graph, Join Pro,
R dis, A dis) are respectively mapped to all factors of a
query model as follows:number of relations, shape of query
graph, distribution of relation cardinalities, distribution of
distinct values of attributes, and join cutoff probability.

The elements of a GA model (Code, Func, Init, Cros, Mut,
Selec, Repla, Stop crit, N, Pc, Pm) are respectively mapped
to all components of GAs as follows: code, fitness function,
initialization operator, crossover operator, mutation oper-
ator, selection strategy, replacement strategy, termination
criteria, population size, crossover probability, and muta-
tion probability.

3.4 Experimental Methods and Evaluation
To optimize GAs based on the query model, we need to
generate a large number of queries (from 10 to 100) from
different query models. We choose six query models: three
typical query models G1, G2, G3 in databases and three
typical query models ST, SN, MS in data warehouses(DWs),
see Table 1.

G1 is a query model that random query optimization algo-
rithms commonly use as a benchmark [12]. G2 is a varia-
tion of G1 that makes uniform the distribution of the rela-
tion cardinalities. G3 is a variation of G1 that doubles the
join probability. ST is a query model in which the shape
of the query graph is a star. SN is a variation of ST in
which the shape of the query graph is a snowflake. MS is a
variation of ST in which the shape of the query graph is a
multi-star. For each query model, ten query examples are
generated randomly. Their sizes range from 10 to 100 in
increments of 10. For the query model X (here X is G1,
or G2, or G3, or ST, or SN, or MS), the ten query exam-
ples are XQ01, XQ02, XQ03, XQ04, XQ05, XQ06, XQ07,
XQ08, XQ09, and XQ10. For each query, each GA is run
ten times and the averages are evaluated. To evaluate the
efficiency of GAs we compare the optimizing time and opti-
mal QEP cost because the response time for a query includes
two parts: the time of a GA optimizing a query to find an

1213

Table 1: Typical query models in DBs and DWs
model Join Pro R dis A dis

G1 0.01 [10, 102] — 20%
(102, 103]— 60%
(103, 104— 20%

(0, 0.2] — 90%
(0.2, 1)— 9%
1.0 — 1%

G2 0.01 [10, 104] — 100% (0, 0.1] — 90%
(0.1, 1)— 9%
1.0 — 1%

G3 0.02 [10, 102] — 20%
(102, 103]— 60%
(103, 104)— 20%

(0, 0.2] — 90%
(0.2, 1)— 9%
1.0 — 1%

ST [105, 106]—center
point
[102, 104)— 100%

(0, 0.2] — 10%
(0.2, 1)— 90%

SN [105, 106]—center
point
[102, 103)— 100%

(0, 0.2] — 10%
(0.2, 1)— 90%

MS [105, 106]—center
point
[102, 104)— 100%

(0, 0.2] — 10%
(0.2, 1)— 90%

optimal QEP and the time of executing the optimal QEP.
We use the ratio of the optimizing time over the minimum
optimizing time for the query among all GAs to measure the
optimizing time, and the ratio of the optimal QEP cost over
the minimum optimal QEP cost found for the query among
all GAs to measure the optimal QEP cost.

4. THE PERFORMANCE OF GAS FOR SIX
QUERY MODELS

Taking left-deep tree space as a search space and the simple
cost model as a cost model, in this section we will design
and optimize four classes of GAs for LJQO and compare
their efficiency for six query models. In Sections 4.1, 4.2,
4.3, 4.4, and 4.5 our experimental results and analyses are
based on the query model G1. In Section 4.6, we will show
the experimental results of other query models.

4.1 Basic Genetic Algorithms
For all GAs, based on features of LJQO, we make the fol-
lowing restrictions to some parameters of the GA model:

1. Code
Both the locations of relations and the adjacent relation-
ships between relations affect the cost of QEP, so we use an
ordered string of vertices to represent a QEP. Giving each
basic relation a serial number started from 1, the chromo-
some is generated by putting the serial numbers of all leaf
nodes in a left-deep tree from left to right. The advantage
of the code is that its genotype is its phenotype. So it is
easy to use constraints and heuristics in relational database
systems into the GAs.

2. Func
The formulas of a simple cost model [8] are used as the
fitness functions.

3. N
Because the computation cost of the fitness function is very
high, the population size N should be small.

4. Repla
Two common replacement strategies are used: keeping di-
versity — replacing the worst duplicate or the worst indi-
vidual if there is not a duplicate, and replacing worst —
replacing the worst individual.

5. Selec
We use the random selection to maintain the diversity of
population because the population size is small. But the
replacement strategies we use will avoid the degeneration of
the next generation population.

6. Stop crit
No improvement for 500 generations.

For the left parameters, we use the following common set-
tings of Init, Cros, and Mut. Their details can be found in
[1] [4].

a). Init
Random initialization (RI)

b). Cros
Partially-mapped crossover (PMX)
Order crossover (OX)
Uniform order-based crossover (UX)

c). Mut
Swap (2D): randomly select and exchange two points.
Flip (2F): randomly select two points and exchange two seg-
ments.
Near (2N): randomly select two points and put second point
to the front of first.
3 Cycle (3D): randomly select three points and circularly
move three points.

The experimental process of optimizing basic GAs is divided
into three steps: (1) Determining effective crossover opera-
tors and mutation operators; (2) Determining the effective
combinations of crossover and mutation operators; (3) De-
termining optimal settings of Repla, N, Pc, and Pm for the
effective combination. The experiments show that the opti-
mal basic GA settings are: N=60, Pc=0.75, Pm=0.25, Re-
pla=keeping diversity, Cros=UX, Mut=2D.

4.2 Constraint Genetic Algorithms
Avoiding Cartesian-products is an efficient constraint in re-
lational database systems to reduce a search space. The
constraint is used in GAs through genetic operators: ini-
tialization, crossover and mutation. We design a constraint
initialization operator – avoiding Cartesian-products initial-
ization (ACI), a constraint crossover operator – IPPX, and
a constraint mutation operator – 1D.

A constraint initialization operator – ACI

The input is a query graph with m vertices (relations) and
the output is a population with n chromosomes.

begin

for I = 1 to n do

1214

{ S = NULL; num = 1;

randomly select a relation r from the query graph

as the num-th gene of chromosome;

repeat

put all relations linked to the relation r in the query

graph but not in chromosome, into S;

randomly select a relation r from the query graph

as the num-th gene of chromosome;

num = num + 1;

until num = m; }

end.

A constraint crossover operator – IPPX

The Precedence Preservative Crossover(PPX) is presented
by [3]. First the offspring chromosome is initialized empty.
Then a vector of length n is randomly filled with elements of
the set {1, 2}. This vector defines the order in which genes
are drawn from parent 1 and parent 2 respectively. After
a gene is drawn from one parent and deleted in the other,
it is appended to the offspring chromosome. This step is
repeated until both parent chromosomes are empty and the
offspring contains all genes involved.

Apparently, The Precedence Preservative Crossover(PPX)
respects the absolute order of genes in parental chromo-
somes, but the offspring cannot avoid Cartesian-products.The
Cartesian-products may appear between the first pair of ad-
jacent genes which are from different parents.

We present the IPPX as a variation of PPX, which can avoid
Cartesian-products. First, for the first gene x of parent 2,
locate x in the parent 1 as i-th gene. Then, copy the 1, 2,
. . . , i genes of parent 2 to the 1, 2, . . . , i genes of offspring.
Finally, produce the left genes of offspring by PPX operator.

A constraint mutation operator – 1D

In a chromosome p, randomly select a relation r which is
linked to the first gene in the query graph, then put r in
front of the first gene. This mutation operator, we call 1D,
can avoid Cartesian-products.

Table 2: Constraint GAs
CGA N Init Repla Cros Mut
CUDD 30 ACI Keeping diversity UX 2D
CPDD 30 ACI Keeping diversity PPX 2D
CIDD 30 ACI Keeping diversity IPPX 2D
CUDD6 60 ACI Keeping diversity PPX 2D

To test the efficient combinations of constraint genetic op-
erators and non-constraint operators, we set components of

0
1
2
3
4
5
6
7
8
9

G1
Q0

1

G1
Q0

2

G1
Q0

3

G1
Q0

4

G1
Q0

5

G1
Q0

6

G1
Q0

7

G1
Q0

8

G1
Q0

9

G1
Q1

0

co
st
 s
ca
le

CIDD CPDD CUDD CUDD6

Figure 1: Costs by CGAs

0

1

2

3

4

5

6

7

8

G1
Q0

1

G1
Q0

2

G1
Q0

3

G1
Q0

4

G1
Q0

5

G1
Q0

6

G1
Q0

7

G1
Q0

8

G1
Q0

9

G1
Q1

0

ti
me

 s
ca

le

CIDD CPDD CUDD CUDD6

Figure 2: Times of CGAs

constraint GAs as following options: (1) Init: ACI; (2) Re-
pla: keeping diversity and replacing worst; (3) Cros: UX,
PPX and IPPX; (4) Mut: 2D and 1D. The parameters Pc

and Pm are 0.75 and 0.25 which have been determined in ba-
sic GAs experiments. Experimental data show that the re-
placement strategy of keeping diversity is more efficient than
replacing worst. An important experimental result is that
GAs with N=30 have a shorter optimizing time than GAs
with N=60, but their optimal GAs are very close. We be-
lieve this is because the constraint reduces the search space.
Table 2 is four typical GAs with Repla = keep diversity, but
different crossover, mutation operators and population size.
Figure 1 is the costs of their optimal QEPs and Figure 2 is
their optimizing time.

The above experimental data show:

(1) Using ACI, IPPX, and ID simultaneously damages the
diversity of population and leads to premature convergence;

(2) For the crossover operators, generally, UX is better than
PPX, and PPX is better than IPPX. We believe that is be-
cause IPPX excessively keeps the orders of genes of parents,
which causes offspring to be too close to their parents in the
search space.

(3) CUDD has the shortest optimizing time and near opti-
mal QEPs. CUDD is the best constraint GA.

4.3 Heuristic Genetic Algorithms
We choose a common heuristic — smallest cardinality crite-
rion, to initialize the population.

A smallest cardinality initialization (SCI)

The smallest cardinality criterion generates an individual
as follow: given a set of relations S, the first relation is
randomly selected from S and then repeatedly selects the
relation with the smallest cardinality and avoids Cartesian-
products from S until S is empty.

Table 3: Heuristic GAs
HGA N Init Repla Cros Mut
HIDM 30 SCI Keeping diversity IPPX 1D
HIDM6 60 SCI Keeping diversity IPPX 1D
HUDD 30 SCI Keeping diversity UX 2D
HUDD6 60 SCI Keeping diversity UX 2D

We still choose the parameters Pc and Pm as 0.75 and 0.25.
Other components of heuristic GAs have the following op-
tions: (1) Init: SCI; (2) Cros: UX and IPPX; (3) Mut:

1215

0

5

10

15

20

25

30

G1
Q0
1

G1
Q0
2

G1
Q0
3

G1
Q0
4

G1
Q0
5

G1
Q0
6

G1
Q0
7

G1
Q0
8

G1
Q0
9

G1
Q1
0

c
o
s
t

s
c
a
l
e

HIDM HIDM6 HUDD HUDD6

Figure 3: Costs by HGAs

0
5
10
15
20
25
30
35
40
45
50

G1
Q0
1

G1
Q0
2

G1
Q0
3

G1
Q0
4

G1
Q0
5

G1
Q0
6

G1
Q0
7

G1
Q0
8

G1
Q0
9

G1
Q1
0

t
i
m
e

s
c
a
l
e

HIDM HIDM6 HUDD HUDD6

Figure 4: Times of HGAs

2D and 1D. Table 3 is four typical GAs with Repla = keep
diversity, but with different crossover operators, mutation
operators and population size. Figure 3 is the costs of their
optimal QEPs and Figure 4 is their optimizing times.

HUDD and HUDD6 are similar and good, but HIDM and
HIDM6 prematurely converge. The reason is that SCI limits
the individuals of population to a very small search space
and IPPX which preserves the gene orders of parents fur-
ther limits the search space. Therefore, the crossover opera-
tors and mutation operators, which preserve genes orders of
parental chromosomes, should not be used after using SCI.

4.4 Genetic Local Search Algorithms
The genetic local search algorithms use two common local
search algorithms, Swap and 3 Cycle respectively. We fix the
parameters Pc and Pm as 0.75 and 0.25. Other components
of GLS algorithms have the following options: (1) Init: ACI;
(2) Cros: UX and IPPX; (3) Mut: 2D and 1D; (4) Local
search algorithms: Swap and 3 Cycle.

In GLS algorithms, each offspring has to go through local
search algorithms, which have a very high computation cost,
so, the population size should be small. The experimental
data show that (1) ACI effectively reduces the run time of
local search algorithms; (2) adjacent number = 50, N = 10,
and Stop crit = no improvement for 10 generations are good
settings.

Table 4 is four GLS algorithms with Repla = keeping diver-
sity, Init = ACI, adjacent number = 50, N = 10, and Stop
crit = no improvement for 10 generations, but with different
crossover operators, mutation operators and local search al-
gorithms. Figure 5 is the costs of their optimal QEPs and
Figure 6 is their optimizing times.

Table 4: GLS algorithms
GLS Cros Mut Local

search
Adjacent
number

GLS2I IPPX 1D Swap 50
GLS2U UX 2D Swap 50
GLS3I IPPX 1D 3 Cycle 50
GLS3U UX 2D 3 Cycle 50

The above experimental data show:

(1) Four GLS algorithms have similar efficiency because the
ratios of y-axis in Figure 5 and Figure 6 are small;

0
1
2
3
4
5
6
7
8

G1
Q0

1

G1
Q0

2

G1
Q0

3

G1
Q0

4

G1
Q0

5

G1
Q0

6

G1
Q0

7

G1
Q0

8

G1
Q0

9

G1
Q1

0

co
st

 s
ca

le

GLS2I GLS2U GLS3I GLS3U

Figure 5: Costs by GLSs

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

G1
Q0

1

G1
Q0

2

G1
Q0

3

G1
Q0

4

G1
Q0

5

G1
Q0

6

G1
Q0

7

G1
Q0

8

G1
Q0

9

G1
Q1

0

ti
me

 s
ca

le

GLS2I GLS2U GLS3I GLS3U

Figure 6: Times of GLSs

0

10
20
30
40

50

60
70

80
90

100

G1
Q0
1

G1
Q0
2

G1
Q0
3

G1
Q0
4

G1
Q0
5

G1
Q0
6

G1
Q0
7

G1
Q0
8

G1
Q0
9

G1
Q1
0

co
st
 s
ca
le

CUDD GLS3U HUDD6 SUDD67

Figure 7: Costs for G1

0

1
2

3

4

5

6

7

8

G1
Q0

1

G1
Q0

2

G1
Q0

3

G1
Q0

4

G1
Q0

5

G1
Q0

6

G1
Q0

7

G1
Q0

8

G1
Q0

9

G1
Q1

0

ti
me
 s
ca
le

CUDD GLS3U HUDD6 SUDD67

Figure 8: Times for G1

(2) The ACI decreases the searching time of local search
algorithm;

(3) GLS3U is the best GLS algorithm. The optimal settings
are : N=10, adjacent number = 50, Stop crit = 10 generation
of same best solution;

4.5 Comparison of Four Classes of GAs
From Section 4.1, 4.2, 4.3, 4.4, the optimal basic GA, con-
straint GA, heuristic GA and GLS algorithm are SUDD67,
CUDD, HUDD6 and GLS3U. They all use UX as the crossover
operator.

First, we compare their efficiency. Figure 7 and Figure 8
compare their costs of optimal QEPs and optimizing times.
GLS3U finds the lowest cost or near lowest cost QEPs but
it has the highest optimizing time. Because ratio of time is
much smaller than ratio of cost, and optimizing time of GAs
is smaller than execution time of QEPs, GLS3U is the most
efficient GA.

Secondly, we compare their converging speeds. GLS3U is
the fastest because it converges in less than 100 genera-
tions. But at each generation, each offspring has to run
a local search algorithm. Therefore, we only compare the
converging speeds of SUDD67, CUDD and HUDD6. For
query G1Q05, Figure 9 is their optimal QEPs at 23 gener-
ations: starts from 200th generation with interval 50 gener-

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23

co
st
 s
ca
le

CUDD HUDD6 SUDD67

Figure 9: G1Q05 converg-
ing

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17

co
st

 s
ca

le

CUDD HUDD6 SUDD67

Figure 10: G1Q10 con-
verging

1216

0

10

20

30

40

50

60

70

80

G1Q01 G1Q02 G1Q03 G1Q04 G1Q05 G1Q06 G1Q07 G1Q08 G1Q09 G1Q10

TI
ME

CUDD GLS3U HUDD SUDD67

Figure 11: The time complexity of GAs

0

10

20

30

40

50

G2
Q0
1

G2
Q0
2

G2
Q0
3

G2
Q0
4

G2
Q0
5

G2
Q0
6

G2
Q0
7

G2
Q0
8

G2
Q0
9

G2
Q1
0

c
o
s
t

s
c
a
l
e

CIDD GLS3I HUDD SUDD67

Figure 12: Costs for G2

1

21
41

61

81

101

121

141

161

G2
Q0
1

G2
Q0
2

G2
Q0
3

G2
Q0
4

G2
Q0
5

G2
Q0
6

G2
Q0
7

G2
Q0
8

G2
Q0
9

G2
Q1
0

t
i
m
e

s
c
a
l
e

CIDD GLS3I HUDD SUDD67

Figure 13: Times for G2

ations. Figure 10 is their optimal QEPs at 17 generations:
starts from 500th generation with interval 50 generations.
For both G1Q05 and G1Q10, CUDD converges fast to good
QEPs. SUDD67 converges fastest to a good QEP for G1Q05
but slowest to a highest cost QEP for G1Q10. So, CUDD is
a stable GA for very large join queries but SUDD67 fits to
queries with a smaller number of relations.

Thirdly, we compare their time complexity. Figure 11 is the
time complexities. The x-axis is ten queries with relation
numbers 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 respectively.
The y-axis is the result of optimizing times dividing the
optimizing time of same GA for G1Q01. Obviously, the
time complexity of GAs increases slowly as the number of
relations increases from 10 to 100.

4.6 GAs for Different Query Models
The same experimental process for G1 has been repeated for
query model G2, G3, ST, SN, and MS. Figure12–Figure21
show the experimental data of four classes of optimal GAs
for these five query models. Analyzing these experimental
data, we find main features for five query models and explain
the reasons:

1. Features of GAs for query model G2

(1) Whether N=30 or N=60, the efficiency of constraint GAs
and heuristic GAs are similar. It explains that ACI effec-
tively reduces the search space;

(2) CIDD and GLS3I find the best optimal QEPs. They use
ACI;

(3) SCI doesn’t function, because in G2, the distribution of
relation cardinalities is uniform.

2. Features of GAs for query model G3

(1) These GAs have similar optimizing times and optimal
QEPs have similar costs;

0

1

2

3

4

5

6

7

G3
Q0
1

G3
Q0
2

G3
Q0
3

G3
Q0
4

G3
Q0
5

G3
Q0
6

G3
Q0
7

G3
Q0
8

G3
Q0
9

G3
Q1
0

c
o
s
t

s
c
a
l
e

CIDD6 GLS3I HUDD6 SUDW67

Figure 14: Costs for G3

0
5
10
15
20
25
30

G3
Q0
1

G3
Q0
2

G3
Q0
3

G3
Q0
4

G3
Q0
5

G3
Q0
6

G3
Q0
7

G3
Q0
8

G3
Q0
9

G3
Q1
0

t
i
m
e

s
c
a
l
e

CIDD6 GLS3I HUDD6 SUDW67

Figure 15: Times for G3

0

5

10

15

20

25

ST
Q0
1

ST
Q0
2

ST
Q0
3

ST
Q0
4

ST
Q0
5

ST
Q0
6

ST
Q0
7

ST
Q0
8

ST
Q0
9

ST
Q1
0

c
o
s
t

s
c
a
l
e

CUDD6 GLS3U HUDD SUDD67

Figure 16: Costs for ST

0

1

2

3

4

5

ST
Q0
1

ST
Q0
2

ST
Q0
3

ST
Q0
4

ST
Q0
5

ST
Q0
6

ST
Q0
7

ST
Q0
8

ST
Q0
9

ST
Q1
0

t
i
m
e

s
c
a
l
e

CUDD6 GLS3U HUDD SUDD67

Figure 17: Times for ST

(2) For both constraint GAs and heuristic GAs, N=60 is
better than N=30. The reason is G3 has higher connectivity
than G1 and G2. There is a large number of QEPs without
Cartesian-products and ACI can not reduce search space
effectively;

(3) The biggest difference from G1 and G2 is that GLS al-
gorithms prematurely converges.

3. Features of GAs for query model ST

(1) ACI doesn’t function because any non-central relation
connects to the only central relation but doesn’t connect to
any other non-central relations. The chromosome generated
by ACI includes the central relation in the first two genes.
The next genes can be any remaining relations. ACI is a
random initialization with the central relation as first or
second gene.

(2) SCI doesn’t fit, because the SCI we designed is also an
ACI. Any two chromosomes in the initialized population will
have the same relative order of relations except maximum
three genes: their first genes, their second genes.

4. Features of GAs for query model SN

(1) ACI works better than random initialization. There is
more than one central relation in query model SN, the ACI

0

5

10

15

20

SN
Q0
1

SN
Q0
2

SN
Q0
3

SN
Q0
4

SN
Q0
5

SN
Q0
6

SN
Q0
7

SN
Q0
8

SN
Q0
9

SN
Q1
0

c
o
s
t

s
c
a
l
e

CIDD6 GLS3I HUDD6 SUDD67

Figure 18: Costs for SN

0

5

10

15

20

25

30

SN
Q0
1

SN
Q0
2

SN
Q0
3

SN
Q0
4

SN
Q0
5

SN
Q0
6

SN
Q0
7

SN
Q0
8

SN
Q0
9

SN
Q1
0

t
i
m
e

s
c
a
l
e

CIDD6 GLS3I HUDD6 SUDD67

Figure 19: Times for SN

1217

0

5

10

15

20

25

30

MS
Q0
1

MS
Q0
2

MS
Q0
3

MS
Q0
4

MS
Q0
5

MS
Q0
6

MS
Q0
7

MS
Q0
8

MS
Q0
9

MS
Q1
0

c
o
s
t

s
c
a
l
e

CPDD6 GLS3I HUDD6 SUDD67

Figure 20: Costs for MS

0

1
2

3
4

5

6

7

MS
Q0
1

MS
Q0
2

MS
Q0
3

MS
Q0
4

MS
Q0
5

MS
Q0
6

MS
Q0
7

MS
Q0
8

MS
Q0
9

MS
Q1
0

t
i
m
e

s
c
a
l
e

CPDD6 GLS3I HUDD6 SUDD67

Figure 21: Times for MS

can effectively reduce a search space and keep most near
optimal QEPs.

(2) SCI works better than ACI, because the former can more
effectively reduce a search space;

(3) Basic GAs are not efficient because random initialization
can not reduce search space;

(4) Generally, GLS algorithms are robust and efficient.

5. Features of GAs for query model MS

There are 3 to 5 central relations in query model MS. Be-
cause of the similarity between SN and MS – more than one
central relation – the ACI and SCI function better than ran-
dom initialization in query model MS. A important feature
of GAs for query model MS is that HUDD6 and HUDD are
very robust.

Table 5 is the rank of efficiency of four classes of GAs for
six query models. Obviously, the rank of efficiency of four
classes of GAs is different for six query models and the opti-
mal settings of four classes of GAs are different for different
query models.

Table 5: Efficiency of GAs for six query models
BGA
(Rank)

CGA
(Rank)

HGA
(Rank)

GLS
(Rank)

G1 SUDD67(3) CUDD(2) HUDD6(4) GLS3U(1)
G2 SUDD67(4) CIDD(2) HUDD(3) GLS3U(1)
G3 SUDW67(3) CIDD6(1) HUDD6(2) GLS3I(4)
ST SUDD67(2) CUDD6(3) GLS3U(1)
SN SUDD67(4) CIDD6(3) HUDD6(2) GLS3I/U(1)
MS SUDD67(4) C*DD6(3) HUDD6(1) GLS3I/U(2)

5. CONCLUSIONS
Because genetic algorithms are randomized optimization al-
gorithms, their efficiency depends on the nature of the prob-
lem. We believe that all large join queries have a too wide
a range of complexity and diversity to be based on to op-
timize GAs for LJQO. Our experiments show that a query
model is a proper granularity to be based on to optimize
GAs for LJQO. Based on three typical query models of re-
lational database systems and three typical query models of
data warehouse systems, we choose a left-deep tree space as
GAs’ search spaces to design and optimize four classes of
GAs for LJQO. Our experimental results have proved this
from the following two aspects. First, the efficiency of four

classes of GAs depends on query models. Second, the effi-
cient settings of GAs depend on query models.

6. ACKNOWLEDGMENTS
We acknowledge the assistance of the computer science de-
partment, Memorial University, St. John’s, Newfoundland,
Canada, in the writing and preparation of this paper. This
research is funded in part by the National Natural Science
Foundation of China – NFSC60573038.

7. REFERENCES
[1] Bäck, T., Fogel, D. B., Whitley, D. and Angeline, P. J.

Mutation operators. Evolutionary Computation 1
Basic Algorithms and Operators. Institute of Physics
Publishing, Bristol and Philadelphia, 2000, 237-254.

[2] Bennett, K., Ferris, M. C., and Ioannidis, Y. A genetic
algorithm for database query optimization. Tech. Rep.
TR1004, Univ. Wisconsin, Madison, 1991

[3] Bierwirth, C., Mattfeld, D. C., and Kopfer, H. On
Permutation Representations for Scheduling
Problems. In Parallel Problem Solving from Nature ,
H.-M.Voight et al, eds. Springer-Verlag, 1996, 310-328.

[4] Booker, L. B., Fogel, D. B., Whitley, D. and Angeline,
P. J. Recombination. Evolutionary Computation 1
Basic Algorithms and Operators. Institute of Physics
Publishing, Bristol and Philadelphia, 2000, 256-307.

[5] Eshelman, L. J. Genetic algorithms. Evolutionary
Computation 1 Basic Algorithms and Operator.
Institute of Physics Publishing, Bristol and
Philadelphia, 2000, 64-80.

[6] Gorges-Schleuter, M. On the power of evolutionary
optimization in the examples of ATSP and large TSP
Problems. European Conference on Artificial Life.
Brighton, UK, July 1997.

[7] Ioannidis, Y. E. and Kang, Y. C. Randomized
Algorithms for Optimizing Large Join Queries. In
Proceeding of the 1990 ACM-SIGMOD Conference on
the Management of Data. Atlantic City, NJ, .May
1990. 312-321.

[8] Lahiri, T. Genetic Optimization Techniques for Large
Join Queries. In Proceedings of the Third Genetic
Programming Conference (Univ. of Wisconsin,
Madison, July 22-25, 1998). Morgan Kaufmann, 1998,
535-540.

[9] Schwefel, H. Advantages (and disadvantages) of
evolutionary computation over other approaches.
Evolutionary Computation 1 Basic Algorithms and
Operators. Institute of Physics Publishing, Bristol and
Philadelphia, 2000, 20-22

[10] Steinbrunn, M., Moerkotte, G., and Kemper, A.
Heuristic and randomized optimization for the join
ordering problem. The VLDB Journal,6, 3 (Aug.
1997), Springer-Verlag, New York, Inc. 191-208

[11] Stillger, M. and Spiliopoulou, M. Genetic
programming in database query optimization. In Proc
First Annu. Conf. Genetic Programming, Stanford,
CA, July 1996, 388-393

[12] Swami, A. and Gupta, A. Optimization of Large Join
Queries. In Proceedings of the 1988 ACM SIGMOD
International Conference on the Management of Data.
SIGMOD RECORD Volume 17. Number 3,
September 1988, 8-1

1218

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

