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ABSTRACT

Finding binary sequences with low autocorrelation is a very
hard problem with many practical applications. In this pa-
per we analyze several metaheuristic approaches to tackle
the construction of this kind of sequences. We focus on
two different local search strategies, steepest descent local
search (SDLS) and tabu search (TS), and their use both
as stand-alone techniques and embedded within a memetic
algorithm (MA). Plain evolutionary algorithms are shown
to perform worse than stand-alone local search strategies.
However, a MA endowed with TS turns out to be a state-
of-the-art algorithm: it consistently finds optimal sequences
in considerably less time than previous approaches reported
in the literature.

Categories and Subject Descriptors
G.1.6 [Optimization]: Stochastic programming.

General Terms

Algorithms, Experimentation.

Keywords

Low autocorrelation binary sequences, memetic algorithms,
tabu search.

1. INTRODUCTION

The low autocorrelation binary sequence (LABS) problem
is a very hard combinatorial optimization problem. It has
been deeply studied since the 1960s by both the commu-
nities of Physics and Artificial Intelligence. The reasons
behind this interest are twofold: on one hand, the problem
has many applications in diverse areas such as telecommuni-
cations (e.g., synchronization, pulse compression and, espe-
cially, radar), physics (e.g., ising spin glasses) and chemistry
[1, 4, 17, 18, 19]; on the other hand, it poses a formidable
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optimization task of huge difficulty. In this sense, the appli-
cation of many different techniques to the resolution of the
problem has been attempted (see Sect. 2.2). For instance,
analytical methods are able to find optimal sequences up
to a certain length, but search methods are required in the
most interesting cases (i.e., the aperiodic ones). In line with
this, systematic search has been applied with limited success
since, in general, these methods lack scalability, and there-
fore large sequences cannot be solved in a limited-resource
(i.e., time and memory) scenario. To date, the largest LABS
shown to be optimal is that with length 60, and this took
several days of execution on a cluster of 160 CPUs [13].

In addition to complete deterministic approaches, stochas-
tic methods have been also proposed to generate LABS, but
in general they have performed poorly. One of the reasons is
that the search landscape traditionally considered for finding
LABS has a very irregular structure with isolated minima
[1]. Contrarily to the general impression (as reported so far
in the literature, see Sect. 2.2) that stochastic methods are
not adequate to tackle this problem, this paper shows that
these techniques are useful tools for finding optimal LABS.
More precisely, we consider different local search strategies
as well as memetic algorithms (MAs) [9, 10, 15] endowed
with them. The combination of the global search performed
by an evolutionary algorithm combined with the intensifi-
cation provided by the local search component (in our case,
a MA using tabu search) can successfully traverse the pre-
viously mentioned irregular landscape, and can consistently
find optimal sequences in considerably less time than previ-
ous reported approaches.

The rest of the paper is organized as follows: In Section
2, the LABS problem is formally described and other ap-
proaches in the literature to tackle it are reviewed. In Sec-
tion 3, two local search operators for the LABS problem are
described. Section 4 presents the experimental evaluation of
the local search operators described previously, along with
MAs endowed with them. Finally, Section 5 concludes and
outlines some future work.

2. BACKGROUND

In order to introduce the problem, let a binary sequence
S of length L be represented by s1s2 - - - sz with s; € {—1,1}
for 1 <i< L,ie., S € {-1,1}*. Next subsection will define
the notion of autocorrelation on such a sequence, as well as
different quality measures. Subsequently, an overview of
previous work on the LABS problem will be presented.



2.1 Low autocorrelation binary sequences

The aperiodic autocorrelation of elements in sequence S
with distance k is defined as

L—k
Ck(S) = Z SiSitk- (1)

The energy function associated to sequence S is the quadratic
sum of its correlations:

(2)

and the low autocorrelation problem for binary sequences
with length L, LABS(L), consists of finding a sequence of
length L with associated minimum energy. In this sense,
notice one interesting property of the LABS problem: it
is highly symmetric. Clearly, the energy corresponding to
a sequence remains unchanged when the sequence is re-
versed or complemented (i.e., every s; is multiplied by —1).
Note also that when alternate elements of a sequence get
complemented, only the sign of odd-indexed correlations
change, and hence, the corresponding energy is neither al-
tered. Therefore, except for a small number of symmetric
sequences, the 2¥ sequences of length L come in equivalence
classes of size 8.

Golay [7, 8] introduced a different measure in order to
assess the quality of sequences called its merit factor:

L2

T 2E(9)
that lends itself to better analytical manipulation. If we
define Fr, to be the optimal value of the merit factor for
sequences of length L, the LABS(L) problem can be alter-
natively defined as finding I, such that:

max  F(S).
Se{-1,1}L

() ®3)

k= (4)
Based on an assumption termed the ergodicity postulate, Go-
lay estimated an asymptotic value for Fp, namely F —
12.32 for L — oo.

As a combinatorial problem, the search space for the
LABS(L) problem has size 2%, and the merit factor of a
sequence can be computed in time O(L?). One of the hard-
ness sources of the LABS problem is epistasis: different cor-
relations Cj(S) for a sequence S are not independent, and
a change to one symbol s; leading to an improvement of a
certain C%(S) will affect the values of remaining correlations
too. Another difficulty lies in the small number of global op-
tima for most values of L, as it has been observed in cases for
which solutions have been completely enumerated. The cor-
responding search landscape is dominated by a large number
of local minima, while the global minima are extremely iso-
lated deep and narrow holes [4, 6]. Presently, no analytical
method exists for finding optimal sequences with minimal
aperiodic correlations. To date, the only procedure to find
the sequence with optimal I, consists of using an implicit
enumerative search among all 2F possible sequences.

2.2 Related work

The LABS problem has been tackled in the literature us-
ing exact and heuristic methods. Golay [8] compiled the
earlier works of Turyn [18] and Lindner [11], performing an
exhaustive search enumeration to present optimal sequences
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for L < 32. Mertens used a parallel branch and bound with
symmetry breaking procedures in [12] to solve instances up
to L = 48. Using a four-processor Sun SPARCstation 20,
it took a total 313 hours of CPU time to solve these in-
stances. Recently, this algorithm has been used by Mertens
and Bauke [13] to compute the optimal merit factors of se-
quences of length up to 60. Note that it took several days of
execution on a cluster of 160 CPUs to solve the L = 60 in-
stance. However, even with these enhancements, systematic
search is unable to scale up to larger sequences.

For decades, approaches using stochastic methods on the
LABS problem such as simulated annealing [1] and evolu-
tionary search [3, 14] performed poorly with respect to find-
ing optimal sequences. This is true even when restricting the
search to a special kind of sequences, called skew-symmetric
sequences, that allows the reduction of the search space by
half (at the expense of not guaranteing optimality for the
general case). Recently, several stochastic algorithms have
been reported to find optimal solutions. The first one was
presented by Prestwich in [16], who was able to find global
optima up to L = 48 with a hybrid algorithm (named CLS)
that used local search and constraint programming. The
algorithm was estimated to run in time O(1.68"), and the
L = 45 instance was the one requiring more computing time
to find the optimum (a mean time of 52,920 seconds on a
300MHz DEC Alphaserver 1000A 5/300). Dotd and Van
Hentenryck presented in [5] a tabu search algorithm capable
of solving L < 48 instances from 8 up to 55 times faster than
CLS. In this case, the L = 43 instance was the one requiring
more computing time to find the optimum (a mean time of
1,600 seconds on a 3.01 GHz PC). Finally, Brglez et al. [2]
presented an evolutionary strategy (ES) and a Kernighan-
Lin (KL) algorithm, that finds optimal values up to L = 60.
With respect to computing time, KL performs better and is
able to find the optimal solution in 68% of the runs for the
L = 48 instance in 1,080 seconds (on a 266 MHz worksta-
tion). For L = 60, KL needed 20 hours for each run.

3. METAHEURISTICS FOR THE LABS
PROBLEM

The LABS problem fits nicely with evolutionary algo-
rithms (EAs), at least regarding off-the-shelf application.
Since the problem does not pose constraints on the con-
struction of solutions, sequences of length L can be naturally
represented as binary strings in {—1, l}L, and blind oper-
ators for recombination and mutation can be readily used.
Furthermore, there exists a well-defined objective function
(to be minimized), i.e., the energy of a sequence as shown in
equation (2). This said, such a less-principled approach can-
not deal appropriately with the complexity of the problem,
as it will be empirically shown in Sect. 4. For this reason,
it is necessary to augment the EA with problem-aware add-
ons. This can be accomplished via the use of embedded local
search strategies, as described in the following.

3.1 Neighborhood Structure

In order to perform local search, we consider the neigh-
borhood of a solution S with length L obtained by flipping
exactly one symbol in the sequence, that can be expressed as

N(8) = {flip(S,i) | i € {1, .., L}} ()

where flip(s1-+-8i++ 80,4) = 81+ —8; " SL.



The evaluation of the fitness function is O(L?), and hence

a naive implementation that completely recomputes the value

of a solution after flipping a single symbol in a sequence S
would be rather inefficient. A better implementation can
be obtained by storing all computed products in a (L —
1) X (L — 1) table T(S), such that T(S)” = 5;8i4; for
j < L —1, and saving the values of the different correlations
in a L—1 dimensional vector C(S5), defined as C(S)r = Cx(S)
for 1 < k < L —1. Fig. 1 shows these data structures for a
L =5 instance.

T(8)
1 2 3 4
1 5182 5283 S$384 5485
2 S183 5284 5385
3 58184 52855
4 S1S85
c(s)

S182 + S283 + S3S4 + S4S5
8183 + S254 + S355
S184 + S285
5185

=W N =

Figure 1: Data structures to efficiently recompute
fitness for a sequence of length 5, S = (s1,52, -+ ,585).

By observing that flipping a single symbol s; multiplies by
—1 the values of all cells in T'(S) where s; is involved, the
fitness of sequence flip(S,7) can be efficiently recomputed
in time O(L) as the result of the expression ValueFlip(S, i,
T(S),C(S)), defined in Fig. 2.

function ValueFlip(S,i,7T,C)

1:  f:=0

2: forp:=1toL—1do
3: v:=0Cp

4: if p< L —ithen
5: vi=v—2T,;

6: end if

7 if p < i then

8: v ::’0727;(1',?)
9: end if

10: fi=f+*

11:  end for

12:  return f

end function

Figure 2: Efficient recomputation of fitness for a
move in local search.

3.2 Local Search strategies

Using the efficient fitness recomputation mechanism de-
scribed before, two local search strategies have been defined.
The first one we have considered is a steepest descent local
search (SDLS) procedure, that moves to the best sequence
in the neighborhood until reaching a local optimum. The
pseudocode for this algorithm is depicted in Fig. 3

The second local search strategy considered uses tabu
search (TS) as a mechanism to scape from local optima.
For this purpose, we have used a L-dimensional vector M
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function SDLS(S,7,C)

1: S*:=8

2:  ffi= 5;11 c?

3: repeat

4: ffi=00

5: for i :=1 to L do /* search best move */
6: S’ = flip(S*,1)

7 f' == ValueFlip(S*,i,7T,C)
8: if (f' < f1) then

9: fl=7

10: St.=g9

11: end if

12: end for

13: if (fT < £*) then

14: S* = st

15: fr=fF

16: improvement := True
17: update 7 and C

18: else

19: improvement := False
20: end if
21: until not improvement
22: return S”

end function

Figure 3: Steepest descent local search (SDLS) pro-
cedure for the LABS problem.

as an attributive recency-based memory, so that if M; = k,
flipping the i-th symbol in the current sequence is forbid-
den until the k-th iteration of the search. The aspiration
criteria for ignoring tabu moves is improving the best so-
lution found in the current run of the local search. The
actual pseudocode of this procedure is shown in Fig. 4. For
each iteration, the search moves to the best sequence in the
current neighborhood that is not tabu, and the correspond-
ing flipped attribute is forbidden for a random number of
iterations proportional to the value of maxlters.

4. EXPERIMENTAL RESULTS

All algorithms have been run for different instance sizes
L € [3,60], corresponding to the instances for which optimal
solutions are known (see Table 1 for optimal merit factors
for the larger instances). Twenty independent executions
have been performed for each algorithm and instance size.
The termination criteria for each execution has been either
finding the optimal solution or reaching a time limit. This
limit has been set to 5 minutes for L < 30, and has been
gradually incremented in one minute for each size increment
for L > 30 (i.e. the greatest time limit was 35 minutes for
L = 60). All experiments have been performed on a 2.4GHz
P4 PC under Linux.

First of all, experiments have been carried out with a
steady state EA (popsize = 100,p,, = 1/L,px = 0.9, bi-
nary tournament selection, uniform crossover) that did not
perform local search. A full description of the distribution
of results (as the relative distance to the optimum) is shown
in Fig. 5. For L < 25, the algorithm has been able to find
the optimal solution in all runs, but note how the perfor-
mance degrades when L is increased (for L > 38 the EA
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function TabuSearch(S,T,C)

1: Mz = 0 for 1 < 7 < L /* initialize tenure table */
2:  minTabu := mazlters/10
3:  extraTabu := maxlters /50
4. S*:=85
5 [Ti= 301 G
6: for k:=1 to maxlters do
7: =00
8: for i := 1 to L do /* search best move */
9: S’ = flip(S,1)
10: f' = ValueFlip(S,i,7,C)
11: if (k> M,) or (f' < f*) then
12: if (f' < f7) then
13: ff=7
14: St.=g
15: it =i
16: end if
17: end if
18: end for
19: S =St /% make move */
20: update 7 and C
21: M+ :=k + minTabu + URand|0, extraTabu)
22:  if (ff < f*) then
23 S§* =gt
24 fr= gt
25: end if
26: end for
27: return S*

end function

Figure 4: Tabu search procedure for the LABS prob-
lem.

has been unable to find a single optimal solution, and the
relative distance to the optimum is large).
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Table 1: Energy and merit factor for optimal solu-
tions and different instance sizes

Instance | Energy | Merit || Instance | Energy | Merit
size factor size factor
39 99 7.68 50 153 8.16
40 108 7.40 51 153 8.50
41 108 7.78 52 166 8.14
42 101 8.73 53 170 8.26
43 109 8.48 54 175 8.33
44 122 7.93 55 171 8.84
45 118 8.58 56 192 8.16
46 131 8.07 57 188 8.64
47 135 8.18 58 197 8.53
48 140 8.22 59 205 8.49
49 136 8.82 60 218 8.25

Next, experiments have been done to measure the perfor-
mance of local search procedures. Both TS and SDLS have
been embedded into a random restart driving procedure,
that beginning from a random configuration performed in-
dependent repetitions of the local search procedures®. Al-
gorithms are restarted until the time limit is reached, and
the best solution found is returned. These experiments aim
to set the baseline for further comparison to MAs endowed
with both procedures. Fig. 6 and Fig. 7 show the result of
these experiments (distributions for L < 40 are omitted as
both algorithms were able to find optimal solutions in all

!SDLS is run in each case until locating a local optima. In
the case of TS, we have used a value of maxlters drawn
from [L/2,3L/2]. We also tested longer runs, coupled with
intensification strategies that returned to the incumbent of
the run, but the results did not improve those of the random
restarting strategy. We hypothesize that this is due to the
rugged structure of the fitness landscape, that benefits in
this particular case restarting over intensification.
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1: for i:=1 to popsize do

2:  popli] := RANDOM BINARY SEQUENCE(L)
3:  EVALUATE(popli])

4: end for

5: while allowed runtime not exceeded do
6: for i:=1 to offsize do

7: if recombination is performed then

8: parent, := SELECT(pop)

9: parents := SELECT(pop)

10: offspring[i] := RECOMBINE(parenti, parents)
11: else

12: offspring[i] := SELECT(pop)

13: end if

14: if mutation is performed then

15: offspring[i] := MUTATE(offspring][i])
16: end if

17: offspring[i] := LOCAL SEARCH offspring]i])
18: Evaluate(offspringl[i])

19: end for
20:  pop := REPLACE(pop, offspring)
21: end while

Figure 8: Pseudocode of the memetic algorithm.

Table 2: Comparison of MArs and tabu search al-
gorithm in [5]. Table shows mean time in seconds
to find the optimum for both algorithms.

(mean

instance | TS [5] % | MArg % time)
size time | success time | success | speedup
40 260.11 100 3.67 100 70.97
41 460.26 100 | 19.79 100 23.26
42 466.73 100 9.76 100 47.82
43 1600.63 100 | 51.56 100 31.04
44 764.66 100 | 21.56 100 35.47
45 1103.48 100 | 24.77 100 44.55
46 703.32 100 8.34 100 84.37
47 1005.03 100 | 13.27 100 75.72
48 964.13 100 | 56.86 100 16.96

runs in a few seconds). Observe that TS and SDLS can
find optimal solutions consistently for L < 50. For L > 50,
although SDLS is able to find the optimum in at least one
run for all instance sizes, it is not robust in most cases. The
performance of TS is clearly better, finding optimal solu-
tions in at least 50% of the runs for all instances except for
L € {57,60}.

In subsequent experiments, the performance of two
memetic algorithms (see Fig. 8 for a pseudocode) endowed
with SDLS and TS (denoted MAsprs and MATg respec-
tively) has been empirically analyzed. The underlaying al-
gorithm is the same as the EA described above. Results are
shown in Fig. 9 and Fig. 10 (again for L > 40, since the
remaining instances are easily solved). Although MAsprs
performs better than SDLS alone in most cases (showing
the benefit of embedding the local search operator within a
MA), it still performs weakly for large instances.

In general, the best overall results are obtained by MArs.
This algorithm showed a high robustness and significantly
improved the execution times of the best approaches re-

1231

n
L

T

o
N
B

0

n
N
m +

n
B

I

(&)

20 20 20 20
B

50
instance size

-
i3

BN
OE}

o
o1

T
i+

4001 e
I+ C]

é'ééé%“

o+ 7}

&

40 4

o

50
instance size

60

Figure 9: Relative distance to the optimum (top)
and time to find the optimum in seconds (bottom)
for M AsprLs and different instance sizes.

ported in the literature that tackled the LABS problem.
Regarding execution times, notice that these have been re-
ported differently for the TS algorithm presented in [5] and
the KL algorithm described in [2]. In [5], Dotd and Van
Hentenryck provided the mean time to find the optimum
with respect all the runs, whereas Brglez et al. reported
in [2] the allowed execution time for each run. Due to this
difference we compared the execution times of MArs with
those informed in [5] and [2] separately. Compared to the
TS algorithm presented in [5], Table 2 shows that, like the
TS algorithm, MArg also finds optimal solutions in all the
runs for L < 48 but this is done in a mean time lower than
57 seconds in the worse case (i.e., L = 48); in fact, MArg is
between 5 (for some instances L < 40) and 84 times faster
(running on a 20% slower machine) than Dot and Van Hen-
tenryck’s T'S. Compared to [2], the KL algorithm finds the
optimum for the L = 60 instance in 20 hours of execution
time, whereas MATs needs a mean time of 875 seconds,
which implies a speed up of about one order of magnitude
when the computation power of the different platforms are
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adjusted. Moreover, Table 3 shows the allowed execution
time (in seconds) for both KL and MArg algorithms when
L > 48: observe again that the speedup of MArg with re-
spect to KL is more than one order of magnitude in the
larger instances (57 < L < 60).

Also, as shown in Tables 2 and 3, the MArs algorithm is
very robust, finding optimal solutions in all runs for L < 48
and clearly outperforming KL in the instances 48 < L < 55,
(obtaining again the optimum in all the runs). In addi-
tion, for the larger instances (L > 56), MArs achieves opti-
mal solutions in most executions (i.e., topping 85%), except
for L € {57,58}, for which the success ratios are 50% and
65% (in these cases, the mean distances to the optimum
are 4.25% and 1.6%). Observe however that in these higher
instances the relation success/time is clearly favorable to
MArs. For example, assuming a number of independent
runs of MArs summing up the same computational time
(adjusted for platform differences) than one run of KL, we
can compute the equivalent success ratio of MArg for size
57 and 58 as 85% and 87% respectively. This way, MArs
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Table 3: Comparison of MArs and KL algorithm in
[2]. Table shows allowed execution time in seconds
and percentage of success for both algorithms.

(allowed

instance || KL [2] % || MATs % time)
size time | success time | success | speedup
48 1080 68 1380 100 0.78
49 1440 75 1440 100 1.00
50 2160 93 1500 100 1.44
51 2880 31 1560 100 1.85
52 4320 75 1620 100 2.67
53 6120 75 1680 100 3.64
54 8640 62 1740 100 4.96
55 12600 87 1800 100 7.00
56 18000 100 1860 95 9.67
57 47520 68 1920 50 24.75
58 35280 81 1980 65 17.81
59 50040 100 2040 90 24.52
60 72000 100 2100 85 34.28

can be shown to perform at the state-of-the-art level for the
LABS problem.

5. CONCLUSIONS AND FUTURE WORK

We have shown that evolutionary methods can success-
fully compete with (and often outperform) most approaches
existing to date for the LABS problem. Particularly, we
have provided empirical evidence that —despite EAs can be
straightforwardly deployed on the LABS problem— pure evo-
lutionary approaches cannot cope with the complexity of the
problem. They require the assistance of local-search opera-
tors to provide optimal or near-optimal results consistently.
To this end, we have considered two local search strate-
gies, namely steepest descent local search and tabu search.
The results indicate that embedding them within the EA
improves synergistically the search capabilities of the algo-
rithm. Furthermore, the computational time required for
finding optimal solutions in previous state-of-the-art heuris-
tic approaches is improved by one order of magnitude.

As to future extensions, work is underway in several lines.
Firstly, we plan to apply the MArg algorithm to larger in-
stances for which the optimal is not known, in order to test
the scalability of the approach in the long term (preliminary
results with L < 70 indicate that the algorithm is capable
of systematically recovering best-known solutions; experi-
ments will be completed with larger values of L). Secondly,
and related to the previous issue, we intend to adapt the al-
gorithm to explore only skew-symmetric solutions [8]. This
would allow testing the algorithm on even larger instances
without excessively incrementing computing time.
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