
A Self-adaptive Multiagent Evolutionary Algorithm for
Electrical Machine Design

Jean-Laurent Hippolyte
Laboratoire d’Informatique de
l’Université de Franche-Comté

Centre Numerica
1, cours Leprince-Ringuet

25200 Montbéliard
France
jean-

laurent.hippolyte@lifc.univ-
fcomte.fr

Christelle Bloch
Laboratoire d’Informatique de
l’Université de Franche-Comté

Centre Numerica
1, cours Leprince-Ringuet

25200 Montbéliard
France

bloch@lifc.univ-fcomte.fr

Pascal Chatonnay
Laboratoire d’Informatique de
l’Université de Franche-Comté

Centre Numerica
1, cours Leprince-Ringuet

25200 Montbéliard
France

pascal.chatonnay@univ-
fcomte.fr

Christophe Espanet
Laboratoire d’Electronique,

Electrotechnique et Systèmes
UTBM-L2ES (Bat F)

Rue Ernest Thierry-Mieg
90010 Belfort Cedex

France
christophe.espanet@univ-

fcomte.fr

Didier Chamagne
Laboratoire d’Electronique,

Electrotechnique et Systèmes
UTBM-L2ES (Bat F)

Rue Ernest Thierry-Mieg
90010 Belfort Cedex

France
didier.chamagne@univ-

fcomte.fr

ABSTRACT
This paper presents a self-adaptive algorithm that hybridises
evolutionary and multiagent concepts. Each evolutionary
individual is implemented as a simple agent capable of re-
production and predation. The transitions between these
two states depend on the agent’s local environment. Thus,
no explicit global process is defined to select neither the
mates nor the preys. The convergence of the algorithm
emerges from the behaviour of the agents. This brings in-
teresting properties, such as population size self-regulation.
Two sets of experimental results are provided: a compari-
son with Saw-Tooth Algorithm [5] and μGA [3] using four
classical functions and an optimisation of the efficiency and
the weight of an electrical motor. Some possible evolutions
and prospects are finally proposed.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—Heuristic
methods
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1. INTRODUCTION
Unlike classical GAs, the presented algorithm lets the ge-

netic individuals be the actors of the optimisation. An in-
dividual becomes an agent that determines which action it
has to accomplish, reproduction or predation, without the
guidance of an other entity of the program. Classical GAs
are also often criticised for difficult parameter adjustment,
that’s why some recent researches focus on developing self-
adaptive algorithms [7]. The presented algorithm takes ad-
vantage of both multiagent systems (MAS) and self-adaptive
genetic algorithms.

1.1 Multiagent Evolutionary Algorithms
There are two types of algorithms or frameworks that as-

sociate MAS and GA. On the one hand, there are frame-
works where an agent is an instance of meta-heuristics [11] [6]
and on the other hand there are algorithms where an agent
is an instance of solution. In 2004, Milano and Roli [6] pre-
sented MAGMA (multiagent metaheuristic Architecture) .
These authors define an agent as a system able to build a so-
lution, to move over a landscape, to communicate with other
agents, to be active (i.e. goal oriented) and possibly, to be
adaptive. This way, new algorithms (that are combinations
of metaheuristics) can easily be designed by choosing the
agents to be involved and by defining their interactions.
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In 2006, Talbi and Bachelet [11] proposed a parallel co-
operative metaheuristic, named Cosearch. This framework
is based on three heuristic agents implemented on a parallel
environment to result in a well-balanced metaheuristics, by
using their complementary behaviours. The main search al-
gorithm is a Multiple Tabu search, the diversifying agent is
a GA and a kick operator is used as an intensifying agent.

In 2004, Zhong et al. [12] integrated MAS and GAs to
form a new algorithm, named multiagent Genetic Algorithm
(MAGA). This approach is based on agents that correspond
to solutions and live in a lattice-like environment. Each
agents aims at increasing its own energy by cooperating or
competing with its four neighbours. Four evolutionary oper-
ations may be performed on an agent: competition, cooper-
ation, mutation and self-learning. Competition uses a kind
of tournament to identify whether the agent is a loser or not.
If it is a loser it is replaced by a new agent, generated either
by a heuristic crossover or by an inversion operation. Coop-
eration is based on a neighbourhood orthogonal crossover.
Self-learning is a local search based on a small scale MAGA
performed on the best agent at each generation.

MAGMA and COSEARCH are different from GMAS (Ge-
netic multiagent System), the approach proposed in this pa-
per. In the former approaches, agents are instances of meta-
heuristics, whereas GMAS agents are instances of solutions.
MAGA is more similar to GMAS: in both algorithms, an
agent represents a solution, and there is no global selection.
But in MAGA each agent is fixed on a lattice-point and can
only interact with its four neighbours, whereas the agents
of GMAS may move and meet other agents in the whole
environment.

1.2 Self-adaptive Genetic Algorithms
GMAS has two strong points: it uses a variable self-

regulated population size and has only 2 parameters. As
population size is one of the main parameters that affect
the robustness and computational efficiency of the GAs [5],
variable population size GAs have been proposed in litera-
ture. One of the first works dealing with this subject was
proposed by Smith in 1993 [10]. The population size was
adjusted based on the probability of selection error.

In 1998, Sawai and Kizu presented a Parameter-free Ge-
netic Algorithm (PfGA) [8] inspired by the “Disparity The-
ory of Evolution”. PfGA applies systematic crossover and
mutation operators to get rid of genetic parameters. It also
features a selection process that results in a well balanced
variable population size.

Koumousis and Dimou [4] demonstrated that applying a
sinusoidal oscillating population size for structural problems
improved the capacity of the GA to refine its solutions and
reduced the sensitivity in tuning the GA parameters. Sev-
eral algorithms including re-initialization phases also exist.
The best known of them are certainly Eshelman’s CHC al-
gorithm [2] and Goldberg’s μGA [3].

More recently, Koumousis et al. [5] proposed to make
the population size alternatively increase during convergence
phases and decrease during diversification/re-initialization
phases. Their algorithm is named Saw-tooth GA because
the variable population size follows a saw-tooth scheme with
a specific amplitude and period of variation. At the be-
ginning of each period, randomly generated individuals are
appended to the population, substituting some individuals,
for instance the least fitted ones. Then the population size

decreases linearly until the beginning of the next period.
These authors use classical test functions to compare Saw-
tooth with a standard GA and with μGA [3], they conclude
that Saw-tooth GA gives best results both in terms of per-
formances and robustness. The variable population size and
the re-initialization phases contained in Saw-tooth GA make
it closest to GMAS than the distributed optimisation frame-
works previously described. This paper provides the reader
with enough details to compare his own algorithm to Saw-
tooth GA. That is why this solution was chosen to assess the
results provided by GMAS and presented in Sect.3.2. The
following section describes GMAS main principles.

2. GENETIC MULTIAGENT SYSTEM
GMAS agents live over a 2D torus of width C (the torus

is independent from the optimisation problem). There may
be several agents on each node of the torus. Agent fitnesses
are calculated as described in Sect. 3.3 in the case of the
permanent magnet motor design optimisation. For the clas-
sical optimisation functions the fitness equals the value of
the function, e.g. for a minimisation problem the algorithm
minimises the fitness. GMAS maintains 3 sets of agents: a
set of currently evolving agents P , a set of newborn agents
B and a set of dead agents D.

GMAS main loop consists in the following steps:

1. if |P | = 0 then place C2 randomly generated agents
on the grid;

2. update all agents according to their fitness (best agents
are updated first);

3. P = P − D, D = ∅;
4. P = P ∪ N , N = ∅.

The first condition allows the algorithm to re-initialise itself
during execution. Of course the best individual so far has
to be stored.

An agent a is characterised by its location (xa, ya) on
the grid, by the set of its neighbours V (a) and its age (i.e.
the number of iterations it has been in P ). The update
procedure of an agent a is as follow:

1. increment one’s age;

2. update V (a);

3. if |V (a)| < T then do reproduction else do predation;

4. move to a random neighbour cell.

The neighbourhood V (a) of an agent is the set of agents
that are in the same cell and in the 8 adjacent cells. Agents
update themselves sequentially but look for neighbours in
both P − D and N . A dead agent is no more available for
next updating agents whereas newborn agents are imme-
diately available. This brings asynchronism to the genetic
process.

T is the threshold of predation. C and T are the two
parameters of GMAS that are studied in Sect. 3.1.

Reproduction is similar to the reproduction in PfGA [8].
A uniform multi-point crossover is applied to the agent and
its best neighbour resulting in 2 children. A uniform mu-
tation is performed on one of them. Therefore GMAS does
not have explicit crossover and mutation rates. The two
children are introduced into N .
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Table 1: Comparison between GMAS, Saw-tooth
GA, SGA and μGA

Function GMAS Saw-tooth SGA μGA
Schwefel −4188.9 −4178.4 −4111.1 −4174.2
Griewangk 0.0011 0.087 0.092 0.229
Rastrigin 0.0027 3.02 5.50 2.85
Ackley 0.028 12.97 14.26 16.18

Agents perform predation by eliminating their worst neigh-
bour (i.e. by putting it in D). The eliminated agent is
no more available for the next updating agents, this brings
elitism to the algorithm.

An evolutionary optimisation mechanism without any ex-
plicitly defined global selection process emerges from the
combination of local interactions between agents. This kind
of mechanism is well suited to be extended with migration
between several GMAS islands.

3. PERFORMANCE EVALUATIONS
Four classical test functions where used to compare the

performances of GMAS, Saw-Tooth Algorithm [8] and μGA
[5], before applying GMAS to a study case of permanent
magnet motor design. In order to perform experimenta-
tion in the best possible conditions, a parametric study, de-
scribed in the following section, was first conducted. The
hardware used for all experimentations was a dual proces-
sor Intel Xeon (2.8 GHz) workstation with a 3 GB memory.

3.1 Parametric Study
The parametric study is conducted with the Goldberg and

Richardson function fgr. The number of variables n of the
function is set to 4. All of them consist in launching 20 runs
of GMAS with a limit of about 5000 calls to the objective
function for different values of the grid size C and the pre-
dation threshold T . C takes values between 3 (the smallest
value which is coherent with the definition of a neighbour-
hood of size 9) and 14 (which gives an initial population of
nearly 200, a value that is often used for GA populations).
T takes ten values from 1 and C · C. The study is divided
in four parts. In the first part an arbitrary value of 9 is
used for the predation threshold T . The best grid size in
terms of mean fitness value is Cbestf it = 7 and the best grid
size in terms of mean computation time is Cbesttime = 14.
Cbestf it and Cbesttime are then used to make two studies of
the predation threshold T . These two parts give best mean
fitness values for T = 11. In the fourth part T = 11 is fixed.
For all four parts, the best (C, T ) couple in terms of mean
fitness value is (8, 11) and the best (C, T ) couple in terms of
computation time is (14, 13).

3.2 Comparison with Saw-tooth GA
To evaluate the performance of GMAS, 50 runs limited to

20000 objective function calls are launched for each classical
test function: Schwefel’s sine root, Griewangk, Rastrigin and
Ackley (see Table 2). For the four functions the dimension is
n = 10. Results of the parametric study are used to fix the
value of the parameters (C, T ) = (8, 11). Tab. 1 presents the
corresponding results. It provides, for each test function, the
mean of the best fitness values reached for 50 runs of GMAS.

It shows that the algorithm outperforms both Saw-tooth GA
and micro GA for the whole set of functions. In particular,
for Rastrigin’s and Ackley’s functions the difference is really
significant.

Fig. 1 gives an example of the evolution of several pa-
rameters or measures of GMAS during a run with the Ack-
ley function (a mono-objective minimisation problem). The
first four plots give a global image of the population of
GMAS: the population size |P |, the number of newborns
|N |, the number of deaths |D| and the average age of the
agents of P . The three last plots correspond to the mean
fitness, the best fitness and the standard deviation. These
plots confirm the population size is self-regulated.

3.3 Optimisation of a Permanent Magnet
Synchronous Motor

The studied system is a synchronous permanent magnet
electrical motor and the considered application is a driving
motor of an air-circuit Fuel-Cell (FC) compressor. On the
one hand, as the motor uses the electrical power provided
by the FC, the required power must be less than 20% of the
global power of the FC. Consequently, maximising its effi-
ciency is all the more important. On the other hand, given
that the whole system is embedded on a vehicle, the motor
weight must be as small as possible (the authors have cho-
sen to target a weight of 2 kg). A complete analytical model
[1], which contains 84 parameters linked by 52 equations, is
used to express the efficiency η(x) and the weight w(x) as
functions of the construction parameters (either discrete or
continuous) gathered in the individual x. Fig. 2 illustrates
some of these construction parameters. Solving the opti-
misation problem consists in determining the construction
parameters that maximise the efficiency while maintaining
the weight in the required limits. Computer-aided design
software such as Pro@DESIGN, a tool based on a sequen-
tial quadratic programming (SQP) algorithm, already exist
for such machines. However specific knowledge about the
variation domain of each variable is required to use it. In
some way, this determines a pre-design that is locally op-
timised by the SQP algorithm, moreover this kind of tool
is not well adapted to the global optimisation of electrical
systems. Indeed, deterministic algorithms (such as SQP)
need the knowledge of the objective and constraint gradi-
ent symbolic expressions, in order to limit the divergence of
the optimisation algorithm due to the numerical evaluation
of the gradients. One solution consists in proposing evo-
lutionary solving approaches that explore the search space
more largely without requiring any other knowledge than
the model and the objectives. These methods also present
good performances and robustness. That’s why many re-
cent works focus on the design of electrical machines with
the help of genetic algorithms (GAs). Sudhoff et al. [9]
list various genetic approaches applied to machine design
since 1997 in an electrical engineering oriented paper. In
the proposed contribution the two objectives η(x) and w(x)
are aggregated into a function F based on the normalised
distance to both the theoretical optimal efficiency η(x) = 1
and the targeted weight w(x) = 2:

F (x) =

s
|η(x) − 1|2 +

|w(x) − 2|2
wmax − wmin

. (1)

The objective function must also take into account sev-
eral constraints related to variables which are involved in
the analytical model. Obviously all geometrical parameters
must be strictly positive and the RMS current density and
the RMS voltage are limited by upper bounds (5 A · mm−2

and 120 V ). If a solution does not satisfy one or several
constraints its fitness value is penalised: it is divided by 2
for each unsatisfied constraint. As in Sect. 3.2 GMAS has
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Figure 1: An example of execution for the Ackley function
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Table 2: Test Functions

Goldberg and Richardson fgr(x) =
Qn

i=1

h
(sin(5.1πxi + 0.5))α · exp

“
−4.0 · log(2.0) · (xi−0.0667)2

0.64

”i

∀i ∈ {1, . . . , n}, xi ∈ [0; 1] and α = 30
fmax

gr = 1

Ackley fack(x) = −a · exp
“
−b ·

q
1
n

Pn
i=1 x2

i

”
− exp

`
1
n

Pn
i=1 cos(c · xi)

´
+ a + exp(1)

a = 20, b = 0.2, c = 2π et ∀i ∈ {1 . . . n} xi ∈ [−100; 100]
fmin

ack = 0

Schwefel’s sine root fsch(x) =
Pn

i=1

h
−xi · sin

p|xi|
i

∀i ∈ {1 . . . n} xi ∈ [−500; 500]
fmin

sch = −4189.8

Rastrigin fras(x) =
Pn

i=1[x
2
i − A · cos(ωxi) + A]

∀i ∈ {1 . . . n} xi ∈ [−5; 5], A = 10 and ω = 2π
fmin

ras = 0

Griewangk fgrie(x) = 1 + 1
4000

Pn
i=1 x2

i − Qn
i=1 cos

“
xi√

i

”

∀i ∈ {1 . . . n} xi ∈ [−50; 50]
fmin

grie = 0

Figure 2: Geometry of the studied motor.

been launched with parameters (C,T ) = (8, 11) and a limit
of 20000 objective function calls. Fig. 3 presents the non-
dominated front obtained by a single run of GMAS. The
obtained experimental results show that GMAS permits to
quickly reach quite good solutions. Indeed, for this study
case, providing Pro@DESIGN with a pre-sizing defined by
an expert permits to design a motor with a weight of 2.09 kg
and an efficiency of 95 %. The optimisation takes less than
one second but the pre-sizing phase might take several hours.
The single solution returned by SQP greatly depends on the
initialisation point proposed by the expert. Solutions pro-
vided by GMAS are at least as good as the Pro@DESIGN
solution and the mean computation time for a run of GMAS
is about 70 s. GMAS requires no initialisation point and
provides a great number of interesting solutions. Although
the fitness function is an aggregation the non-dominated so-
lutions may be represented by a Pareto front with respect
to the two objectives as shown in Fig. 3. A great density
of solutions which weight is close to 2 kg are found, but the
search space exploration is not limited to this area. GMAS
made it possible to design a 500 W and 10’000 rpm motor
with a weight of 1.99 kg and an efficiency of 95.1 %.

Figure 3: An example of obtained non-dominated
front for the motor design problem.
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4. CONCLUSION AND OUTLOOKS
This paper proposed a genetic multiagent system, GMAS,

without global selection and characterised by self-adaptation.
Particularly, population size, which is among the parame-
ters that greatly affect the performances of GAs, varies ac-
cording to the current state of the search, without any user
interaction. The experimental results show that this algo-
rithm outperforms Saw-tooth GA and μGA for four clas-
sical test functions. Applying this approach to design a
permanent magnet synchronous motor gives as good solu-
tions as those returned by deterministic algorithms. This
approach has other advantages: no initialisation point is
required, mean computation time is reasonable in compar-
ison with the time an expert needs to determine an initial
solution before using SQP algorithms, and it gives a large
non-dominated front that represents a whole set of interest-
ing alternative solutions. Finally, this work has three kinds
of prospects. The first category consists in determining if
a Pareto-based multi-objective version of GMAS would be
more efficient. This requires an evaluation process and a lo-
cal selection mechanism which are both Pareto-based. The
second category focuses on the design of an island-based ver-
sion of GMAS deployable on a peer-to-peer (P2P) network
(i.e. a decentralised network in which heterogeneous ma-
chines share resources with each other as equals) to increase
both computational power and cooperation. Deploying a in-
stance of GMAS on each peer/island would be made easier
because of its variable population size and its decentralised
selection process, however efficient communication processes
must be defined to ensure exchange of information between
islands. Finally, the good performances and the robustness
of GMAS should allow, in fine, the extension to other kinds
of problem, and the integration of other various criteria,
particularly environmental ones, in order to take them into
account as soon as possible in the design process.
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