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ABSTRACT
The Building Block Hypothesis suggests that Genetic Al-
gorithms (GAs) are well-suited for hierarchical problems,
where efficient solving requires proper problem decomposi-
tion and assembly of solution from sub-solution with strong
non-linear interdependencies. The paper proposes a hill-
climber operating over the building block (BB) space that
can efficiently address hierarchical problems. The new Build-
ing Block Hill-Climber (BBHC) uses hill-climb search expe-
rience to learn the problem structure. The neighborhood
structure is adapted whenever new knowledge about the un-
derlying BB structure is incorporated into the search. This
allows the method to climb the hierarchical structure by
revealing and solving consecutively the hierarchical levels.
It is expected that for fully non-deceptive hierarchical BB
structures the BBHC can solve hierarchical problems in lin-
earithmic time. Empirical results confirm that the proposed
method scales almost linearly with the problem size thus
clearly outperforms population based recombinative meth-
ods.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Global Optimiza-
tion—Analyze; I.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods and Search

General Terms
Algorithms, Design, Theory

Keywords
Hill-climbing, Adaptive Neighborhood Structure, Linkage
Learning, Model Building, Hierarchy
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1. INTRODUCTION
One of the most important research goal regarding Evo-

lutionary Algorithms (EAs) is to understand the class of
problems for which these algorithms are most suited. De-
spite the major work in this field it is still unclear how an
EA explores a search space and on what fitness landscapes
will a particular EA outperform other optimizers such as
hill-climbers.

The traditional GA theory is pillared on the Building
Block Hypothesis (BBH) which states that GAs work by dis-
covering, emphasizing and recombining low order schemata
in high-quality strings in a strongly parallel manner [5].

Albeit being widely used to justify claims about EAs, the
BBH remains controversial [16, 3]. While there are situ-
ations where the BBH provides a good explanation about
GAs intrinsic search mechanisms, there are also cases where
BBH in the current form does not provide much useful in-
sight.

In the early 90’s a systematic program was initiated by
Mitchell et al. [8] to address these issues concerning the
fundamentals of GAs. Their strategy was to find a set of
features that are of particular relevance to GAs and test
the performance of these algorithms on landscapes contain-
ing those features. It was recognized that major tenets be-
hind the BBH are the notion of problem decomposition and
the assembly of solutions from sub-solutions. Subsequently,
they constructed a set of functions that clearly emphasize a
gross-scale BB structure with low-order BBs that recombine
to higher-order ones. These functions were expected to lay
out a “royal road” for GAs, while hill-climbers were antici-
pated to perform poorly as a large number of positions must
be optimized simultaneously to discover higher-order BBs.
To much of a surprise both expectation were refuted: on
these test suites GAs performed worse than expected due to
the hitchhiking phenomena while a Random Mutation Hill-
Climber which accepts states with equal objective function
value greatly outperformed GAs.

Later developments proposed NK landscapes [6] and the
expanded function method [21] which presented non-separable
components on a single level.

Inspired by the fact that many real-world systems are hi-
erarchical, Watson et al. [18, 20] proposed a class of hi-
erarchically decomposable functions which present a strong
non-linear hierarchical BB interdependency. This class of
function is very hard for mutation based hill-climbers as the
Hamming distance between local optima and global optima
is very large. It is considered that this class of functions
exemplifies those problems for which GAs are well-suited.
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The objective of this paper is to develop a hill-climber
that can solve hierarchical problems. The proposed method
operates on BBs rather than bits and uses search experience
to learn linkages and adapt the neighborhood structure. The
continuous neighborhood structure accommodation allows
the hill-climber to hierarchically decompose the problems,
revealing the hierarchical levels one after the other; when
it finishes the problem structure is delivered in an explicit
manner that is transparent to human researchers.

The following section summarizes the characteristics of
hierarchically decomposable problems. Section 3 revisits
the notion of hill-climbing; introduces and informally de-
scribes the concept of hierarchical BB hill-climbing. The
proposed method is presented in details in Section 4. Sec-
tion 5 presents empirical results of the proposed method.
Finally, the paper is concluded in Section 6 by discussion
and some future works.

2. HIERARCHICALLY DECOMPOSABLE
FUNCTIONS

Although having a gross-scale BB structure, hierarchical
problems are hard to solve without proper problem decom-
position as the blocks from these functions are not separable.

The fundamental of hierarchically decomposable problems
is that a BB can have multiple context-optimal settings.
Therefore, there is always more than one way to solve a
(sub-) problem [18], leading to the separation of BBs “fit-
ness” i.e. contribution to the objective function from their
meaning. This conceptual separation induces the non-linear
dependencies between BBs: providing the same objective
function contribution, a BB might be completely suited for
one context whilst completely wrong for another one. There-
fore, the fitness of a BB can be misleading if it is incompat-
ible with its context. However, the contribution of the BBs
indicate how can the dimensionality of the problem be re-
duced by expressing one block in a lower level as one variable
in the upper level.

Hierarchical problems are very hard for mutation based
hill-climbers as they exhibit a fractal-like structure in the
Hamming space with many local optima [18]. This bit-
wise landscape is fully deceptive; the better is a local op-
timum the further away is from the global ones. At the
same time the problem can be solved quite easily in the BB
or “crossover space”, where the block-wise landscape is fully
non-deceptive [18].

Methods that can solve certain hierarchical problems in-
clude the Symbiogenic Evolutionary Adaptation Model [19],
DevRep [1], Compact Genetic Codes [15], Hierarchical Ge-
netic Algorithm [2], Hierarchical Bayesian Optimization Al-
gorithm [11] and the DSGMA++ [23]. The most powerful
methods can optimize problems with random linkage.

Methods optimizing by hierarchical decomposition can nat-
urally be divided in two classes, according to how the de-
composition information is stored. For example in [11], the
hBOA stores the decomposition information implicitly in a
Bayesian network. Another method, the DSMGA++ [23],
by using dependency structure matrix clustering techniques
is able to express the decomposition information explicitly.
Consequently, this method is able to deliver the problem
structure in a comprehensible manner for humans, which
constitutes a major advantage in many real-world applica-
tions.

2.1 Hierarchical Problems
In this paper three hierarchical test functions are used:

the hierarchical IFF [18], the hierarchical XOR [20] and the
hierarchical trap function [11]. These problems are defined

on binary strings of the form x ∈ {0, 1}kp

, where k is the
number of sub-blocks in a block, and p is the number of
hierarchical levels. The meaning of sub-blocks is separated
from their fitness by the means of a boolean function h,
which determines if the sub-block is valid in the current
context or not. In the shuffled version of these problems
the tight linkage is disrupted by randomly reordering the
bits. The functions with their particularities are detailed as
follows.

2.1.1 Hierarchical if and only if (hIFF)
The hIFF has k = 2 and it is provided by the if and only

if relation, or equality. Let L = x1, x2, . . . , x2p−1 be the first
half of the binary string x and R = x2p−1+1, x2p−1+2, . . . , x2p

the second one. Then h is defined as:

hiff (x) =

 1 , if p = 0;
1 , if hiff (L) = hiff (R) = 1 and L = R;
0 , otherwise.

(1)
Based on hiff the hierarchical iff is defined recursively:

Hiff (x) = Hiff (L)+Hiff (R)+

{
length(x), if hiff (x) = 1;
0 , otherwise.

(2)
At each level p > 0 the Hiff (x) function rewards a block

x if and only if the interpretation of the two composing sub-
blocks are both either 0 or 1. Otherwise the contribution is
zero.

The hIFF has two global optima: strings formed only by
0’s or only by 1’s. At the lowest level the problem has 2l/2

local optima where l is the problem size.

2.1.2 Hierarchical XOR (hXOR)
The global optima of hIFF are formed by all 1’s or all

0’s, which may ease the task of some methods biased to
replicate particular allele values. To prevent the exploitation
of this particular problem property the hXOR was designed
[20]. This problem is much more difficult due to its reduced
potential for exploiting repetitiveness.

The definition of hXOR is analogous with the hIFF, hav-
ing only a modification in the validation function h, where
instead of equality we do a complement check:

hxor(x) =

 1 , if p = 0;
1 , if hxor(L) = hxor(R) = 1 and L = R̄;
0 , otherwise.

(3)
R̄ stands for the bitwise negation of R.

The two global optima of hXOR are composed by half
zeros and half ones. Having the same problem structure,
one would expect that an algorithm which applies problem
decomposition to perform equally well on both problems.
As already mentioned, this is not always the case as some
methods may be biased to replicate particular alleles, solving
the hIFF in an easier manner.

2.1.3 The Hierarchical Trap Function (hTrap)
The underlying structure of the hTrap is a balanced k-ary

tree, where k ≥ 3. Blocks from lower level are interpreted
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by a mapping function similar to the one from the hIFF: a
block of all 0’s and 1’s is mapped to 0 and 1 respectively,
and everything else is interpreted as ‘-’ or null.

The contribution function is a trap function of unitation
(its value depends only on the numbers of 1’s in the input
string) of order k, based on two parameters fhigh and flow

which define the degree of deception.
Let u be the unitary of the input string. Then the trap

function is defined as:

trapk(u) =

{
fhigh , if u = k;
flow × k−1−u

k−1
, otherwise.

(4)

If any position in the input string is null (‘-’) then the
contribution is zero.

In this paper we use hTrap function based on k = 3 and
fhigh and flow set to 1 for all except the highest level. The
decision between competing BBs can be carried out only on
the highest level, where fhigh = 1 and flow = 0.9.

3. HILL-CLIMBING IN THE BUILDING
BLOCK SPACE

Hill-climbing is used widely in artificial intelligence fields,
for quickly reaching a goal state from a starting position.
The hill-climbers are usually the fastest methods but they
can easily get trapped in local optima. The current sec-
tion revisits the notion of hill-climbing and neighborhood
structure. Furthermore, it introduces the idea of a BB hill-
climber that can solve hierarchical problems by exploiting
the BB structure and adapting its neighborhood structure
online.

3.1 Hill-climbers and neighborhood structure
Hill-climbing is an optimization technique that starts from

some initial solution and iteratively tries to replace the cur-
rent solution by a better one, from an appropriately defined
neighborhood of the current state. In simple or first im-
provement hill-climbing, the first better solution is chosen,
whereas in steepest ascent or best improvement hill-climbing
all successors are compared and the best solution is selected.

To avoid getting traped in a local optimum, usually random-
restart hill-climbing is employed. This method simply runs
an outer loop over hill-climbing. Each step of the outer loop
chooses a random initial state s to start hill-climbing. The
best solution encountered is kept.

Usually hill-climbers described in the literature use bit-
flipping for replacing the current state [8, 9]. This implies
a neighborhood structure which contains strings that are
relatively close in Hamming distance to the original state.
This make those methods unsuited for solving hierarchical
problems, where local optima and global optima are distant
in Hamming space. But the neighborhood can be defined as
an arbitrary function, which assign to a valid state s a set of
valid states N(s). The main idea of the paper is to build a
trajectory method which takes into account the hierarchical
BB structure of the problems and defines its neighborhood
structure accordingly.

3.2 Building Block wise search
As already indicated in Section 2, hierarchical problems

are fully deceptive in Hamming space and fully non-deceptive
in the BB space. The problem representation together with
the neighborhood structure defines the search landscape.

Recent local-search literature authors have emphasized the
importance of using a good neighborhood operator [17] With
an appropriate neighborhood structure – which operates on
BBs – the search problem can be transferred from Hamming
space to a very nice, fully non-deceptive search landscape,
which should be easy to hill-climb.

Hill-climbing in BB space was proposed and shown to be
more efficient than selectorecombinative GAs on determinis-
tic additively-separable problems of bounded difficulty [13,
12, 7]. These studies assume that the BB-wise mutation
operators have the knowledge of the BBs and thus can ef-
fectively perform local search among promising schemata.
Starting from a random individual, BBs in different par-
titions are mutated in a sequential manner. The BB-wise
mutation evaluates all possible schemas in a given partition.
For a BB of size l, 2l individuals are evaluated. The best
out of 2l individuals is chosen and used for mutating BBs of
other partitions.

In the case of hierarchical problems we have high order
dependencies, up to the case where all variables are inter-
dependent. Having big partitions, searching all 2l possi-
ble schemas is not feasible. Also, in hierarchical problems
a proper niching must be applied and the competing sub-
solutions must be kept until the method advances to upper
levels, where a correct decision can be made. Nevertheless,
the knowledge about the underlaying BB structure must be
evolved along with the solution(s) in order to reduce the
search space. Only then the hierarchical difficulty can be
overcome. We devise our method by taking into account
these observations.

Let us denote the current BB knowledge at state s by

BB(s) = (b1, b2, . . . , bn) (5)

where bi-s are the BBs and n is the number known BBs.
Each BB bi can have multiple configurations:

Vi = {v|v ∈ {0, 1}l} (6)

where l is the length of bi. This allows the sustenance and
parallel processing of competing context-optimal schemata.
For example in the case of the hIFF, a BB bi of length 2
may have two valuable configurations: Vi = {(0, 0), (1, 1)}.

The current state s is formed by particular configurations
of the known BBs:

s = (v(b1), v(b2), . . . , v(bn)) (7)

where n is the number known BBs and v(bi) ∈ Vi is a can-
didate configuration of the BB bi.

Instead of flipping bits as in classical mutation based hill-
climbers, the proposed method hill-climbs the BB structure
by choosing the best configuration vi of every BB in a greedy
manner. This approach shifts the search from the Hamming
space to the BB landscape and engenders a BB-wise neigh-
borhood structure. The hill-climb on the BB structure will
get the state s to the nearest local optimum, according to
the current BB knowledge.

While EAs exploit BB structure by probabilistic recombi-
nation, this approach applies a systematic combination and
analysis of BBs.

3.3 Online adaptation of the neighborhood
structure from search experience

It is important for a GA to conserve BBs under crossover.
Theoretical studies denote that a GA that uses crossover
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which does not disrupt the BB structure, holds many ad-
vantages over simple GA [14]. To achieve this goal linkage
learning is applied and the solution representation is evolved
along with the population, during the search process.

Similarly, in order to be able to hill-climb the BB land-
scape, the BB structure of the problem must be learned and
the representation of the individual must be evolved to re-
flect the current BB knowledge. The changing of representa-
tion implies the adaptation of the neighborhood structure,
which is the key to conquer hierarchical problems: by ex-
ploring the neighborhood of the current BB configuration
the next level of BBs can be detected.

In order to be able to identify linkages we enhance the
hill-climber with a memory where hill-climbing results are
stored. Evolutionary Algorithms with linkage learning mech-
anism extract the BB information from the population. Sim-
ilar techniques can be applied to devise BB structures from
search experience stored in the memory. However, the so-
lutions stored in the memory offer an important advantage
over populations: they are noise free. While individuals
from populations may have parts where good schemata have
not yet been expressed or have BBs slightly altered by mu-
tation, in the case of fully non-deceptive BB landscapes, the
solutions stored in memory are always exact local optima.
The systematic exploration of BB configurations guarantees
that in the close neighborhood of these states there are no
better solutions.

The details of linkage learning mechanism and BB con-
struction are detailed in the next section.

4. BUILDING BLOCK HILL-CLIMBER
BBHC involves four main steps: (i) initialization of the

algorithm with each single locus as a BB; repeatedly (ii)
hill-climb the search space according to a BB-wise neigh-
borhood structure; (iii) local optima obtained in (ii) is used
to detect linkages and extract BB information; (iv) the BB
configuration and implicitly the neighborhood structure are
updated. This section describes the framework of BBHC
and details the implementation.

4.1 The BBHC Framework
Figure 1 depicts the two main phases of the BBHC opti-

mization. The first one refers to the accumulation of search
experience, provided by the repeated hill-climbing. The sec-
ond phase concerns the exploitation of search experience by
linkage learning and BB structure update.

The input of the second phase is the search experience
stored in memory. Dependencies are detected and the out-
put consists of an updated BB structure, which enables the
first phase to combine new BBs. In hierarchical problems,
modeled after the suggestions of the BBH, the assembling
of lower level BBs leads to the development of higher order
ones. Thus the sequence of phases can effectively overcome
hierarchical levels successively by discovering and incorpo-
rating BB knowledge into the search process.

4.2 The Building Block hill-climbing
BB hill-climbing is rather straightforward: instead of flip-

ping bits, the search focuses on the best local context-optimal
BB configuration. Each BB is processed systematically by
testing its configurations and selecting the one which pro-
vides the highest (or lowest in the case of minimization)
objective function value. While the search for the best con-

Figure 1: The framework of BBHC with the two
main phases: accumulation and exploitation of
search experience.

figuration of a particular BB is carried out, the configura-
tions of the other BBs are hold still. The BB hill-climbing
technique is outlined in Figure 3.

As an example, let us consider the current BB structure of
an 8-bit problem instance, composed of three BBs: BB(s) =
(b1, b2, b3). The BBs describe the loci of the instance in
the following way (see Figure 2): b1 = {locus 2, locus 6},
b2 = {locus 3, locus 5} and b3 = {locus 1, locus 4, locus 7,
locus 8}. Each BB defines multiple promising schema: V1 =
{00, 11}, V2 = {00, 01, 11, 10}, V3 = {0000, 1111}.

The state s = (2, 3, 1) expresses the bit configuration ob-
tained from the second configuration of b1, the third config-
uration of b2 and the first configuration of b3: decode(s) =
01101100.

In what follows it is explained how b2 is hill-climbed start-
ing from the state s = (2, 3, 1). All candidate configurations
of b2 taken from V2 are analyzed in the current context,
where the configurations of b1 and b3 remain fixed (v(b1) =
2, v(b2) = 1). The neighboring states of s are s1 = (2,1, 1),
s2 = (2,2, 1), s3 = (2,3, 1), s4 = (2,4, 1), corresponding to
the bit configurations decode(s1) = 01000100, decode(s2) =
01001100, decode(s3) = 01101100, decode(s4) = 01100100.
The most suitable configuration for b2 is chosen with respect
to the objective function and the original state is updated

Figure 2: BB configuration of the 8-bit state.
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HC(s)

1. Choose randomly an unprocessed building block

bi from B(s);

2. Choose randomly an unprocessed building block

configuration vj ∈ Vi;

3. Set v(bi) in s to vj;

4. If the change results in a decrease of the

objective function undo the change;

5. If there exists unprocessed building block

configuration of Vi then goto 2 ;

6. If there exists unprocessed building block

from BB(s) then goto 1 ;

Figure 3: The pseudo code of the deterministic,
greedy building block search.

accordingly. For instance, if the first configuration provides
the best objective function value, then the state becomes
s = (2,1, 1). The algorithm carries on by hill-climbing an-
other BB in the same manner from the new state .

After all BBs are processed, the result is stored in the
memory and the process is repeated starting from a new
random state, until the memory is full.

In the next phase, linkages from the memory are detected
and the BB structure is updated.

4.3 Linkage detection and BB structure
update

Several techniques for detecting gene dependency from a
population are presented in the literature [10, 23]. Similar
techniques can also be used to detect the linkage from the
states stored in the memory. Due to the fact that the hi-
erarchical problems under study have a nice non-deceptive
structure in the BB space, a very simple method for linkage
detection is considered.

The clustering of loci in new BBs is done by searching
for bijective mappings. For a given block bi, all BBs bj are
linked if distinct configurations of bi map to distinct config-
urations of bj . The configurations of bi that can be found in
the memory represent the domain while the configurations
of bj from the memory are the codomain. Thus, we say that
bi and bj are linked if there is a one-to-one correspondence
between their configurations i.e. for any particular value vi

from the domain there exist a unique configuration vj ∈ Vj

satisfying the condition: for any state from the memory if
v(bi) = vi then v(bj) = vj .

Due to the transitivity property of bijective mappings,
all relevant BBs are discovered simultaneously. The linkage
detection algorithm is presented in Figure 4.

In the studied hierarchical problems there is a determin-
istic dependency between BBs, which corresponds to maxi-
mal mutual information. The BB-wise hill-climbing enables
a noise free expression of these dependencies in the states
stored in the memory, thus directly facilitates the determin-
istic approach of searching for bijective mappings.

Harder problems, for example problems exhibiting over-
lapping BB structure or problems that are heavily corrupted

BBForm(s,M )

1. Choose randomly a building block bi from

BB(s) which has not yet been clustered;

2. Compute the set of building blocks whose

configuration from M are mapped bijectively

to bi and denote it by L;

3. If L is empty update the possible

configurations Vi to the configurations

encountered in M ;

4. If L is not empty form a new building block

bnew = bi

⋃
L from the union of loci from bi

and from building blocks in L. Also set the

possible values Vnew to all distinct

configuration encountered, on the position

defined by the bnew, operating on the binary

representation of states from M .

5. Set bi and the building blocks from L as

clustered;

6. If there exists building blocks which have not

been clustered goto 1 ;

Figure 4: The linkage detection and new BB forming
algorithm, where M is the memory.

by noise, may require a more traditional probabilistic linkage
analysis.

It should be noted that testing for all possible bijections
might be quite high cost for large problem instances. As for
each BB we potentially check all other BBs, the complexity
of the deterministic linkage detection is O(n2 ·m2) where n
is the number of BBs and m is the size of the memory.

All BBs linked together by a bijective mapping are united
into a new BB. The candidate configurations of the new BBs
are extracted from the binary representation of states from
the memory. If a BB can not be linked with any other BB it
keeps its original place and only its possible configurations
are updated in the same manner as for the new BBs.

4.4 The memory size
The main choice to be made when applying BBHC con-

cerns the number of BB hill-climbs to be performed before
we proceed to linkage learning (the size of the memory).
As dependencies are successively detected and bigger and
bigger BBs are formed, the search space is reduced. Lower
dimensionality translates to less search experience needed to
reveal remaining linkages. Therefore, with the reduction of
the dimensionality the size of the memory can also be dimin-
ished. On the other hand, if some context-optimal setting of
a BB is not discovered and stored in the memory, the miss-
ing setting will be excluded for the remainder of the search.
If the excluded configuration is critical to find the optimum
then the algorithm will fail. The memory size should be
chosen big enough to be able to detect all context-optimal
settings for each BB with a sufficiently high probability.

For BB-wise non-deceptive hierarchical problems, all im-
portant context-optimal settings have a relatively high prob-
ability of detection. Thus repeatedly hill-climbing the BB
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BBHC(x, c, b, k) returns best state

1. Initialize the building block knowledge with

each single locus from x as a building block;

2. Initialize the memory size:

size[M ] := c + logb(length(x));

3. Generate a random state s according to the

current BB structure knowledge BB(s):
s := RandomState(BB(s));

4. BB hill-climb from s and store the result in

memory: M := M
⋃

HC(s);

5. If the resulted state is better then the best

states seen so far, keep the new state:

s := best(s, best state)

6. If M is not filled up goto 3 ;

7. Learn linkage from memory and update the BB

configuration according to the detected

linkages: BBForm(s, M);

8. Empty memory: M = ∅;

9. Update the memory size:

size[M ] := c + logb(ℵ(BB(s)));

10. If there was an improvement in the last k
epochs and the number of maximum function

evaluations was not exceeded goto 3 ;

Figure 5: Outline of the hill-climbing enhanced with
memory and linkage learning. In steps 3–6 we ac-
cumulate the search experience (phase 1) which is
exploited in steps 7–9 (phase 2).

structure from randomly chosen points quickly increases the
probability of detecting all relevant context-optimal settings.

A bigger issue concerns the chance of getting false link-
age detection. This phenomena can appear when the mem-
ory size is small, the number of BBs is relatively high and
BBs have only a few context-optimal settings. In this case,
a bijective mapping between two BBs may appear in the
memory by pure chance, even if there is no mutual depen-
dency between them. Increasing the memory size to a num-
ber proportional with the number of BBs can overcome this
problem.

In this paper we use the formula mem size(s) = bc +
log(ℵ(BB(s)))c for the memory size, where c is a constant
and ℵ(BB(s)) is the number of elements from BB(s).

In the case of hierarchical non-deceptive problems (in the
BB space), the probability of failure can be bound as a func-
tion of the memory size. If one knows the probability of each
context-optimal setting in advance, the size of memory re-
quired to achieve correctness with sufficiently high probabil-
ity can be calculated. Results concerning the probability of
failure for problems where context-optimal settings have the
same probability of instantiation was reported elsewhere.

The proposed model can be summarized by the algorithm
presented in Figure 5.

Figure 6: Arithmetic scaling of BBHC on hIFF,
hXOR and hTrap. The number of function eval-
uations scales almost linearly. The ratio between
neighborhood points is decreasing towards 2 as the
problem sizes are doubled in the case of hIFF and
hXOR and towards 3 in the case of the hTRap.

5. RESULTS
We tested the scalability of BBHC on 128-bit, 256-bit,

512-bit and 1024-bit shuffled hIFF and hXOR problems,
respectively on 81-bit, 243-bit and 729-bit shuffled hTrap
problem instances. Lower problem sizes were not addressed
as they may be too easy to solve; any conclusion from them
may be misleading. For each test suit a total number of 100
independent runs were averaged.

The size of the memory was set to b8+log2(length(s))c on
hIFF and hXOR, respectively to b18 + log3(length(s))c on
hTrap. With these settings there was no need for a random
restart mechanism as the algorithm converged in all runs to
a global optimum.

The arithmetic scaling results with the ratio between neigh-
borhood points is presented in Figure 6. On the test suites,
the proposed method scales up almost linearly with the
problem size, with the slope between neighbor points de-
creasing towards 2 as the problem size doubles on hIFF and
hXOR and towards 3 on hTrap as problem size is tripled.

The almost linear scaling is the direct result of the fact
that each level of the hierarchical problems is solved by the
BBHC with O(L · log(L)) complexity, where L is the size of
the level. The slopes of hIFF and hXOR line up due to the
identical problem structure.

The experimental results were approximated with func-
tions of the form f(x) = axb · log(x) where a and b are
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Figure 7: The number of function evaluations of
BBHC approximately scales as O(l0.97 ·log(l)) on hIFF
and hXOR and O(l0.91 · log(l)) on hTrap, where l is
the problem size.

determined by the least square error method. In Figure 7
the log-log scaled plot of the test results and approximation
functions are shown. The approximated number of objective
function evaluations scales as O(l0.97 · log(l)) on hIFF and
hXOR and O(l0.91 · log(l)) on hTrap, where l is the problem
size. The approximations are very close to the expected lin-
earithmic time. The best results reported till now scale up
sub-quadratically with a lower bound of O(l1.5 · log(l)) [10].

The hBOA, one of the best known optimizers that operate
via hierarchical decomposition, with hand tuned parame-
ters solves the 256-bit shuffled hIFF in approximately 88000
function evaluations. The BBHC performance on the same
test suit is 20666, approximately four times quicker than the
hBOA. Due to the linearithmic scaling the BBHC is able to
solve the 512-bit version of the same problem approximately
twice as fast as the hBOA does the 256-bit one, requiring
only 45793 function evaluations!

Similarly to other methods like the DSMGA++, the BBHC
uses explicit chunking mechanism enabling the method to
deliver the problem structure. While DSGMA++ and other
stochastic methods have to fight the sampling errors which
sometimes induce imperfections, the BBHC was able to de-
tect the perfect problem structure in all runs, due to its
more systematic and deterministic approach. The enhanced
capability of BBHC to capture the problem structure is also
revealed by the fact that hIFF and hXOR are solved ap-
proximately in the same number of steps as their underly-
ing BB structures (a balanced binary tree) coincide. For the
DSGMA++ the time needed to optimize the two problems
differs significantly, being O(l1.84 · log(l)) for the hIFF and
O(l1.96 · log(l)) on hXOR.

On hIFF and hXOR where there are two global optima,
the multiple runs of the BBHC showed an unbiased behav-
ior, finding in almost half-half proportion both solutions.

A final remark concerns the stability of BBHC: the highest
standard deviation encountered is 210, while other methods

deal with standard deviations of much higher magnitude on
the same test suites.

6. CONCLUSION AND FUTURE WORK
The concept of BB hill-climber (BBHC) a generic method

for solving problems via hierarchical decomposition is pro-
posed. The BBHC operates in the BB space, where it com-
bines BBs in a systematic and exhaustive manner. Past
hill-climbing experience is used to learn the underlying BB
structure of the search space expressed by linkages. The
continuous update of the BB representation of the individ-
ual results implicitly in the adaptation of the neighborhood
structure to the combinative neighborhood of the current
BBs. In hierarchical problems – where BBH holds – mov-
ing the search to the combinative vicinity of the current BB
representation facilitates the discovery of new BBs, as BBH
implies that low-order BBs can be combined to form higher-
order ones.

An important aspect of the proposed method is that sim-
ilar to DSMGA++, BBHC delivers the problem structure
in a form comprehensible to humans. Gaining knowledge
about the hidden, complex problem structure can be very
useful in many real-world applications.

BBHC clearly outperforms population based recombina-
tive methods on different issues of hierarchical problems.
So far hBOA proved the greatest ability to solve hierarchi-
cal problems with random linkage. Nevertheless, the pro-
posed method solves the 512-bit shuffled version of hIFF and
hXOR approximately twice as fast then the hBOA solves the
smaller version of 256-bit!

Preliminary scalability test of the proposed method indi-
cates that BBHC holds not only a quantitative advantage
over other methods but also a qualitative one too: it scales
linearithmic with the problem size.

Recent results have shown that in dynamical environ-
ments induced by exogenous noise recombinative methods
clearly outperform hill-climbers [4, 13]. Nevertheless, this
result reposes some questions on the fundamentals of EAs as
we now must again look for those topological features which
make a static fitness landscape suited for EAs. It had been
shown that some of the earlier proposed landscape features,
like hierarchically structured BBs, deception, multimodality
can be efficiently overcome by a hill-climber using a proper
neighborhood structure and local search operators aware of
the underlaying BB embodiment.

Also the suggestion of BBH regarding the use of popula-
tion is put at question: according to the BBH population is
needed to combine BBs in a highly parallel manner. Other
results [13, 7] and this paper show that a systematic explo-
ration of BBs combination by a hill-climber can be more
efficient.

The No Free Lunch Theorem [22] guarantees that there
exists problems where GAs outperform other methods. The
main issue regards relevance: how much if any of this class
of function is related to real-world problems?

We think that the task of finding problems for which GAs
are well suited must be approached from direction that so
far got little or no attention in the literature, due to doubtful
expectances regarding the role of different features of GAs.
The results of the paper suggest that if a problem has a
nice structure, even if “hidden” like the BB space, a proper
hill-climber can outperform population based recombinative
methods, without requiring extra domain knowledge. The
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idea of a GA marching on a fitness landscape is maybe a
little bit romantic; a suitable hill-climber is almost certainly
quicker if there is a nice structure of the problem to be ex-
ploited. Maybe we should look for hard problems which can
be solved somewhat slothfully by GAs but are intractable
using other methods.

Another observation is that test problems for GAs were
usually developed under the intuitions of the BBH. As it is
believed that crossover should produce successful offspring
on average, test problems were devised accordingly. To best
of our knowledge, so far there are no test suites that exploit
the creativity potential of the crossover operator.

Based on these two observations a future paper is intended
to present a class of problems for which GAs are hopefully
well-suited.
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