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ABSTRACT
In the classical binary genetic algorithm, although crossover
within a building block (BB) does not always cause a de-
crease in fitness, any decrease in fitness results from the
destruction of some building blocks, in problems where such
structures are well defined, such as those considered here.
Those crossovers that cause both offspring to be worse, or
one to be worse and one unchanged, are here designated as
failed crossovers. Counting the failure frequency of single-
point crossovers performed at each locus reveals something
of the BB structure. Guided by the failure record, GA oper-
ators could choose appropriate points for crossover, in order
to work more efficiently and effectively. Experiments on test
functions Royal Road R1 and R2, Holland’s Royal Road
Challenge function and H-IFF functions show that such a
guided operator improves performance. While many meth-
ods exist to discover building blocks, this ”quick-and-dirty”
method can sketch the linkage nearly ”for free”, requiring
very little extra computation.

Categories and Subject Descriptors
I.2.m [ARTIFICIAL INTELLIGENCE]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
Crossover disruption, building blocks, linkage discovery, ge-
netic algorithms, ”smart” operators

1. INTRODUCTION
The Building Block (BB) Hypothesis [9, 4], as confirmed

by many theoretical studies [19, 1], set a roadmap for effec-
tive GA search for many types of problems: creating, grow-
ing and mixing BBs until finding a solution. Past practices
for defining such a roadmap fall into two broad categories:
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linkage learning and probabilistic modeling [7]. Both fields
are well researched and have generated many publications-
for example, mGA [5] and LLGA [6] belong to the former,
while the latter includes MIMIC [2], EDA [14] , cGA [8],
BOA [16], HBOA [11, 15], etc. These approaches are typi-
cally complex to implement relative to a ”normal” GA.

Here, for problems exhibiting a strong non-overlapped
building block structure, we present a simple, although ad-
mittedly less powerful, alternative for exploring the link-
age, by tracking crossover disruption at each position in
the genome. We know that although crossover within a
building block (BB) won’t always cause a fitness loss in a
BB-structured problem (i.e., one in which epistasis is not
significant-there are minimal nonlinear dependencies among
loci that are widely separated on the chromosome), when
crossover DOES produce a decrease in fitness of both off-
spring, it will be because a building block, right on the
crossover point, was destroyed. Those crossovers that cause
both offspring to be worse, or one worse and one unchanged,
are designated here as failed crossovers. By counting the
failure frequency at each position on the genome, one can
gain information about the BB structure. This information
can supply appropriate points to operators. For example,
positions where no failures occur are good candidates for fu-
ture recombination to increase the length of building blocks,
rather than disrupting them.

The method works like an adaptive operator, but differs
from others developed earlier in its involvement of build-
ing block concepts, and therefore, ability to reflect genome
structure. A related operator [17] was designed to be adap-
tive by recording points at which successful crossovers were
done and then following them by other crossovers at the
same points. In contrast, we use a different criterion-points
of failure (both offspring being worse)-which provides even
more absolute guidance, and apply it in determining future
crossovers. The work also is different from the rule induc-
tion GA [18] or machine learning evolution [12]. Although
both of these authors also had interest in crossover points
yielding fitness decreases, their work did not fully capture
the concept of building block destruction as occurring when
crossover at a given position produces two worse offspring
(or one worse and one unchanged), and therefore probably
couldn’t explore the BB structure effectively.

This paper first reviews the BB theory in a hierarchical
view, and based on which, why and what types of operator
outcomes could be an indication of a tight non-overlapped
BB is discussed, then a Genetic Algorithm is designed to
track crossover failure for guiding future operators. Finally,the
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guided GA is comparing with the unguided one on four test
functions. Conclusions are drawn at the end.

2. THE BUILDING BLOCK HYPOTHESIS:
A HIERARCHICAL VIEW

The Building Block Hypothesis supposes that short, low-
order, high-fitness blocks can be combined into higher-level
ones and finally into a solution. This idea is illustrated in
Figure 1.

Figure 1: Hierarchical Organization of Building
Blocks

Figure 1 illustrates a pyramid (or tree) structure, where
each higher-level BB is composed of level-lower BB(s) and
intron(s), for example, the leftmost BB in level 2 consists
of two BBs from level 1, and also is a part of a BB of
a higher level. This higher-level BB can be expressed as:
((B1+B2)+Intron1+B3). Note that once the intron is in-
corporated into a higher-level building block, it is no longer
an intron at the higher level.

From the point of view of an evolutionary process, the
levels represent different stages. A lower level tends to be
assembled at an earlier time in the GA’s evolutionary pro-
cess. Because lower-level building blocks are discovered be-
fore higher-level ones of which they are components, lower-
level BBs have a larger chance to be disrupted by crossover,
when viewed over time. That will be illustrated in the fol-
lowing experiments.

3. OPERATIONS AND BUILDING BLOCK
DISCOVERY

Here, one-point crossover and single-bit mutation are com-
pared on exploring tight non-overlapped BB structure.

3.0.1 Why Not Track Mutations
Though results of one-bit mutation could also be used to

detect some BB structure, distinguishing an intron from a
BB by observing whether there is a fitness change after a
mutation at a particular site, it does not work well in the
following situations.

1. In hierarchical assembly of BBs, it can only find the
lowest-level BB structures. In Figure 1, it works on
level 1 only and fails to identify the assembled BBs
at higher levels. To the mutation operator, a lowest-
level intron always appears to be an intron at all lev-
els, since mutating it never results in a fitness change,

even though the intron may have become part of an as-
sembled BB at a higher level in later the evolutionary
process.

2. It cannot distinguish neighboring BBs, though can ex-
plore adjacent BBs and introns. For example, given an
8-bit string where the first half is a BB and the second
half is an intron, single-bit mutation could easily get
a result expressed as ”YYYYNNNN” (where Y means
there is a fitness change after 1-bit mutation, N means
not), but it will give the result ”YYYYYYYY” for two
adjacent 4-bit BBs, obscuring the BB boundary.

3.0.2 Why Track Crossover Failure?
Comparing to tracking single-bit mutations, tracking one-

point crossovers is capable of identifying BBs at different
levels and distinguishing the BB boundaries easily, although
not all crossover operations yield good indicators.

Of the various classes of crossover outcomes, ”failed”
crossovers–i.e., those resulting in a fitness decrease in both
offspring (or decrease in one and no change in the other)–are
the most informative. It is assumed that they are destroy-
ing a BB, so are not occurring within an intron, since, by
definition, changing the components of the intron would not
affect fitness, and no building blocks would be disrupted.
Thus, ”failed” crossovers are taking place within BBs (al-
though the converse does not hold–i.e., recombination occur-
ring within a BB does not always cause a fitness loss). This
observation provides a way of identifying linkage–namely, by
tracking the frequency of crossover failure at each position
on the chromosome. Given a set of ”bad” crossover posi-
tions (i.e., sites at which crossover produced failures), the
crossover operator should be adapted so as to avoid them,
choosing instead to crossover between BBs and increasing
the probability of hierarchically assembling them.

3.0.3 About Tracking Crossover Success
While fitness loss in both offspring after one-point crossover

indicates that BB destruction has occurred at the crossover
point, fitness increase in both offspring also implies BB con-
struction.

However, crossover success, defined as both offspring hav-
ing better fitness or one better and one not worse after one-
point crossover, occurs much less frequently than crossover
failures. To create a new BB, all components must be per-
fectly assembled, but to destroy a BB can be done in many
ways. For example, to form a new 8-bit BB, ”11111111”,
requires assembling exactly 8 ones; while to break up an ex-
isting BB requires only a 0 in any of those positions. The
experiments reported here on Royal Road R1 and R2 func-
tions show that the frequency of crossover success on R1
is about 1/35 the frequency of crossover failure, and on R2,
about 1/20 ,based on 100 independent runs (the ratio will in-
crease if we use guided points to avoid crossover disruption,
to significantly decrease the number of failed crossovers). It
might be better track crossover success as well as failure;
however, this has not been done in the work reported here.

In summary, crossover failure within BBs occurs with high
frequency compared to crossover success; most crossovers
internal to a BB are likely to cause a fitness loss (destroying
an exist BB ) rather than benefit (producing a new BB),
especially late in the evolutionary process, when lower-level
BBs have already been produced and the challenge is to
assemble higher-level BB combinations.
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4. EXPERIMENTS ON R1, R2, RR AND
H-IFF

4.1 Experimental Design

4.1.1 Test Examples
Royal Road functions R1 and R2, Holland’s Royal Road

Challenge function and the H-IFF function are chosen to
be tested step-by-step, representing pure single-level BBs
only, BBs with a hierarchical structure, hierarchical BBs
with deception and hierarchical BBs with multiple optima,
respectively.

Royal Road R1 and R2.
Functions R1 and R2 are designed as strings composed of

several BBs [13, 3]. R1 is flat, expressed as
(B1,B2,B3,B4,B5,B6,B7,B8)
(see Figure 2[3]), while R2 is hierarchical, expressed as:
(((B1,B2), (B3, B4)), ((B5, B6) , (B7, B8)))
(see Figure 3[3]).

s1=11111111********************************************************;c1=8
s2=********11111111************************************************;c2=8
s3=****************11111111****************************************;c3=8
s4=************************11111111********************************;c4=8
s5=********************************11111111************************;c5=8
s6=****************************************11111111****************;c6=8
s7=************************************************11111111********;c7=8
s8=********************************************************11111111;c8=8
sopt=1111111111111111111111111111111111111111111111111111111111111111

Figure 2: An optimal string broken up into
8 building blocks. The function R1(x) (where
x is a bit string) is computed by summing
the coefficients cs corresponding to each of
the given schemata of which x is an in-
stance. For example, R1(1111111100...0) = 8, and
R1(1111111100...011111111) = 16. Here cs = or-
der(s).

s1=11111111********************************************************;c1=8
s2=********11111111************************************************;c2=8
s3=****************11111111****************************************;c3=8
s4=************************11111111********************************;c4=8
s5=********************************11111111************************;c5=8
s6=****************************************11111111****************;c6=8
s7=************************************************11111111********;c7=8
s8=********************************************************11111111;c8=8
s9=1111111111111111************************************************;c9=16
s10=****************1111111111111111********************************;c10=16
s11=********************************1111111111111111****************;c11=16
s12=************************************************1111111111111111;c12=16
s13=11111111111111111111111111111111********************************;c13=32
s14=********************************11111111111111111111111111111111;c14=32
sopt=1111111111111111111111111111111111111111111111111111111111111111

Figure 3: Royal Road Function R2. R2(x) is
computed in the same way as R1: by sum-
ming the coefficients cs corresponding to each
of the given schemata of which x is an in-
stance. For example, R2(1111111100...011111111)
= 16, but R2(111111111111111100...0) = 32, and
R2(11111111...1) = 192.

Originally, R1 and R2 were designed to investigate how
the ”stepping stones”–intermediate-order schemata–affect the
GA performance. Here, they are taken as test examples
with a flat BB structure and tree BB structure, respectively,
to see whether the failed crossover can find the structure,
rather than to study the GA’s behavior, as the initial re-
searchers did.

Holland’s Royal Road Challenge.
The challenge, RR(JH), presented by John Holland at

ICGA ’93, then posted on GA-List, is to test a GA’s per-
formance on BB discovery and combination. The function
is

Score =
∑

j

BONUS(j) +
∑

i

PART (i);

where j indexes levels in the hierarchy (1 is the lowest
level); i indexes target schemata (1 is at left). There are
2k target schemata at level 1, and 2k−j target schemata at
level j+1 (compounded of adjacent pairs of schemata from
the next lower level); each target schema is defined over b
(blocksize) loci. Here,
genome length = (blocksize+gapsize) * 2k.

BONUS(j) =

{
u∗ + (n(j) − 1)u , j > 0

0 , j = 0

where n(j) is the number of targets found at level j and
u∗ and u are parameters, u∗ > u.

PART (i) =

⎧⎨
⎩

m(i)v , if m(i) < m∗ + 1
−m(m(i) − m∗)v , if m∗ < m(i) < b

0 , otherwise

PART(i) is the contribution to the overall score from m(i)
correct alleles in target schema i at the lowest level, 0 <
i < 1 + 2k. RR(JH) is a hierarchical function with decep-
tion. In the following experiment, the parameter setting is
string length=240 bits, b = 8, k = 4, u∗ = 1, u = 0.3, v =
0.02, and m∗ = 4, with 7 bits of intron between every two
blocks.

Hierarchical-if-and-only-if (H-IFF).
H-IFF is a recursive function for defining hierarchically

consistent decomposable fitness functions from two base func-
tions, F(B) and T(B) [20, 21]. T(B) evaluates the relation-
ship of BBs, and F(B) gives the score according to both
T(B) and the score of BBs in the next level-for example, for
a four-variable problem with blocks:
F(a,b,c,d) = 4f(t(t(a,b),t(c,d))) + 2f(t(a,b)) + 2f(t(c,d)) +
f(a) + f(b) + f(c) + f(d). [20]

Therefore, the higher-level BB is credited only if its lower-
level blocks are mutually consistent (all 1’s or all 0’s). For
instance, although ”0000” and ”1111” are good building
blocks alone, their combination ”00001111” gets no bonus.
The Hamming Distance between the solutions that are of
second-highest fitness and the global optima (of which there
are also two) is greater than the distances between any other
pair of local optima, and the differences in fitness maintain
the same relationships. Such a feature makes it is easy for
a search algorithm to become trapped in local optima, since
it is hard to replace an entire (non-globally-optimal) part
of a solution accurately to achieve the best result. This is
a form of deception, and helps to make the H-IFF problem
more challenging. Here, a 64-bit H-IFF problem is studied.

4.1.2 Algorithm
Rather than using a traditional GA’s way of generating

the next generation using serial application of operators (se-
lection, crossover and mutation), we will instead use GP’s
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”parallel” method, in which only one operation is performed
in generation of each offspring (or pair of offspring, through
crossover), rather than allowing, for example, mutation also
to act on an offspring just created by crossover.

Such a method is fit for the purpose of observing the effect
of crossovers. Tracking crossover failures requires evaluat-
ing the new individuals right after the crossover (without
possible intervening mutation), to see whether or not the
crossover has ”failed”; if so, the crossover point is tallied as
an internal BB point, to guide future operations. If we let
a mutation follow crossover and then evaluated the result,
as in a classical GA, it would confound the effects of the
operators, making it hard to distinguish effects of crossover
from those of both crossover and mutation.

The Algorithm is.

Initialize population;
Evaluate population;
WHILE not done

CASE Operation OF
Select for survival:

Select one individual for survival
unchanged to the next generation

Crossover:
Select two individuals
Crossover them w/wo suggested points
Evaluate them
Record whether or not the crossover point
as a internal BB point

Mutation:
Select one individual
Mutate
Evaluate it

END WHILE

4.1.3 GA Setting
To simplify the experiment, the operators are one-point

crossover and single-bit mutation only, and a large popula-
tion size is used, in order to increase the similarity of the
runs. In addition to the normal GA parameters, two vari-
ables are employed as follows:

1. Sampling Generations (SG), by which time nearly all
loci are expected to have been well tested by crossover.
Prior to this generation, it is supposed that the BB
structure has not been sufficiently explored to put an
end to exploration and simply exploit the information
to guide future operations. After SG, it is supposed
that the tracking has been sufficient to constitute a
reliable foundation for guiding future operations.

However, even the data gathered prior to SG can be
used to guide crossover to avoid many useless failures,
even though it is not complete. It is feasible to al-
low some crossovers to be guided by the existing data
prior to SG, and to allow others to continue to ex-
plore the space of crossover points until the crossover
data are deemed reliable. In the experiments reported
here, a measure Current Generation (CG) / Sampling
Generations is defined, and is used to decide what
crossover percentage is to be guided by the data gath-
ered to date. At early stages, CG is small, and since
SG is a larger constant, the quotient is small and few
crossovers are guided. As CG approaches SG, the per-

centage of guided crossovers increases. After CG >=
SG, all crossovers are guided.

Generally, determination of SG depends on genome
length and the complexity of the problem. In our ex-
periments, we used SG as a constant 10. However, an
adaptive SG, based on statistical analysis of crossover
history, is planned for future work.

2. Threshold parameter T, used to determine a ”failed”
crossover to be used for future guidance. Since po-
tentially all points could be crossover failure points,
even points in an intron (if it is a part of a higher-
level BB), we must focus crossovers at those points
exhibiting more failures, but not at all points exhibit-
ing ANY failures. In our experiments, those points
with failure frequencies less than the half of the aver-
age are rejected as likely BB boundaries or introns in
higher level.

Table 1: GA Parameters
R1 R2 RR(JH) HIFF

Crossover one-point crossover
Mutation single-bit mutation
Selection tournament, size 4
Pop. size 2000 5000

P Selection 0.2
P Crossover 0.7
P Mutation 0.1
No. of Gens. 50
No. of Runs 100

Sampling Gens. 10
T 0.5*average failure points

4.2 Results

4.2.1 Unguided GA(U-GA) vs GA Guided by Failed
Crossovers (G-GA)

Based on 100 runs on each test function stated above, a
performance comparison between and U-GA and G-GA is
provided in following sections.

Evaluations.
Each test condition was run 100 times independently, and

the results are shown in Table 2.

Table 2: Average Evaluations of U-GA and G-GA to
find global optimum in 100 runs. (T-test: unequal
variance, independent, one-tailed)

GA Type Success Rate Mean Std Dev T-test
U-GA 100% 30925 2411R1
G-GA 100% 25756 1733

8.7

U-GA 100% 29731 2971R2
G-GA 100% 24335 1707

7.8

U-GA 100% 107312 10016RR(JH)
G-GA 100% 94376 7464

5.2

U-GA 95% 77593 9628H-IFF
G-GA 99% 64307 4371

6.1

Clearly, the G-GA significantly outperforms U-GA on all
four experiments both in speed and robustness
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(T(v=100,Pr=0.9995)=3.39)). The decreases in average num-
bers of evaluations are 17%,18%,12%,17% on R1,R2,RR(JH)
and H-IFF, respectively. And the less standard deviation of
G-GA in all experiments shows that it is more stable than
U-GA. (It is interesting that we did achieve the results an-
ticipated by the proposers of R1 and R2 (i.e., R2 was quicker
to solve than R1), and showed that the ”stepping stones”
worked, while they didn’t get those results in their experi-
ments. That difference may be because of the large popula-
tion sizes used here, which can help to alleviate the effects
of hitchhiking, as suggested by [10]. )

Crossover Failure Frequency.
Why G-GA is faster than U-GA is that G-GA experiences

fewer crossover failures, and therefore its crossover works
more efficiently and effectively.

The following charts demonstrate the comparison of U-
GA and G-GA on aggregate crossover failures, versus gen-
eration, for the four functions above, over 100 runs. Since
we use GP’s ”parallel” method to produce the next gener-
ation, the percentage of each operation(selection,crossover,
mutation)in each generation is fixed, so, the evaluations on
each generation is nearly same based on same GA setting,
that is to say, the generations on Figure 4 and Figure 5 could
be seen as an equivalent of evaluations.

Figure 4: Accumulated crossover failures at each
generations of R1 and R2 over 100 runs(Population
Size: 2000)

Both Figure 4 and Figure 5 indicate the G-GA does many
fewer ”bad” crossovers than U-GA. The tailing off of all
curves is because each of the 100 runs is stopped when it
finds the global optimum value, and for future generations,
its number of crossover failures (and of operations) is aver-
aged in as zero.

At the beginning, the crossover failures of all G-GAs are
the same as for their counterparts, but after that, their fail-
ure frequencies are always smaller than those of U-GAs,
though both of their frequencies go up on the following gen-
erations.

Then G-GA failures reach their peaks at about the 5-th
generation, which is when the BB-structure-learning-oriented
crossover begins to be exceeded by the BB-structure-utilization-
oriented crossover (since we set the 10th generation as the
Sample Generation parameter SG), and the peaks are half of
those of their counterparts, showing that only 50% crossover

Figure 5: Accumulated crossover failures at
each generations of RR(JH) and H-IFF over 100
runs(Population Size: 5000)

on BB detection and get failures, while the other 50% crossover
guided don’t, right on this generation.

Finally the G-GA failures begin to bottom out at about
the 10th generation, after which BB combination, rather
than BB production or BB destruction, is the only task for
the G-GA. However, there are still a few failures after SG;
the reason is that we set a non-zero threshold T on the fail-
ure values, below which we still perform crossovers (assum-
ing that those positions are not between building blocks).
Therefore, crossovers will still be performed at these posi-
tions, and probably produce some failures.

Among the four functions above, the first three functions,
R1,R2 and RR (JH), have similar variation between G-GA
and U-GA, but for the last one, H-IFF, the G-GA does not
”jump” during its first five generations as U-GA does. We
guess that since each peak of G-GA failures is half of U-
GAs, but on the H-IFF, it’s start is already aprroachs the
peak, so there is no room for a jump from its start to the
5th generation, the G-GA failure peak.

4.2.2 BB Structure Discovered by Crossover Failure
For purposes of illustration, we have chosen the first run

of each G-GA 100-run set to produce the following charts, to
see how the crossover failures present the BB structure. The
accumulated tracked failures over all 100 runs are also ren-
dered, showing an even clearer description of the BB struc-
tures.

Figure 6: Crossover failures at each locus of genome
of R1 in one run
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Figure 7: Accumulated crossover failures at each
locus of genome of R1 over 100 runs

Figure 6 shows the BB structure of R1 clearly, revealing
its eight building blocks. Those crossovers occurring on the
BB boundaries yield no fitness loss, so the crossover failure
tallies for these positions are ”0”, and indicate a BB bound-
ary. In Figure 7, it is very easy to identify the BB structure.
However, in each position of the same BB, the chance of a
failed crossover is different. Most blocks display a rounded
character, being highest in the center, showing that when
crossover occurs in the middle part of a BB, there are more
bits needing to be properly matched for the BB not to be a
failure than when crossover occurs away from the middle.

Figure 8: Crossover failures at each locus of genome
of R2 in one run

R2’s structure appears a bit vague from examination of a
single run, but it still can be recognized as
(((B1,B2),B3,B4),B5,B6,B7,B8),
a weak hierarchical structure (Figure 8). In the aggregate
plots of 100 runs (Figure 9), the structure is much clearer, of
course, but it is only the single-run structure that is available
to guide crossover during a run of an actual unknown prob-
lem. From Figure 9, it can be seen that the higher level the
BB is on, the fewer crossover failures it generates. Position
”32”, the dividing point of two 32-bit combined BBs, gen-
erates no crossover failures. However, the next-lower-level
BB boundaries, at positions ”16” and ”48”, start to suffer
failed crossvers, although their frequencies are still less than
those of the next-lower-level BBs, whose boundaries are at
positions ”8”, ”24”, ”40” and ”56”.

RR(JH)’s 16 blocks are well separated by introns, where
failures numbered either zero or one, as Figure 10 shows.

Figure 9: Accumulated crossover failures at each
locus of genome of R2 over 100 runs

Figure 10: Crossover failures at each locus of
genome of RR(JH) in one run

On the 100-run aggregate plots (Figure 11), the hierarchical
structure is also very clear, although it is not evident in a
single run. It is interesting that the BBs at each end suf-
fer more failed crossovers than the BBs closer to the middle.
This same phenomenon also appears in H-IFF, another hard
function trapped by multi-level local optima. We guess that
for those difficult problems needing a long evolution process,
the BBs at each end are formed first, and therefore these
earlier BBs will encounter more destructions than those BB
that are formed later, in the middle. That lines up well with
the reason that two-point crossover is generally better than
one-point crossover, since two-point does better at preserv-
ing BBs at each end and exchanging non-BBs in the central
part.

H-IFF’s main hierarchical organization can be sketched
from Figure 12. The highest-level BB is divided at position
”32”, and the next-highest BBs are found at positions ”16”
and ”48”, although the later is not as clear as the former. A
much clearer picture of the BB structure can be seen in the
summary of the 100 runs (Figure 13), but it is also evident
that during the duration of a single run (Figure 12), enough
information is obtained by tracking crossover statistics to
allow the GA to capitalize on it during the course of the
run.
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Figure 11: Accumulated crossover failures at each
locus of genome of RR(JH) over 100 runs

Figure 12: Crossover failures at each locus of
genome of H-IFF in one run

5. DISCUSSION

5.1 Can Crossover Statistics Guide Mutation?
We initially supposed that the statistics collected from

tracking crossover failures, from which the BB structure
is learned, could also be useful in guiding mutation to fo-
cus only on BBs, thereby avoiding wasted effort on mu-
tating introns. However, we find that there is a contra-
diction between the precondition of guided mutation and
the crossover-failure statistics. For mutation to be usefully
guided regarding a particular BB, it must be done before
the BB is formed (i.e., mutation on an already discovered
BB is normally harmful). But crossover failures are gener-
ated only after the BB is produced (and then broken), so
the needed guidance is not available when the mutation op-
erator could make use of it. That is to say, the guidance
statistics, whose emergence indicates that there is already
a BB existent near a given point, are not needed to guide
mutation to evolve another BB at that point, since the BB
is already discovered. However, for BBs in problems with
multiple local optima, it may be useful to guide a non-single-
bit mutation, to explore for other BBs as good as or better
than the current BB.

6. CONCLUSIONS
The Building Block Hypothesis can be viewed as involv-

ing a hierarchical model in which BBs have different sizes

Figure 13: Accumulated crossover failures at each
locus of genome of H-IFF over 100 runs

or granularities (or resolutions) at different levels. Various
levels of BB discovery are characteristic of various stages in
the evolution process.

Building Blocks (or linkages among nearby loci) can be
observed by tracking failed crossovers, which are those that
cause both offspring to be worse, or one to be worse and
one unchanged, since such failures, absent more widely dis-
tributed epistatic interactions, assure that a building block
on the crossover point is being disrupted.

Failed crossovers can therefore be used to bias the selec-
tion of crossover points to speed the GA’s search, and simul-
taneously provide an outline of the genome structure, with
negligible computational cost.
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