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ABSTRACT 
Recent work has provided functions that can be used to prove a 
principled distinction between the capabilities of mutation-based 
and crossover-based algorithms. However, prior functions are 
isolated problem instances that do not provide much intuition 
about the space of possible functions that is relevant to this 
distinction or the characteristics of the problem class that affect 
the relative success of these operators. Modularity is a ubiquitous 
and intuitive concept in design, engineering and optimisation, and 
can be used to produce functions that discriminate the ability of 
crossover from mutation.  In this paper, we present a new 
approach to representing modular problems, which parameterizes 
the amount of modular structure that is present in the epistatic 
dependencies of the problem. This adjustable level of modularity 
can be used to give rise to tuneable discrimination of the ability of 
genetic algorithms with crossover versus mutation-only 
algorithms.  

Categories and Subject Descriptors 
I.2.8 [Artificial Inteligence]: Problem Solving, Control Methods, 
and Search – heuristic methods.  

General Terms 
Algorithms, Performance, Reliability, Theory. 

Keywords 
Mutation, crossover, modularity, building block hypothesis, 
nearly decomposable systems. 

1. INTRODUCTION 
We observe modular structures in an extensive variety of 
locations, from phenotypic development in biological systems 
[29] to human-engineered systems where, for example, the 
concept of decomposability is one of the key assumptions 
required for cell library utilisation in ASIC design [26].  When 
considering problems in evolutionary computation, the concept 
that one portion of a system can be solved in partial or full 

isolation of other portions of the system is both simple and 
intuitive, and forms the basis for the building-block hypothesis 
(BBH) [12][13][8][20].  However, identifying problems which 
exhibit modular properties of the right kind to allow solutions to 
be more easily accessible to algorithms which exploit these 
modular properties is not straightforward [6]. 
The building block hypothesis is an early proposal to explain why 
the genetic algorithm (GA) is successful when it is [12][8].  It 
proposes that crossover recombines short high-fitness schemata to 
produce even fitter genotypes, offering a search capacity 
unavailable to other methods such as mutation hill climbing.  In 
this paper we use the intuition of the BBH to construct a function 
that discriminates the capabilities of crossover and mutation 
methods.  Of course, the discrimination of crossover and mutation 
in GAs has a long and controversial history [6][7][27][15][1][28]. 
Recently there have been some successes in showing principled 
distinctions between the ability of mutation and crossover: some 
are not based on building blocks [24][14], whereas some do 
utilise a building-block structure [30][31][34]. The most recent of 
these [34] uses a simple single-level building-block function to 
discriminate the ability of mutation and crossover in much the 
same way as that described by the BBH.  However, all of this 
work addresses single problem instances which cannot be tuned to 
control the amount of modularity in the problem.  Here we define 
a problem with parameterised structural modularity to investigate 
how this affects the discrimination between mutation and 
crossover.  It is not the aim of this paper to uphold the BBH or 
untangle the issues involved in its controversial history – that 
requires a more direct and formal approach [34].  Our objective is 
to investigate how the distinction between mutation and crossover 
is sensitive to how structured the modularity of a problem is. This 
is performed using a simple building block function with a 
variable amount of modularity.  That is, we investigate a problem 
that is adjustable from one extreme of no modularity at all to a 
problem that exhibits modular interdependency [2] (with very 
neat and clean modular structure), and parameterise the space in 
between these extremes. 
In this paper, we introduce a new problem which exhibits modular 
interdependency [2].  We use an intuitive representation for this 
problem which permits us to vary the clarity of modular structures 
over a number of dimensions.  The case where the modularity is 
clean and neat is sufficient to discriminate between mutation and 
crossover in a principled manner.  Furthermore, our method for 
varying the structural modularity is described and investigated, 
and we find that the discrimination varies as the structural 
modularity is adjusted across the range we define. 
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There are many different ways that a problem could be tuned to 
show a variable amount of difficulty for mutation (e.g. [16]), and 
many parameters may be involved in the definition of functions 
that might influence the discrimination of mutation and crossover 
algorithms [22][4].  If nothing else, one could vary the size of a 
problem or the width of fitness valleys incorporated in the 
problem (e.g. [14][31]). One notable factor influencing the 
effectiveness of crossover is the tightness of the genetic linkage 
(the defining length of building blocks) [12][9].  But none of these 
methods directly addresses a variable amount of modularity in a 
simple tight-linkage building-block problem.  Since the amount of 
modularity is parameterized in our new problem, we gain an 
understanding about properties which allow a GA using crossover 
to perform qualitatively differently when compared with a 
mutation-only algorithm.  The level of discrimination changes as 
the structural modularity is varied, which indicates when 
crossover becomes necessary to solve the problem. 

The key to making our problem variably modular is very simple.  
We define the fitness of a genotype using a sum of weighted 
pairwise interactions between the problem variables.  For the 
highly modular case strong interaction weights within blocks are 
cleanly divided from the weak interactions that are between 
blocks.  In the non-modular case these weights are randomised so 
that weights inside modules are not different on average from 
weights between modules.  A partially modular problem is 
defined by partially randomising the weights of the modular case.  
It should be noted that problems built of pairwise interactions, or 
only order-2 dependencies, can often be easy to solve [16][8].  
But this depends on how the interactions are organised. When 
dependencies are structured, pairwise dependencies can ‘act in 
concert’ to create local optima with significant Hamming 
distances between them [2][33].  Varying this structure is 
sufficient to vary the problem difficulty, and more importantly 
vary the discrimination between the abilities of crossover and 
mutation.  Note that although the internal and external modular 
dependencies are parameterized in the NKC landscape [17], this 
has not been shown to discriminate the abilities of crossover and 
mutation even when the modularity is as strong as possible [34].  

The remaining sections of this paper are organised as follows: 
section 2 introduces the new representation and discusses 
expected behaviour of crossover and mutation on this problem 
class; in section 3 we provide some experimental results.  Section 
4 discusses the consequences of the results in section 3.  Section 5 
concludes. 

2. PARAMETERIZING STRUCTURAL 
MODULARITY: THE VSMP 
2.1 Introduction 
In order to address our goal, we require a problem which exhibits 
the type of modular properties which discriminate between the 
capabilities of crossover and mutation.  We would also like to 
parameterise these modular properties, and in this section we 
present a problem class which satisfies these objectives. 
A modular problem without inter-module interdependencies is 
defined as separable [32].  Simon calls particular types of non-
separable modular systems ‘nearly decomposable’ [25]. Watson 
refines this definition to describe problems which are 
decomposable but not separable as exhibiting ‘modular 

interdependency’ [32][2].  We do not wish to restrict our scope to 
separable problems, so we allow inter-module dependencies in 
our problem.  We introduce a method which is intended to 
describe problems which exhibit modular interdependency.  Note 
that in principle, systems which exhibit modular interdependency 
may still be easy for crossover [32].  Note also that in a function 
built only of pair-wise dependencies, inter-module dependencies 
must be weak when compared with intra-module dependencies 
since the strong internal dependencies are what define the 
module.  For the sake of clarity, we shall refer to intra-module 
and inter-module dependencies as internal and external 
dependencies respectively. 

In this section we introduce the problem representation and 
discuss the impact upon mutation and crossover variation 
operators.  When talking about mutation, we are referring 
specifically to incremental processes such as point mutation, and 
not sequence based mutations (e.g. inversion, translocation).  In 
this section crossover refers to variation operators which 
recombine genetic material from two parents.  In the following 
chapter, we perform simulated experiments on the problem with 
specific algorithms in each of these classes. These specific 
choices are defined fully when relevant. 

We approach the definition of our parameterized modular 
problem by initially considering a very simple non-modular 
problem and subsequently incorporating modular structure.  We 
defer the introduction of components required for 
parameterization until the basic modular function is established. 

2.2 A Simple Non-Modular Problem 
We take a problem of N binary variables, giving N2 pair-wise 
interactions.  Each pair of variables (i, j) contributes to the overall 
fitness of a candidate solution provided that the pair have the 
same value. More generally, a pair may contribute to the overall 
fitness of a candidate solution provided that the pair satisfies 
some arbitrary Boolean subfunction, and this may be a different 
function for different pairs. However in this paper we address 
only the subfunction of equality (if-and-only-if) because its 
effects are easy to understand. This subfunction causes 
dependencies to act in concert, which can produce wide fitness 
saddles [30].  If we assume that all pairs are of equal importance, 
then the overall fitness of a candidate is given by Eq. 1. 
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Although this problem has a large number of interdependencies 
(N2), it contains no structure.  The function has only two optima 
in its landscape, each of equal fitness.  Paths of monotonically 
increasing fitness exist which lead to each of these solutions and 
thus either would be easily discovered by a mutation-only 
process. 

2.3  A Simple Modular Problem 
We now introduce some structure to the problem, which only 
requires a small change from the problem described in 2.2.  
Instead of assuming that all interactions have equal importance 
across the entire problem, we allow each pair to have a separate 
contribution value.  We introduce two classes of weights: wI as 
the weight of interactions within a module, and wE for the 
strength of interactions between modules. 
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These shall be represented in an N-by-N matrix, called the 
Pairwise Weight Matrix (PWM).  The overall fitness of a 
candidate is now given by Eq. 2: 
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Using just two weight classes keeps our problem formation 
simple, and yet allows us to represent a number of modules within 
which the internal dependencies are far more important than those 
outside of the module.  Arranging blocks of strong internal 
dependencies close to the leading diagonal of the PWM 
introduces a number of modules, each containing variables that 
have tight physical linkage on the genome.  The problem we 
define has Z modules each of k binary variables, giving an overall 
problem size of N=Z·k.  Eq. 3 describes more specifically the 
positioning of the weights to generate the required modules (see 
also Figure 2 (a)): 
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The PWM together with the IFF pairwise subfunction characterize 
the parameterised problem which we call the variable structural 
modularity problem (VSMP).  A 20-module example is given in 
2.4.  Note that it is not required that all modules are of equal size, 
but this simplification is suitable for our purposes.  
Using a matrix of pairwise dependencies in conjunction with a 
pairwise subfunction has been presented in [33] which shows a 
version of the Hierarchical-IFF function built from pairwise 
dependencies.  Here we address a more straight-forward single-
level of modularity rather than hierarchical modularity. This 
concept of modularity represented by a pairwise dependency 
matrix with high values grouped along the diagonal in this manner 
is both natural and intuitive [25][18][23][10][11][21][34].  The 
strong internal dependencies provide a selective gradient towards 
all variables within a module agreeing, resulting in two equally fit 
optima which are equally easy to find. As such we expect the 
probability of finding each optimum of a module to be on average 
0.5 when considered in isolation.1  However, the overall fitness of 
a genotype will be increased in proportion to how many pairs of 
modules ‘agree’ in how they are solved, i.e. if either both are at 
the all-0’s solution or both are at the all-1’s solution. This is 
because these configurations also confer the fitness contribution 
bonuses from the external dependencies. This means that the 
optimal solution to a module is not independent of context, but is 
nevertheless always one of only two possibilities, all-0 or all-1. 
This modular interdependency [2] requires a search method which 
explores combinations of blocks in order to find optimal solutions 
– and this is exactly the mechanism that crossover provides. 

                                                                 
1 The presence of external dependencies means that there is a bias 

towards one optimum or the other in all blocks in accordance 
with the majority of values for variables outside the block. This 
bias can be seen as a skewing of the landscape within a module, 
such that in the context of the rest of a genotype, one solution 
will be fitter than the other. Thus if external dependencies are 
too strong, one of the two internal local optima can be lost when 
the genotype as a whole has significantly more ones than zeros 
or vice versa.  

2.4 An example function 
We consider a specific landscape for the function described by 
Eqs 2 & 3, for N=400, Z=k=20, wI=200 and wE=1. Figure 1 
shows a particular cross-section of the fitness landscape defined 
by this function. The curve shows the fitness of each genotype G 
from G=0N to G=1N and all genotypes G=1i0N-i in between. i.e. 
00000…, 10000…, 11000…, 11100… etc. 

 
Figure 1. A cross section through the fitness landscape for the 

clean VSM problem with N=400, Z=k=20, wI=200, wE=1. 
This slice through the fitness landscape shows 21 different optima 
at 11 different fitness values.  In the entire landscape there are 2Z 
(≈106) local optima: the sparseness of optima is 2Z/2N =1/2k (≈1 in 
106). However, each of the 21 shown in Figure 1 have ZCR, 
equivalents, where R is the number blocks solved with all 1’s at 
that point in the section.  Although this cross-section only shows 
N+1 of a possible 2N genotypes, all of the local optima in the 
landscape are either on or have an equivalent on the cross-section, 
and so it still provides valuable insight into the formation of the 
landscape. 
We choose a problem that is large enough to discriminate 
methods using crossover from those only using mutation. Setting 
Z=k maximises the trade-off between the width of fitness valleys 
separating neighbouring local optima and the total number of 
local optima in the problem.  The absolute values of wE and wI 
are not significant, however the ratio of these two weights is 
important. As the internal and external weights tend to equality, 
the local optima disappear, and in the limit of wI=wE the function 
becomes the simple problem of maximising the majority of 0’s or 
1’s (as discussed previously in 2.2).  In the other extreme, when 
wE/wI tends to 0, all modules become separable and all 2Z local 
optima have equal fitness.  The class of optima that have 19 
solved modules of one type (either all-0s or all-1s) and 1 solved 
module of the other type is the last to appear with increasing 
wI:wE, and this occurs at a ratio of 19:1. We choose wI:wE to be 
above this at 200:1 which provides a width of 18 bits for the last 
fitness saddle. 
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Figure 2. Pairwise Weight Matrices for N=400, Z=k=20, wI=200, wE=1 for a range of modularity levels.  Note that the dark region 
indicates the value is wE, which in general is non-zero 

2.5 Performance Predictions for Mutation 
and Crossover 
So why is this problem class theoretically interesting?  Our 
motivation is that this function will provide a basis to discriminate 
between an algorithm employing crossover and one using only 
mutation.  Here we discuss what properties make this the case for 
the problem described in 2.3. 
Let us consider a single module in isolation.  As discussed in 2.3 
equally fit optima exist at all-0’s and at all-1’s, and each are 
equally easy to discover.  As such we expect the probability of 
finding each optimum to be 0.5 when considered in isolation.  As 
identified in 2.4, there are 2Z local optima, only two of which are 
global optima.  If we set wE=0, all optima become global.  Hence, 
we should expect each of the 2Z optima to be found by mutation 
with equal probability, and thus expect mutation to be sufficient 
to reliably solve the problem.  If, however, we were after one of 
only two particular local optima, we should expect a mutation-
only algorithm to succeed with a probability of only 2-(Z-1).  With 
large Z this becomes infeasible. As noted in 2.3, when wE is non-
zero, if there is an unequal number of 0’s and 1’s across the 
genotype, then a bias exists within each block towards the block 
optima which agrees with the majority. Although this makes the 
probability of finding a global optima slightly better than 2-(Z-1) 
for a mutation-only method, the presence of large numbers of 
local optima ensures that it remains very low. 
For an algorithm employing both mutation and crossover, the 
story is rather different.  Each module is easy to solve, and so we 
expect each individual to find one of the two solutions for each of 
the modules. Although the variable values within each of these 
modules will match other values in the same module, not all of 
the modules will agree with other modules, and some of the 
fitness contributions from external weights will not be obtained: 
the individual is at a local optimum.  However, across a 
population we expect that different individuals will discover 
different solutions to each module. Even with a small population 
all of the module-solutions should be available in at least one of 
the individuals before long.  The strong internal dependencies 
have been the main selective guide so far, and mutation is a 
sufficient operator in this stage.  Now an algorithm which uses 
crossover should be able to compose combinations of these 
module solutions.  The weaker external weights provide some 
gradient information that selection can act upon, preferring 
candidates closer to a global optimum. This process will only 
happen if the multiple solutions to each module are discovered by 
the population (and not subsequently lost prematurely through 
competition), and if the module solutions are preserved by the 

crossover mechanism.  The former condition requires a) crossover 
not to be too disruptive and allow mutation to discover all module 
solutions, and b) diversity maintenance to help preserve each 
module solution somewhere within the population.  The latter 
condition also has two requirements.  Firstly, modules must have 
tight linkage (≡short defining length).  Secondly, the crossover 
mechanism must preserve linkage, which is a feature of one or 
two point crossover for instance, but not uniform crossover. 
Thus our VSMP with clean modularity should properly 
discriminate between crossover and mutation based algorithms in 
a principled manner. The problem is difficult not because solving 
individual blocks is difficult, but because finding the correct 
combination of block solutions is difficult [34].  

2.6 Parameterising the amount of Modularity 
It still seems somewhat restricted to only consider such neatly 
formed modular problems, even if they do exhibit modular 
interdependency.  We can modify the problem in a number of 
ways which will vary the level of modularity that is present whilst 
still maintaining the essence of the ideal modular problem, at least 
for a portion of the variation scale.  These include: 

• Variation in the values of weights in the PWM 
• Variation of position of the classes of weights in the PWM 
• Variation of the pairwise sub-functions 

 

Varying the problem using these different methods can modify 
the properties in significantly dissimilar ways; this is discussed 
further in section 4.  However in this paper we investigate a single 
method of adjusting the modularity present: to modify the 
positions of the classes of weights in the PWM.  Note that varying 
the correspondence of the epistatic modularity to the genetic map 
(i.e. varying the tightness of the genetic linkage) is another way to 
vary the ease with which a GA will find good solutions.  However 
the correspondence of epistatic modularity with the genetic map is 
a different issue from varying the modularity of the problem per 
se, as addressed here: our method of varying the modularity in the 
problem is not equivalent to shuffling the genetic map as it is not 
guaranteed that any amount of rearranging the loci would recover 
perfect modularity. 
In order to explain the scale we use for structural modularity, we 
first consider the limits before deriving equations to describe the 
distribution of weights for the parameterised case. 
Figure 2 (a) shows the formation of the PWM for a neatly 
modular VSMP, with the locations of internal weights wI in 
white, and external weights wE in black.  As we decrease the 
level of modularity, we start to see external weights where 
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internal weights once were, and vice versa.  We label the region 
where internal weights exist in the neat VSMP as rI, and similarly 
use rE for the region containing external weights.  Figure 2(b)-(e) 
shows PWMs for a range of levels of structural modularity. 
Regardless of the level of modularity, the number of wI weights 
and wE weights remains constant so as not to change the total 
amount of epistasis in the problem. Thus, the proportions of the 
total number of weights that have the values wI and wE are 1/Z 
and (Z-1)/Z respectively. 
In the neat VSMP (i.e. at structural modularity=1), we see the 
proportion of wI weights in region rI is 1, and correspondingly 
find a proportion of 0 wI weights in rE.  We define the other end 
of the scale to have wI weights randomly distributed, and as such 
expect to find a density of 1/Z in both regions rI and rE. For 
intermediate points in this scale of structural modularity, we 
linearly interpolate the proportion of wI weights in rI from 1 to 
1/Z, and the proportion of wI weights in rE from 0 to 1/Z. 
Specifically, for a level of modularity ρ, the proportion of weights 
in rI that have the value wI is 1/Z+ρ(1-1/Z), and the proportion of 
weights in rE that have the value wI is 1/Z-ρ(1/Z). 

 
Figure 3. A cross section through the fitness landscapes for the 

VSM problem for N=400, Z=k=20, wI=200, wE=1, with 
varying degrees of modularity, ρ. As the modularity increases, 
so does the height and number of local optima in the problem 

Figure 3 shows the same cross-section through the genotype space 
as Figure 1: all of the genotypes G=1i0(N-i), for instances with 
varying levels of modularity, from randomly distributed wI 
weights (ρ=0) to neat structural modularity (ρ=1) in increments of 
0.25 (see also Figure 2 (b)-(e)).  For the case of ρ=0, we see the 
function has no local optima and there are monotonically 
increasing fitness gradients leading to each global optimum.  This 
is qualitatively comparable to the landscape we would find when 
wI=wE, as discussed earlier (Eq.1).  As we increase the structural 
modularity towards ρ=1, we see the landscape approach that 
shown in Figure 1 (this line is repeated in Figure 3 for 
comparison) with local optima increasing in number and height.  
Note that as all subfunctions are IFF the global optima will 
always be at all-1’s and all-0’s, regardless of the level of 
structural modularity. 

2.6.1 Predictions for behaviour on variable problem 
In section 2.5 we discussed the expected discrimination in 
behaviours of mutation and crossover based algorithms on the 
ideal modular problem.  Here we discuss the expected behaviour 
of these two variation methods for the parameterised case. 
For ρ=0, randomly distributed weights, we observe in Figure 2 (e) 
that no modular structure exists in the problem.  One important 
consequence of this is that no local optima remain (see ρ=0 line in 
Figure 3).  In order to understand why the structure has been 
removed, we can take into account a subset of the variables in 
region rI in the PWM, of size Z by k.  We call the average weight 
of this subset wIeff, and the average weight of the external 
dependencies to these variables as wEeff. At this value of ρ, We 
expect wIeff and wEeff to be the same.  That is, the dependencies 
which defined the modules in the neatly modular problem no 
longer have any structure to qualify as a module. 
This dissection of the problem properties for the case of ρ = 0 
allows us to confidently predict that this problem instance will not 
discriminate between mutation and crossover.  As no local optima 
exist, a mutation-only method is sufficient for the reliable 
discovery of one of the global optima and no advantage will be 
seen when also using crossover. 
For intermediate values of structural modularity, 0 < ρ < 1, we 
observe that the integrity of the modular structures increases (see  
Figure 2 (b)-(d)), and the abundance of local optima increases 
(see Figure 3) with increasing ρ.  Again, we can consider the 
average fitness of the Z by k subset to understand why these 
changes occur.  The average internal weight, wIeff, increases with 
ρ, whereas wEeff will decline.  This has the effect of strengthening 
modular structures which improves the fitness bonus attained 
when all variables agree.  When ρ is large enough that this fitness 
bonus is greater than the sum of the external agreements, some 
locally optimal configurations will appear, i.e. when it makes 
sense to agree with other variables within the module even against 
the weak bias provided by the external interdependencies.  Note 
that we should expect these local optima to appear earliest for 
genotypes with close to half zeros and half ones since the bias of 
agreeing with external variables is at its weakest in this region. 
We predict that the distinction between crossover and mutation 
will increase with ρ, but the exact shape of the difference curve 
shall depend on the specific problem parameters used.  We do 
however predict graceful degradation of the performance of 
mutation-only algorithms: no discontinuities will be present.  

3. SIMULATION EXPERIMENTS 
In the previous section we introduced a new problem with 
variable modularity, and showed fitness landscapes to reveal 
some of the problem properties across the parameter range.  In 
this section we investigate the performance of mutation-only and 
crossover methods across this range of modularity permitted by 
our VSM problem representation.  We perform a number of 
experiments in order to illustrate the variable discriminative 
ability offered by this problem, and identify which forms of these 
algorithms can exploit structural modularity.   
There are many different algorithms that we could have chosen to 
investigate, but our claims help us to narrow the scope of 
investigation.  In section 2.5 we identified that the crossover 
method requires linkage preservation and some form of diversity 
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maintenance.  To verify that linkage must be preserved we 
examine a method which does and a method which does not.  We 
choose GAs utilising two types of crossover for our comparison: 
one point and uniform crossover (GA-1PT and GA-U 
respectively).  As mentioned, we expect diversity in available 
building blocks to be essential in solving the VSMP.  In order to 
facilitate this, deterministic crowding (DC) is employed ([19][5]).  
In DC, parents are randomly selected to reproduce (not based on 
fitness).  Each offspring competes only against their most similar 
parent, which aims to keep competition within niches.  Offspring 
are only retained if they are fitter than the parent they compete 
with. 
For the mutation-only methods, we are interested in gradual 
processes and use algorithms with per-bit mutation rates (rather 
than a fixed total number of mutations per reproduction). We 
select a random mutation hill climber (RMHC) and a mutation-
only GA (GA-M). 
The test problem used is as the example given in 2.6: N=400, 
Z=k=20, wI=200, wE=1. All GAs are steady-state, employ 
deterministic crowding, and use a population size of 400.  GA-
1PT and GA-U use a mutation rate of 4/N (0.01), and GA-M uses 
a rate of 2/N (0.005).  The RMHC uses a mutation rate of k/2N 
(0.025).  The maximum evaluation count for all algorithms under 
test is 2,000,000. 
The mutation rates are tuned for each algorithm although 
significantly more time was spent tuning this for the mutation-
only algorithms.  Per-bit probabilities of assigning a new random 
allele were tested for the range from 1/N (0.0025) to 2k/N (0.1) 
and the results for the best rates are shown.  The crossover rate, 
0.05, used for crossover methods is unusually low, but at higher 
rates premature convergence becomes a problem. This is 
discussed further in 3.1. 

3.1 Results 
Figure 4 shows the comparative performance of each type of GA 
against a RMHC: the difference in number of successful runs for 
each value of ρ.  The number of successes out of 30 runs for each 

algorithm is also tabulated in Table 1; a run is considered 
successful if it found at least one of the two global optima. 
No graphs displaying progression of individual runs are displayed 
here for reasons of space, but two items merit reporting.  For all 
GA methods on the ρ = 1 problem, both solutions to each block 
are discovered in at least one member of the population rapidly, 
within 126,500 ± 17,336 generations for GA-1PT.  The diversity 
maintenance provided by DC is sufficient to preserve candidates 
with these module solutions throughout experiments once they 
have been discovered – whether these are correctly recombined to 
produce globally optimal solutions depends on the algorithm, as 
shown in Table 1.  The mean time to hit one of the global 
solutions for GA-1PT is 1,201,000 ± 137,816 evaluations. 

Table 1: Success rates out of 30 repeats for each algorithm, 
across a range of values for structural modularity, ρ  

ρ GA-1PT GA-U GA-M RMHC 
1.00 30 0 0 0 
0.95 30 0 0 0 
0.90 30 1 1 0 
0.85 30 6 4 2 
0.80 30 22 13 5 
0.75 30 30 24 16 
0.70 30 30 30 21 
0.65 30 30 30 27 
0.60 30 30 30 28 
0.55 30 30 30 29 
≤0.50 30 30 30 30 

 

For ρ = 0, there is no discrimination between any of the 
algorithms tested, which is unsurprising given that no non-global 
local optima exist.  Inability to discriminate continues up to ρ = 
0.5.  As ρ increases above this value, the hill climber becomes 
insufficient to solve the problem, but the population-based 
methods all succeed, even if they do not use crossover correctly; 
thus the distinction between the RMHC and all of the GA 
methods increases.  As ρ rises above 0.8 we note that the 
discrimination between the mutation-only GA and uniform 
crossover GA versus the RMHC decreases as these methods are 
no longer sufficient to deal with all of the local optima present; 
the only method which is significantly distinct from the RMHC is 
the one-point crossover GA.  This is because one-point crossover 
can correctly swap in well-adapted blocks from other individuals. 
At the fully modular end of the scale, the discrimination between 
the hill climber and GA-1PT is maximal. Whilst both GA-U and 
GA-M outperformed the RMHC for some partially structured 
problems, neither are sufficient to solve the cleanly modular 
problem at all.  The mutation-only RMHC is distracted by the 
strength of the internal weights and as such is not sufficient to 
find a global optimum amongst the abundant local optima. The 
mutation-only GA-M method is effectively a population of hill 
climbers, and whilst poor performing, appears to be a more 
efficient way of dividing the evaluations than the RMHC to find 
the right optima.  As mentioned, a number of mutation rates were 
tried, and although the results are only shown for the best found, 
it is worth noting why we would not expect any alternative rate to 
be successful.  When ρ = 1, on the order of k=√N bits need to be 
changed correctly in order to escape a local optimum.  It should 
be obvious that low mutation rates are not sufficient, as simply 
not enough loci will be changed.  On the other hand, we could 

Figure 4. Discrimination of GA strategies when compared 
with a RMHC.  The discrimination is strongest between GA-

1PT and RMHC when structural modularity is neatest 
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select a mutation rate that is high enough to give k bit changes on 
average.  But these k changes must occur at exactly the right loci 
and not disrupt any other loci, which is also infeasible when k is 
large. 
The GA using uniform crossover can solve some of the messier 
problems.  It slightly outperforms GA-M because it focuses 
variation appropriately [24]. However as ρ approaches 1 
preserving linkage becomes essential and this crossover method 
cannot maintain and recombine the 20 bit blocks, and the global 
optima are not found at all for the cleanly modular problem.  The 
second method using crossover, GA-1PT, is successful across the 
full range of structural modularity.  This is because it can exploit 
the modularity by composing candidate solutions from different 
combinations of module solutions, and is guided by the external 
dependencies in order to select for the correct combinations. Note 
that it is important that the population has sufficient time to find 
good solutions to blocks (such that external dependencies become 
more noticeable and can guide selection on blocks appropriately) 
before the population is allowed to converge to a particular 
solution at any block partition. Higher crossover rates seem to 
promote premature converge to block configurations before 
external dependencies are optimised, but further experimentation 
is needed to understand this fully. One alternative is the use of a 
subdivided population with more usual crossover rates [34]. 

4. DISCUSSION 
The results in the previous section show that ‘tuning in’ the 
structural modularity in the VSMP adjusts how discriminatory the 
problem is when comparing crossover and mutation. An algorithm 
using only mutation can solve non modular instances, but as the 
structural modularity is increased success rates are significantly 
impacted.  However when the type of crossover that can correctly 
exploit this modularity is used, performance is unaffected.  This 
supports the notion that the GA is indeed able to utilise the 
modular structure to solve these problems. 

In order for the GA to reliably solve the VSMP at ρ = 1, it 
requires two phases of search: an initial discovery of module 
solutions, and a second exploration of module combinations. The 
initial discovery is easy since monotonically increasing gradients 
exist to both solutions, and we see that even the mutation-only 
GA reliably discovers and maintains both solutions for all blocks 
in the problem.  The second phase of exploring different module 
combinations requires a more sophisticated algorithm to work 
reliably.  Specific order-k mutations are required in order to move 
between module-solution configurations, which are essentially 
unavailable via mutation for blocks of large k.  However a 
crossover mechanism can provide such variation by recombining 
module solutions from different candidates, which traverses the 
fitness landscape in an altogether different manner. 
The representation used for the VSMP permits a wide range of 
problems to be expressed.  The specific problem used in this 
paper is a fairly simple problem with modular interdependency, 
which is sufficient to illustrate its adjustable discriminative 
capacity, but the representation allows much more.  To start with, 
a number of dimensions within which the modularity can be 
varied are suggested in section 2.6.  Using different subfunctions 
amongst the pairwise fitness contributions has the potential to 
make problems significantly more difficult as the deviance from 
homogeneity increases, in contrast to the decrease in difficulty 

brought about by the decrease in structural modularity 
demonstrated here.   One further way to vary the modularity 
present is to vary the tightness of linkage, which could be of value 
when investigating the robustness of linkage learning algorithms 
over a range of degrading linkage, for instance.  In this paper only 
a single level of hierarchy is modelled, but the VSMP can also 
represent hierarchically modular problems, as is demonstrated in 
[32] where a version of the Hierarchical If-and-only-If is 
constructed with a similar approach. 

5. CONCLUSION 
The results of the simulated experiments and consequent 
discussion support the fundamental claims of this paper, that this 
method of describing modular problems has the ability to vary the 
extent to which it discriminates the capabilities of mutation and 
crossover based methods. We find that when the problem has no 
structure the performance of all methods, crossover-based and 
mutation-based, are equal with respect to the percentage of runs 
that find a global optimum. We also find that when the modularity 
of the problem is strong the problem clearly discriminates 
between crossover-based and mutation-based methods in this 
respect. Specifically, the GA with deterministic crowding and 
one-point crossover is still able to find the globally optimal 
solutions in all runs, whereas other methods fail in all attempts. In 
between we see that the difference in performance between the 
GA with crossover and mutation-based methods increases 
monotonically as this type of modularity is increased. These 
results agree with simple intuitions about the utility of the GA 
with respect to manipulating building blocks. 
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