
Variable Discrimination of Crossover Versus Mutation
Using Parameterized Modular Structure

Rob Mills
Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, UK

+44 23 8059 8703
rmm05r@ecs.soton.ac.uk

Richard A. Watson
Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, UK

+44 23 8059 2690
raw@ecs.soton.ac.uk

ABSTRACT
Recent work has provided functions that can be used to prove a
principled distinction between the capabilities of mutation-based
and crossover-based algorithms. However, prior functions are
isolated problem instances that do not provide much intuition
about the space of possible functions that is relevant to this
distinction or the characteristics of the problem class that affect
the relative success of these operators. Modularity is a ubiquitous
and intuitive concept in design, engineering and optimisation, and
can be used to produce functions that discriminate the ability of
crossover from mutation. In this paper, we present a new
approach to representing modular problems, which parameterizes
the amount of modular structure that is present in the epistatic
dependencies of the problem. This adjustable level of modularity
can be used to give rise to tuneable discrimination of the ability of
genetic algorithms with crossover versus mutation-only
algorithms.

Categories and Subject Descriptors
I.2.8 [Artificial Inteligence]: Problem Solving, Control Methods,
and Search – heuristic methods.

General Terms
Algorithms, Performance, Reliability, Theory.

Keywords
Mutation, crossover, modularity, building block hypothesis,
nearly decomposable systems.

1. INTRODUCTION
We observe modular structures in an extensive variety of
locations, from phenotypic development in biological systems
[29] to human-engineered systems where, for example, the
concept of decomposability is one of the key assumptions
required for cell library utilisation in ASIC design [26]. When
considering problems in evolutionary computation, the concept
that one portion of a system can be solved in partial or full

isolation of other portions of the system is both simple and
intuitive, and forms the basis for the building-block hypothesis
(BBH) [12][13][8][20]. However, identifying problems which
exhibit modular properties of the right kind to allow solutions to
be more easily accessible to algorithms which exploit these
modular properties is not straightforward [6].
The building block hypothesis is an early proposal to explain why
the genetic algorithm (GA) is successful when it is [12][8]. It
proposes that crossover recombines short high-fitness schemata to
produce even fitter genotypes, offering a search capacity
unavailable to other methods such as mutation hill climbing. In
this paper we use the intuition of the BBH to construct a function
that discriminates the capabilities of crossover and mutation
methods. Of course, the discrimination of crossover and mutation
in GAs has a long and controversial history [6][7][27][15][1][28].
Recently there have been some successes in showing principled
distinctions between the ability of mutation and crossover: some
are not based on building blocks [24][14], whereas some do
utilise a building-block structure [30][31][34]. The most recent of
these [34] uses a simple single-level building-block function to
discriminate the ability of mutation and crossover in much the
same way as that described by the BBH. However, all of this
work addresses single problem instances which cannot be tuned to
control the amount of modularity in the problem. Here we define
a problem with parameterised structural modularity to investigate
how this affects the discrimination between mutation and
crossover. It is not the aim of this paper to uphold the BBH or
untangle the issues involved in its controversial history – that
requires a more direct and formal approach [34]. Our objective is
to investigate how the distinction between mutation and crossover
is sensitive to how structured the modularity of a problem is. This
is performed using a simple building block function with a
variable amount of modularity. That is, we investigate a problem
that is adjustable from one extreme of no modularity at all to a
problem that exhibits modular interdependency [2] (with very
neat and clean modular structure), and parameterise the space in
between these extremes.
In this paper, we introduce a new problem which exhibits modular
interdependency [2]. We use an intuitive representation for this
problem which permits us to vary the clarity of modular structures
over a number of dimensions. The case where the modularity is
clean and neat is sufficient to discriminate between mutation and
crossover in a principled manner. Furthermore, our method for
varying the structural modularity is described and investigated,
and we find that the discrimination varies as the structural
modularity is adjusted across the range we define.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007…$5.00.

1312

There are many different ways that a problem could be tuned to
show a variable amount of difficulty for mutation (e.g. [16]), and
many parameters may be involved in the definition of functions
that might influence the discrimination of mutation and crossover
algorithms [22][4]. If nothing else, one could vary the size of a
problem or the width of fitness valleys incorporated in the
problem (e.g. [14][31]). One notable factor influencing the
effectiveness of crossover is the tightness of the genetic linkage
(the defining length of building blocks) [12][9]. But none of these
methods directly addresses a variable amount of modularity in a
simple tight-linkage building-block problem. Since the amount of
modularity is parameterized in our new problem, we gain an
understanding about properties which allow a GA using crossover
to perform qualitatively differently when compared with a
mutation-only algorithm. The level of discrimination changes as
the structural modularity is varied, which indicates when
crossover becomes necessary to solve the problem.

The key to making our problem variably modular is very simple.
We define the fitness of a genotype using a sum of weighted
pairwise interactions between the problem variables. For the
highly modular case strong interaction weights within blocks are
cleanly divided from the weak interactions that are between
blocks. In the non-modular case these weights are randomised so
that weights inside modules are not different on average from
weights between modules. A partially modular problem is
defined by partially randomising the weights of the modular case.
It should be noted that problems built of pairwise interactions, or
only order-2 dependencies, can often be easy to solve [16][8].
But this depends on how the interactions are organised. When
dependencies are structured, pairwise dependencies can ‘act in
concert’ to create local optima with significant Hamming
distances between them [2][33]. Varying this structure is
sufficient to vary the problem difficulty, and more importantly
vary the discrimination between the abilities of crossover and
mutation. Note that although the internal and external modular
dependencies are parameterized in the NKC landscape [17], this
has not been shown to discriminate the abilities of crossover and
mutation even when the modularity is as strong as possible [34].

The remaining sections of this paper are organised as follows:
section 2 introduces the new representation and discusses
expected behaviour of crossover and mutation on this problem
class; in section 3 we provide some experimental results. Section
4 discusses the consequences of the results in section 3. Section 5
concludes.

2. PARAMETERIZING STRUCTURAL
MODULARITY: THE VSMP
2.1 Introduction
In order to address our goal, we require a problem which exhibits
the type of modular properties which discriminate between the
capabilities of crossover and mutation. We would also like to
parameterise these modular properties, and in this section we
present a problem class which satisfies these objectives.
A modular problem without inter-module interdependencies is
defined as separable [32]. Simon calls particular types of non-
separable modular systems ‘nearly decomposable’ [25]. Watson
refines this definition to describe problems which are
decomposable but not separable as exhibiting ‘modular

interdependency’ [32][2]. We do not wish to restrict our scope to
separable problems, so we allow inter-module dependencies in
our problem. We introduce a method which is intended to
describe problems which exhibit modular interdependency. Note
that in principle, systems which exhibit modular interdependency
may still be easy for crossover [32]. Note also that in a function
built only of pair-wise dependencies, inter-module dependencies
must be weak when compared with intra-module dependencies
since the strong internal dependencies are what define the
module. For the sake of clarity, we shall refer to intra-module
and inter-module dependencies as internal and external
dependencies respectively.

In this section we introduce the problem representation and
discuss the impact upon mutation and crossover variation
operators. When talking about mutation, we are referring
specifically to incremental processes such as point mutation, and
not sequence based mutations (e.g. inversion, translocation). In
this section crossover refers to variation operators which
recombine genetic material from two parents. In the following
chapter, we perform simulated experiments on the problem with
specific algorithms in each of these classes. These specific
choices are defined fully when relevant.

We approach the definition of our parameterized modular
problem by initially considering a very simple non-modular
problem and subsequently incorporating modular structure. We
defer the introduction of components required for
parameterization until the basic modular function is established.

2.2 A Simple Non-Modular Problem
We take a problem of N binary variables, giving N2 pair-wise
interactions. Each pair of variables (i, j) contributes to the overall
fitness of a candidate solution provided that the pair have the
same value. More generally, a pair may contribute to the overall
fitness of a candidate solution provided that the pair satisfies
some arbitrary Boolean subfunction, and this may be a different
function for different pairs. However in this paper we address
only the subfunction of equality (if-and-only-if) because its
effects are easy to understand. This subfunction causes
dependencies to act in concert, which can produce wide fitness
saddles [30]. If we assume that all pairs are of equal importance,
then the overall fitness of a candidate is given by Eq. 1.

() ()∑∑
−

=

−

=
− ↔=

1

0

1

0
110 ,...,,

N

i

N

j
jiN xxwxxxF Eq. 1.

Although this problem has a large number of interdependencies
(N2), it contains no structure. The function has only two optima
in its landscape, each of equal fitness. Paths of monotonically
increasing fitness exist which lead to each of these solutions and
thus either would be easily discovered by a mutation-only
process.

2.3 A Simple Modular Problem
We now introduce some structure to the problem, which only
requires a small change from the problem described in 2.2.
Instead of assuming that all interactions have equal importance
across the entire problem, we allow each pair to have a separate
contribution value. We introduce two classes of weights: wI as
the weight of interactions within a module, and wE for the
strength of interactions between modules.

1313

These shall be represented in an N-by-N matrix, called the
Pairwise Weight Matrix (PWM). The overall fitness of a
candidate is now given by Eq. 2:

() ()∑∑
−

=

−

=
− ↔=

1

0

1

0
110 ,...,,

N

i

N

j
jiijN xxwxxxF Eq. 2.

Using just two weight classes keeps our problem formation
simple, and yet allows us to represent a number of modules within
which the internal dependencies are far more important than those
outside of the module. Arranging blocks of strong internal
dependencies close to the leading diagonal of the PWM
introduces a number of modules, each containing variables that
have tight physical linkage on the genome. The problem we
define has Z modules each of k binary variables, giving an overall
problem size of N=Z·k. Eq. 3 describes more specifically the
positioning of the weights to generate the required modules (see
also Figure 2 (a)):

⎣ ⎦ ⎣ ⎦
.
//

,
,

otherwise
kjkiif

wE
wI

w
ij

=

⎩
⎨
⎧

= Eq. 3.

The PWM together with the IFF pairwise subfunction characterize
the parameterised problem which we call the variable structural
modularity problem (VSMP). A 20-module example is given in
2.4. Note that it is not required that all modules are of equal size,
but this simplification is suitable for our purposes.
Using a matrix of pairwise dependencies in conjunction with a
pairwise subfunction has been presented in [33] which shows a
version of the Hierarchical-IFF function built from pairwise
dependencies. Here we address a more straight-forward single-
level of modularity rather than hierarchical modularity. This
concept of modularity represented by a pairwise dependency
matrix with high values grouped along the diagonal in this manner
is both natural and intuitive [25][18][23][10][11][21][34]. The
strong internal dependencies provide a selective gradient towards
all variables within a module agreeing, resulting in two equally fit
optima which are equally easy to find. As such we expect the
probability of finding each optimum of a module to be on average
0.5 when considered in isolation.1 However, the overall fitness of
a genotype will be increased in proportion to how many pairs of
modules ‘agree’ in how they are solved, i.e. if either both are at
the all-0’s solution or both are at the all-1’s solution. This is
because these configurations also confer the fitness contribution
bonuses from the external dependencies. This means that the
optimal solution to a module is not independent of context, but is
nevertheless always one of only two possibilities, all-0 or all-1.
This modular interdependency [2] requires a search method which
explores combinations of blocks in order to find optimal solutions
– and this is exactly the mechanism that crossover provides.

1 The presence of external dependencies means that there is a bias

towards one optimum or the other in all blocks in accordance
with the majority of values for variables outside the block. This
bias can be seen as a skewing of the landscape within a module,
such that in the context of the rest of a genotype, one solution
will be fitter than the other. Thus if external dependencies are
too strong, one of the two internal local optima can be lost when
the genotype as a whole has significantly more ones than zeros
or vice versa.

2.4 An example function
We consider a specific landscape for the function described by
Eqs 2 & 3, for N=400, Z=k=20, wI=200 and wE=1. Figure 1
shows a particular cross-section of the fitness landscape defined
by this function. The curve shows the fitness of each genotype G
from G=0N to G=1N and all genotypes G=1i0N-i in between. i.e.
00000…, 10000…, 11000…, 11100… etc.

Figure 1. A cross section through the fitness landscape for the

clean VSM problem with N=400, Z=k=20, wI=200, wE=1.
This slice through the fitness landscape shows 21 different optima
at 11 different fitness values. In the entire landscape there are 2Z
(≈106) local optima: the sparseness of optima is 2Z/2N =1/2k (≈1 in
106). However, each of the 21 shown in Figure 1 have ZCR,
equivalents, where R is the number blocks solved with all 1’s at
that point in the section. Although this cross-section only shows
N+1 of a possible 2N genotypes, all of the local optima in the
landscape are either on or have an equivalent on the cross-section,
and so it still provides valuable insight into the formation of the
landscape.
We choose a problem that is large enough to discriminate
methods using crossover from those only using mutation. Setting
Z=k maximises the trade-off between the width of fitness valleys
separating neighbouring local optima and the total number of
local optima in the problem. The absolute values of wE and wI
are not significant, however the ratio of these two weights is
important. As the internal and external weights tend to equality,
the local optima disappear, and in the limit of wI=wE the function
becomes the simple problem of maximising the majority of 0’s or
1’s (as discussed previously in 2.2). In the other extreme, when
wE/wI tends to 0, all modules become separable and all 2Z local
optima have equal fitness. The class of optima that have 19
solved modules of one type (either all-0s or all-1s) and 1 solved
module of the other type is the last to appear with increasing
wI:wE, and this occurs at a ratio of 19:1. We choose wI:wE to be
above this at 200:1 which provides a width of 18 bits for the last
fitness saddle.

1314

Figure 2. Pairwise Weight Matrices for N=400, Z=k=20, wI=200, wE=1 for a range of modularity levels. Note that the dark region
indicates the value is wE, which in general is non-zero

2.5 Performance Predictions for Mutation
and Crossover
So why is this problem class theoretically interesting? Our
motivation is that this function will provide a basis to discriminate
between an algorithm employing crossover and one using only
mutation. Here we discuss what properties make this the case for
the problem described in 2.3.
Let us consider a single module in isolation. As discussed in 2.3
equally fit optima exist at all-0’s and at all-1’s, and each are
equally easy to discover. As such we expect the probability of
finding each optimum to be 0.5 when considered in isolation. As
identified in 2.4, there are 2Z local optima, only two of which are
global optima. If we set wE=0, all optima become global. Hence,
we should expect each of the 2Z optima to be found by mutation
with equal probability, and thus expect mutation to be sufficient
to reliably solve the problem. If, however, we were after one of
only two particular local optima, we should expect a mutation-
only algorithm to succeed with a probability of only 2-(Z-1). With
large Z this becomes infeasible. As noted in 2.3, when wE is non-
zero, if there is an unequal number of 0’s and 1’s across the
genotype, then a bias exists within each block towards the block
optima which agrees with the majority. Although this makes the
probability of finding a global optima slightly better than 2-(Z-1)
for a mutation-only method, the presence of large numbers of
local optima ensures that it remains very low.
For an algorithm employing both mutation and crossover, the
story is rather different. Each module is easy to solve, and so we
expect each individual to find one of the two solutions for each of
the modules. Although the variable values within each of these
modules will match other values in the same module, not all of
the modules will agree with other modules, and some of the
fitness contributions from external weights will not be obtained:
the individual is at a local optimum. However, across a
population we expect that different individuals will discover
different solutions to each module. Even with a small population
all of the module-solutions should be available in at least one of
the individuals before long. The strong internal dependencies
have been the main selective guide so far, and mutation is a
sufficient operator in this stage. Now an algorithm which uses
crossover should be able to compose combinations of these
module solutions. The weaker external weights provide some
gradient information that selection can act upon, preferring
candidates closer to a global optimum. This process will only
happen if the multiple solutions to each module are discovered by
the population (and not subsequently lost prematurely through
competition), and if the module solutions are preserved by the

crossover mechanism. The former condition requires a) crossover
not to be too disruptive and allow mutation to discover all module
solutions, and b) diversity maintenance to help preserve each
module solution somewhere within the population. The latter
condition also has two requirements. Firstly, modules must have
tight linkage (≡short defining length). Secondly, the crossover
mechanism must preserve linkage, which is a feature of one or
two point crossover for instance, but not uniform crossover.
Thus our VSMP with clean modularity should properly
discriminate between crossover and mutation based algorithms in
a principled manner. The problem is difficult not because solving
individual blocks is difficult, but because finding the correct
combination of block solutions is difficult [34].

2.6 Parameterising the amount of Modularity
It still seems somewhat restricted to only consider such neatly
formed modular problems, even if they do exhibit modular
interdependency. We can modify the problem in a number of
ways which will vary the level of modularity that is present whilst
still maintaining the essence of the ideal modular problem, at least
for a portion of the variation scale. These include:

• Variation in the values of weights in the PWM
• Variation of position of the classes of weights in the PWM
• Variation of the pairwise sub-functions

Varying the problem using these different methods can modify
the properties in significantly dissimilar ways; this is discussed
further in section 4. However in this paper we investigate a single
method of adjusting the modularity present: to modify the
positions of the classes of weights in the PWM. Note that varying
the correspondence of the epistatic modularity to the genetic map
(i.e. varying the tightness of the genetic linkage) is another way to
vary the ease with which a GA will find good solutions. However
the correspondence of epistatic modularity with the genetic map is
a different issue from varying the modularity of the problem per
se, as addressed here: our method of varying the modularity in the
problem is not equivalent to shuffling the genetic map as it is not
guaranteed that any amount of rearranging the loci would recover
perfect modularity.
In order to explain the scale we use for structural modularity, we
first consider the limits before deriving equations to describe the
distribution of weights for the parameterised case.
Figure 2 (a) shows the formation of the PWM for a neatly
modular VSMP, with the locations of internal weights wI in
white, and external weights wE in black. As we decrease the
level of modularity, we start to see external weights where

1315

internal weights once were, and vice versa. We label the region
where internal weights exist in the neat VSMP as rI, and similarly
use rE for the region containing external weights. Figure 2(b)-(e)
shows PWMs for a range of levels of structural modularity.
Regardless of the level of modularity, the number of wI weights
and wE weights remains constant so as not to change the total
amount of epistasis in the problem. Thus, the proportions of the
total number of weights that have the values wI and wE are 1/Z
and (Z-1)/Z respectively.
In the neat VSMP (i.e. at structural modularity=1), we see the
proportion of wI weights in region rI is 1, and correspondingly
find a proportion of 0 wI weights in rE. We define the other end
of the scale to have wI weights randomly distributed, and as such
expect to find a density of 1/Z in both regions rI and rE. For
intermediate points in this scale of structural modularity, we
linearly interpolate the proportion of wI weights in rI from 1 to
1/Z, and the proportion of wI weights in rE from 0 to 1/Z.
Specifically, for a level of modularity ρ, the proportion of weights
in rI that have the value wI is 1/Z+ρ(1-1/Z), and the proportion of
weights in rE that have the value wI is 1/Z-ρ(1/Z).

Figure 3. A cross section through the fitness landscapes for the

VSM problem for N=400, Z=k=20, wI=200, wE=1, with
varying degrees of modularity, ρ. As the modularity increases,
so does the height and number of local optima in the problem

Figure 3 shows the same cross-section through the genotype space
as Figure 1: all of the genotypes G=1i0(N-i), for instances with
varying levels of modularity, from randomly distributed wI
weights (ρ=0) to neat structural modularity (ρ=1) in increments of
0.25 (see also Figure 2 (b)-(e)). For the case of ρ=0, we see the
function has no local optima and there are monotonically
increasing fitness gradients leading to each global optimum. This
is qualitatively comparable to the landscape we would find when
wI=wE, as discussed earlier (Eq.1). As we increase the structural
modularity towards ρ=1, we see the landscape approach that
shown in Figure 1 (this line is repeated in Figure 3 for
comparison) with local optima increasing in number and height.
Note that as all subfunctions are IFF the global optima will
always be at all-1’s and all-0’s, regardless of the level of
structural modularity.

2.6.1 Predictions for behaviour on variable problem
In section 2.5 we discussed the expected discrimination in
behaviours of mutation and crossover based algorithms on the
ideal modular problem. Here we discuss the expected behaviour
of these two variation methods for the parameterised case.
For ρ=0, randomly distributed weights, we observe in Figure 2 (e)
that no modular structure exists in the problem. One important
consequence of this is that no local optima remain (see ρ=0 line in
Figure 3). In order to understand why the structure has been
removed, we can take into account a subset of the variables in
region rI in the PWM, of size Z by k. We call the average weight
of this subset wIeff, and the average weight of the external
dependencies to these variables as wEeff. At this value of ρ, We
expect wIeff and wEeff to be the same. That is, the dependencies
which defined the modules in the neatly modular problem no
longer have any structure to qualify as a module.
This dissection of the problem properties for the case of ρ = 0
allows us to confidently predict that this problem instance will not
discriminate between mutation and crossover. As no local optima
exist, a mutation-only method is sufficient for the reliable
discovery of one of the global optima and no advantage will be
seen when also using crossover.
For intermediate values of structural modularity, 0 < ρ < 1, we
observe that the integrity of the modular structures increases (see
Figure 2 (b)-(d)), and the abundance of local optima increases
(see Figure 3) with increasing ρ. Again, we can consider the
average fitness of the Z by k subset to understand why these
changes occur. The average internal weight, wIeff, increases with
ρ, whereas wEeff will decline. This has the effect of strengthening
modular structures which improves the fitness bonus attained
when all variables agree. When ρ is large enough that this fitness
bonus is greater than the sum of the external agreements, some
locally optimal configurations will appear, i.e. when it makes
sense to agree with other variables within the module even against
the weak bias provided by the external interdependencies. Note
that we should expect these local optima to appear earliest for
genotypes with close to half zeros and half ones since the bias of
agreeing with external variables is at its weakest in this region.
We predict that the distinction between crossover and mutation
will increase with ρ, but the exact shape of the difference curve
shall depend on the specific problem parameters used. We do
however predict graceful degradation of the performance of
mutation-only algorithms: no discontinuities will be present.

3. SIMULATION EXPERIMENTS
In the previous section we introduced a new problem with
variable modularity, and showed fitness landscapes to reveal
some of the problem properties across the parameter range. In
this section we investigate the performance of mutation-only and
crossover methods across this range of modularity permitted by
our VSM problem representation. We perform a number of
experiments in order to illustrate the variable discriminative
ability offered by this problem, and identify which forms of these
algorithms can exploit structural modularity.
There are many different algorithms that we could have chosen to
investigate, but our claims help us to narrow the scope of
investigation. In section 2.5 we identified that the crossover
method requires linkage preservation and some form of diversity

1316

maintenance. To verify that linkage must be preserved we
examine a method which does and a method which does not. We
choose GAs utilising two types of crossover for our comparison:
one point and uniform crossover (GA-1PT and GA-U
respectively). As mentioned, we expect diversity in available
building blocks to be essential in solving the VSMP. In order to
facilitate this, deterministic crowding (DC) is employed ([19][5]).
In DC, parents are randomly selected to reproduce (not based on
fitness). Each offspring competes only against their most similar
parent, which aims to keep competition within niches. Offspring
are only retained if they are fitter than the parent they compete
with.
For the mutation-only methods, we are interested in gradual
processes and use algorithms with per-bit mutation rates (rather
than a fixed total number of mutations per reproduction). We
select a random mutation hill climber (RMHC) and a mutation-
only GA (GA-M).
The test problem used is as the example given in 2.6: N=400,
Z=k=20, wI=200, wE=1. All GAs are steady-state, employ
deterministic crowding, and use a population size of 400. GA-
1PT and GA-U use a mutation rate of 4/N (0.01), and GA-M uses
a rate of 2/N (0.005). The RMHC uses a mutation rate of k/2N
(0.025). The maximum evaluation count for all algorithms under
test is 2,000,000.
The mutation rates are tuned for each algorithm although
significantly more time was spent tuning this for the mutation-
only algorithms. Per-bit probabilities of assigning a new random
allele were tested for the range from 1/N (0.0025) to 2k/N (0.1)
and the results for the best rates are shown. The crossover rate,
0.05, used for crossover methods is unusually low, but at higher
rates premature convergence becomes a problem. This is
discussed further in 3.1.

3.1 Results
Figure 4 shows the comparative performance of each type of GA
against a RMHC: the difference in number of successful runs for
each value of ρ. The number of successes out of 30 runs for each

algorithm is also tabulated in Table 1; a run is considered
successful if it found at least one of the two global optima.
No graphs displaying progression of individual runs are displayed
here for reasons of space, but two items merit reporting. For all
GA methods on the ρ = 1 problem, both solutions to each block
are discovered in at least one member of the population rapidly,
within 126,500 ± 17,336 generations for GA-1PT. The diversity
maintenance provided by DC is sufficient to preserve candidates
with these module solutions throughout experiments once they
have been discovered – whether these are correctly recombined to
produce globally optimal solutions depends on the algorithm, as
shown in Table 1. The mean time to hit one of the global
solutions for GA-1PT is 1,201,000 ± 137,816 evaluations.

Table 1: Success rates out of 30 repeats for each algorithm,
across a range of values for structural modularity, ρ

ρ GA-1PT GA-U GA-M RMHC
1.00 30 0 0 0
0.95 30 0 0 0
0.90 30 1 1 0
0.85 30 6 4 2
0.80 30 22 13 5
0.75 30 30 24 16
0.70 30 30 30 21
0.65 30 30 30 27
0.60 30 30 30 28
0.55 30 30 30 29
≤0.50 30 30 30 30

For ρ = 0, there is no discrimination between any of the
algorithms tested, which is unsurprising given that no non-global
local optima exist. Inability to discriminate continues up to ρ =
0.5. As ρ increases above this value, the hill climber becomes
insufficient to solve the problem, but the population-based
methods all succeed, even if they do not use crossover correctly;
thus the distinction between the RMHC and all of the GA
methods increases. As ρ rises above 0.8 we note that the
discrimination between the mutation-only GA and uniform
crossover GA versus the RMHC decreases as these methods are
no longer sufficient to deal with all of the local optima present;
the only method which is significantly distinct from the RMHC is
the one-point crossover GA. This is because one-point crossover
can correctly swap in well-adapted blocks from other individuals.
At the fully modular end of the scale, the discrimination between
the hill climber and GA-1PT is maximal. Whilst both GA-U and
GA-M outperformed the RMHC for some partially structured
problems, neither are sufficient to solve the cleanly modular
problem at all. The mutation-only RMHC is distracted by the
strength of the internal weights and as such is not sufficient to
find a global optimum amongst the abundant local optima. The
mutation-only GA-M method is effectively a population of hill
climbers, and whilst poor performing, appears to be a more
efficient way of dividing the evaluations than the RMHC to find
the right optima. As mentioned, a number of mutation rates were
tried, and although the results are only shown for the best found,
it is worth noting why we would not expect any alternative rate to
be successful. When ρ = 1, on the order of k=√N bits need to be
changed correctly in order to escape a local optimum. It should
be obvious that low mutation rates are not sufficient, as simply
not enough loci will be changed. On the other hand, we could

Figure 4. Discrimination of GA strategies when compared
with a RMHC. The discrimination is strongest between GA-

1PT and RMHC when structural modularity is neatest

1317

select a mutation rate that is high enough to give k bit changes on
average. But these k changes must occur at exactly the right loci
and not disrupt any other loci, which is also infeasible when k is
large.
The GA using uniform crossover can solve some of the messier
problems. It slightly outperforms GA-M because it focuses
variation appropriately [24]. However as ρ approaches 1
preserving linkage becomes essential and this crossover method
cannot maintain and recombine the 20 bit blocks, and the global
optima are not found at all for the cleanly modular problem. The
second method using crossover, GA-1PT, is successful across the
full range of structural modularity. This is because it can exploit
the modularity by composing candidate solutions from different
combinations of module solutions, and is guided by the external
dependencies in order to select for the correct combinations. Note
that it is important that the population has sufficient time to find
good solutions to blocks (such that external dependencies become
more noticeable and can guide selection on blocks appropriately)
before the population is allowed to converge to a particular
solution at any block partition. Higher crossover rates seem to
promote premature converge to block configurations before
external dependencies are optimised, but further experimentation
is needed to understand this fully. One alternative is the use of a
subdivided population with more usual crossover rates [34].

4. DISCUSSION
The results in the previous section show that ‘tuning in’ the
structural modularity in the VSMP adjusts how discriminatory the
problem is when comparing crossover and mutation. An algorithm
using only mutation can solve non modular instances, but as the
structural modularity is increased success rates are significantly
impacted. However when the type of crossover that can correctly
exploit this modularity is used, performance is unaffected. This
supports the notion that the GA is indeed able to utilise the
modular structure to solve these problems.

In order for the GA to reliably solve the VSMP at ρ = 1, it
requires two phases of search: an initial discovery of module
solutions, and a second exploration of module combinations. The
initial discovery is easy since monotonically increasing gradients
exist to both solutions, and we see that even the mutation-only
GA reliably discovers and maintains both solutions for all blocks
in the problem. The second phase of exploring different module
combinations requires a more sophisticated algorithm to work
reliably. Specific order-k mutations are required in order to move
between module-solution configurations, which are essentially
unavailable via mutation for blocks of large k. However a
crossover mechanism can provide such variation by recombining
module solutions from different candidates, which traverses the
fitness landscape in an altogether different manner.
The representation used for the VSMP permits a wide range of
problems to be expressed. The specific problem used in this
paper is a fairly simple problem with modular interdependency,
which is sufficient to illustrate its adjustable discriminative
capacity, but the representation allows much more. To start with,
a number of dimensions within which the modularity can be
varied are suggested in section 2.6. Using different subfunctions
amongst the pairwise fitness contributions has the potential to
make problems significantly more difficult as the deviance from
homogeneity increases, in contrast to the decrease in difficulty

brought about by the decrease in structural modularity
demonstrated here. One further way to vary the modularity
present is to vary the tightness of linkage, which could be of value
when investigating the robustness of linkage learning algorithms
over a range of degrading linkage, for instance. In this paper only
a single level of hierarchy is modelled, but the VSMP can also
represent hierarchically modular problems, as is demonstrated in
[32] where a version of the Hierarchical If-and-only-If is
constructed with a similar approach.

5. CONCLUSION
The results of the simulated experiments and consequent
discussion support the fundamental claims of this paper, that this
method of describing modular problems has the ability to vary the
extent to which it discriminates the capabilities of mutation and
crossover based methods. We find that when the problem has no
structure the performance of all methods, crossover-based and
mutation-based, are equal with respect to the percentage of runs
that find a global optimum. We also find that when the modularity
of the problem is strong the problem clearly discriminates
between crossover-based and mutation-based methods in this
respect. Specifically, the GA with deterministic crowding and
one-point crossover is still able to find the globally optimal
solutions in all runs, whereas other methods fail in all attempts. In
between we see that the difference in performance between the
GA with crossover and mutation-based methods increases
monotonically as this type of modularity is increased. These
results agree with simple intuitions about the utility of the GA
with respect to manipulating building blocks.

6. REFERENCES
[1] Culberson, J.C. Mutation-Crossover Isomorphisms and the

construction of Discriminating Functions. Evolutionary
computation 2(3): 279-311, 1995

[2] Dauscher, P., Polani, D. and Watson, R. A. A Simple
Modularity Measure for Search Spaces based on Information
Theory. Proceedings of Artificial Life X, 2006

[3] Deb, K. and Goldberg, D.E. Analyzing Deception in Trap
Functions. In Whitley, D. (ed) Foundations of genetic
algorithms 2, Morgan Kaufmann, CA pp 93-108, 1993

[4] de Jong, E.D., Watson, R.A. and Thierens, D. A generator
for hierarchical problems. GECCO Workshop on the Theory
of Representations, 2005

[5] De Jong, K.A. An analysis of the behaviour of a class of
genetic adaptive systems. Doctoral Thesis, Department of
Computer and Communication Sciences, University of
Michigan, Ann Arbor, 1975

[6] Forrest, S. Mitchell. M. What Makes a Problem Hard for a
Genetic Algorithm? Some Anomalous Results and Their
Explanation. Machine Learning 13: 285-319, 1993 (1993a)

[7] Forrest, S. Mitchell. M. Relative Building-block fitness and
the building block hypothesis. In Whitley, D. (ed)
Foundations of genetic algorithms 2, Morgan Kaufmann, CA
pp 109-126, 1993 (1993b)

[8] Goldberg, D.E. Genetic Algorithm in Search, Optimization
and Machine Learning. Addison-Wesley, Reading, MA,
1989

1318

[9] Harik, G.R. Learning gene linkage to efficiently solve
problems of bounded difficulty using genetic algorithms.
PhD dissertation, department of computer science and
engineering, University of Michigan, An Arbour, 1997

[10] Higgs, P.G. Overlaps between RNA secondary structures.
Physical review letters 76(4):704-707, 1996

[11] Higgs, P.G. RNA secondary structure: physical and
computational aspects. Quarterly reviews of Biophysics
33(3):199-253, 2000

[12] Holland, J.H. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor MI, 1975

[13] Holland, J.H. Building blocks, cohort genetic algorithms, and
hyperplane-defined functions. Evolutionary computation
8(4):373-391, 2000

[14] Jansen, T. and Wegener, I. Real royal road functions: where
crossover is provably essential. Discrete Applied
Mathematics 149(1-3):111-125, 2005

[15] Jones, T. Evolutionary Algorithms, fitness landscapes and
search. PhD Thesis, 95-05-048, University of New Mexico,
Albuquerque, 1995

[16] Kauffman, S.A. The origins of order: self-organisation and
selection in evolution. Oxford University Press, 1993

[17] Kauffman, S.A. and Johnsen, S. Coevolution to the Edge of
Chaos: Coupled Fitness Landscapes, Poised States, and
Coevolutionary Avalanches. In Artificial Life II, ed. C.
Langton, et al, pp 325-370. Addison-Wesley, Reading, MA,
1989

[18] Lipson, H., Pollack, J.B. and Sih, N.P. On the origin of
modular variation. Evolution 56(8):1549-1556, 2002

[19] Mahfoud, S. Crowding and Preselection Revisited. Parallel
problem solving from nature 2, pp 27-36, Elsevier, 1992.

[20] Mitchell M., Holland, J.H. and Forrest, S. When will a
genetic algorithm outperform hill climbing? Advances in
neural information processing systems 6. Cowan, J.D.,
Tesauro, G. and Alspector, J.(eds) pp 51-58, 1993

[21] Morgan, S.R. and Higgs P.G. Barrier heights between
ground states in a model of RNA secondary structure. J
Physics A 31(14):3153-3170, 1998

[22] Pelikan, M., Sastry, K., Butz, M.V. and Goldberg, D.E.
Hierarchical BOA on Random Decomposable Problems. In

procs Genetic and Evolutionary Computation Conference,
Keijzer, M. et al. (eds), pp 431-432, 2006

[23] Segre, D., Ben-Eli, D. and Lancet, D. Compositional
Genomes: prebiotic information transfer in mutually
catalytic noncovelant assemblies. PNAS 97(8), pp4112-4117,
2000

[24] Shapiro, J. L. and Prügel-Bennett, A. Genetic algorithm
dynamics in two-well potentials with basins and barrier. In
Proceedings of Foundations of Genetic Algorithms - 4,
Belew, R. K. and Vose, M. D. (eds) pp 101-116, 1997

[25] Simon, H.A. The sciences of the artificial. MIT Press,
Cambridge MA, 1969

[26] Smith, M.J.S. Application-Specific Integrated Circuits.
Addison-Wesley, Reading MA, 1997

[27] Spears, W.M. Crossover or Mutation? In Whitley, D. (ed)
Foundations of genetic algorithms 2, Morgan Kaufmann, CA
pp 221-237, 1993

[28] Vose, M.D. The Simple genetic algorithm: foundations and
theory. MIT Press, Cambridge MA, 1999

[29] Wagner, G.P. and Altenberg, L. Complex Adaptations and
the Evolution of Evolvability. Evolution 50(3):967-976,1995

[30] Watson, R.A., Hornby, G. S. and Pollack, J.B. Modeling
building block interdependency. Proceedings of Parallel
problem solving from nature V, Eiben, A.E., et al. (eds), pp
97-106, 1998

[31] Watson, R.A. A simple two-module problem to exemplify
building block assembly under crossover. In procs Parallel
Problem Solving from Nature VIII, Springer, pp. 161-171,
2004

[32] Watson, R. A. and Pollack, J. B. Modular Interdependency in
Complex Dynamical Systems. Artificial Life 11(4):445-457,
2005

[33] Watson, R.A. Compositional Evolution. MIT Press,
Cambridge MA, 2006

[34] Watson, R.A. and Jansen, T. A building block royal road
where crossover is provably essential. In procs Genetic and
Evolutionary Computation Conference, 2007

[35] Yu, T. and Goldberg, D.E. Conquering hierarchical difficulty
by explicit chunking: substructural chromosome
compression. In procs Genetic and Evolutionary
Computation Conference pp 1385-1392, 2006

1319

